160 Dy(36 Ar,3n γ) 1999He32,1997Fo06

	His	tory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017

Includes $Er(^{32}S,xn\gamma)$ E=164 MeV from 1997Fo06.

1999He32: 160 Dy(36 Ar,3n γ) E=178 MeV; gas-filled recoil fragment separator (RITU); DORIS multi-detector array for γ -ray detection; position sensitive Si detector for recoil identification, α -ray detection, and α - γ correlation studies. Recoil-decay tagging and recoil gating methods. Measured E γ , I γ , α -tagged γ coincidence matrix, and $\gamma\gamma$ coincidences. Deduced levels and suggest J^{π} values.

1997Fo06: $Er(^{32}S,xn\gamma)$ E=164 MeV; recoil fragment mass separator; (recoil) γ and (recoil) $\gamma\gamma$. Measured E γ . The 234 keV γ -ray reported in this work is not confirmed by 1999He32.

¹⁹³Po Levels

Level scheme built on the basis of γ -ray energies and intensities, and $\gamma\gamma$ coincidences from 1999He32. Energy of the $(13/2^+)$ level was kept fixed. Band structure and tentative J^{π} assignments proposed by 1999He32.

E(level) [†]	J^{π}	T _{1/2}	Comments
100‡ 6	(13/2+)	245 ms 11	% α ≤100 Additional information 1. E(level),J $^{\pi}$,T _{1/2} : From Adopted Levels.
351.3 [‡] 5	$(17/2^+)$		
375.0? [#] <i>5</i>	$(15/2^+)$		
712.1 [‡] 7	$(21/2^+)$		
744.3? [#] 8	$(19/2^+)$		
1175.8 [‡] 9	$(25/2^+)$		
1229.7? [#] <i>10</i>	$(23/2^+)$		

[†] From a least-squares fit to γ -ray energies, $(13/2^+)$ state at 100 keV 6 kept fixed.

γ (193Po)

Two distinct γ -ray groups identified on the basis of prompt singles γ -ray spectra obtained by gating with α decays of the $(3/2^-)$ and $(13/2^+)$ ¹⁹³Po states, respectively.

E_{γ}^{\dagger}	I _γ †@	$E_i(level)$	\mathtt{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
^x 206.7 [‡] 5	100 & 20					
251.4 [#] 5	100 7	351.3	$(17/2^+)$	100	$(13/2^+)$	$E\gamma = 251 \text{ keV } I \text{ (1997Fo06)}.$
274.9 [#] <i>a</i> 5	21 4	375.0?	$(15/2^+)$	100	$(13/2^+)$	
^x 349.1 [‡] 5	100 <mark>&</mark> 40					
360.9 [#] 5	59 7	712.1	$(21/2^+)$	351.3	$(17/2^+)$	
x367‡ 1	50 <mark>&</mark> 20					
369 [#] <i>a</i> 1	18 5	744.3?	$(19/2^+)$	375.0?	$(15/2^+)$	$E\gamma = 368 \text{ keV } 1 \text{ (1997Fo06)}.$
393 [#] <i>a</i> 1	15 4	744.3?	$(19/2^+)$	351.3	$(17/2^+)$	
463.7 [#] 5	22 6	1175.8	$(25/2^+)$	712.1	$(21/2^+)$	

 $^{^{\}ddagger}$ Band(A): Band based on (13/2⁺). Intraband transitions identified from (13/2⁺) α -decay tagged coincidences.

[#] Band(B): Band based on (15/2⁺). Tentative arrangement based on energy sums.

160 Dy(36 Ar,3n γ) 1999He32,1997Fo06 (continued)

$\gamma(^{193}\text{Po})$ (continued)

E_{γ}^{\dagger}	I_{γ} †@	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
485 [#] <i>a</i> 1	15 5	1229.7?	(23/2+)	744.3?	(19/2+)	1997Fo06 report a 486 keV γ ray placed from tentative levels 1105 to 619 in their level scheme, not confirmed by 1999He32.
518 [#] <i>a</i> 1		1229.7?	$(23/2^+)$	712.1	$(21/2^+)$	•
^x 549 [#] 1	12 4					
^x 574 [#] 1	7 3					

[†] From 1999He32.

 $^{^{\}ddagger}$ Placement above the (3/2⁻) level on the basis of 3/2⁻ α -decay tagged coincidences.

 $^{^{\#}}$ Placement above the (13/2+) level on the basis of 13/2+ α -decay tagged coincidences.

 $^{^{@}}$ Intensities normalized to 100 for the 251.4 keV γ ray, except where noted.

[&]amp; Intensities normalized to 100 for the 206.7 keV γ ray.

^a Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

160 Dy(36 Ar,3n γ) 1999He32,1997Fo06

Band(B): Band based on $(15/2^+)$

