¹⁹³Bi ε decay **1984Co13,2010Co13**

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017

Parent: ¹⁹³Bi: E=0.0; $J^{\pi} = (9/2^{-})$; $T_{1/2} = 63.6 \text{ s } 30$; $Q(\varepsilon) = 6310 50$; $\%\varepsilon + \%\beta^{+}$ decay=96.5 15

1984Co13: Sources from ¹⁶O bombardments of natural rhenium, E(¹⁶O)=170 MeV, and ²⁰Ne bombardments of ¹⁸¹Ta,

 $E(^{20}Ne)=137$ MeV; mass separation; measured $E\gamma$, $I\gamma$, prompt and delayed $\gamma\gamma$ and $x\gamma$ coin.

1984Co13 report the identification of 21 γ rays with T_{1/2 1/2}=65 s 4, but do not give energy and intensity values.

2010Co13: ¹⁹³Bi was produced from fusion-evaporation reactions using ¹⁴N, ¹⁶O and ²⁰Ne beams on natural Ir (37.3% ¹⁹¹Ir, 62.7% ¹⁹³Ir), natural Re (37.4% ¹⁸⁵Re, 62.6% ¹⁸⁷Re) and ¹⁸¹Ta targets, respectively. The radioactive recoils were subsequently ionized in a plasma ion source, mass separated and implanted in an aluminized mylar tape. Single γ -ray energy spectra were recorded with two coaxial HPGe detectors. Measured γ -ray energies and relative intensities along with possible cross-over (sum peak). γ -ray placements are not presented.

$\gamma(^{193}\text{Pb})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	Comments
^x 174.5	100	
^x 196.8	5.4	
^x 290.6	7.8	
x320.1	7.7	
^x 354	8.7	
^x 505.9	5.2	
^x 554.2	38	
^x 621.2	9.2	
^x 681.1	48	
^x 687.2	12.4	
x711.1	48.8	
^x 739.1	13.5	
x750.1	6.3	E_{γ} : Possible cross-over of 196.8 γ + 554.2 γ .
^x 818.5	14.2	E_{γ} : Possible cross-over of 196.8 γ + 621.2 γ .
^x 861.8	20	E_{γ} : Possible cross-over of 174.5 γ + 687.6 γ .
^x 873.9	29.4	E_{γ} : Possible cross-over of $320.1\gamma + 554.2\gamma$.
^x 995.7	23.8	
^x 1022.3	12.8	
^x 1049.1	9.9	E_{γ} : Possible cross-over of 174.5 γ + 873.9 γ .
^x 1116.1	8.4	
^1124.7	5.2	
[^] 1171.6	10.1	E_{γ} : Possible cross-over of 174.5 γ + 995.7 γ .
^1630.6	0.4	E_{α} : Possible cross-over of 505.9 γ + 1124.7 γ .

[†] From 2010Co13.

 $x \gamma$ ray not placed in level scheme.