¹⁸²W(¹⁶O,5nγ) **1991La07**

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017

1991La07: ¹⁸²W(¹⁶O,5n γ) E(¹⁶O)=109 MeV; intrinsic Ge and Si(Li) detectors and magnetic spectrometer, pulsed beam (200 ns period); measured E γ , I γ , Ice, $\gamma\gamma$ coin, γ -ce coin, $\gamma(\theta)$, $\gamma\gamma(t)$.

¹⁹³Pb Levels

E(level)	\mathbf{J}^{π}	T _{1/2} †	Comments
0.0+x	$(13/2^+)$	5.8 min 2	J^{π} , $T_{1/2}$: From Adopted Levels.
881.6+x 2	$(17/2^+)$		
1022.0+x 2	$(15/2^+)$		
1401.8+x <i>3</i>	$(21/2^+)$		
1550.1+x 3	$(19/2^+)$		
1585.9+x 4	$(21/2^{-})$	22 ns 2	
1994.4+x 4	$(25/2^+)$		
2141.3+x 4	$(23/2^+)$		
2142.0+x 4	$(23/2^{-})$		
2214.0+x 5	$(25/2^+)$		
2322.4+x 5	$(27/2^{-})$		
2426.9+x 5	$(27/2^+)$		
2527.1+x 5	$(29/2^+)$		
2585.1+x 5	$(29/2^{-})$	11 ns 2	
2612.6+x 6	$(33/2^+)$	135 ns +25-15	
2966.8+x? 7	$(31/2^+)$		
3220.4+x? 7	(33/2+)		E(level): Uncertain level – not adopted. 253.6γ of this placed from $2939.2+x$ in Adopted Levels.

[†] Half-lives obtained here from $\gamma(t)$ or $\gamma\gamma(t)$, except as noted.

),5n γ) 1991La	07 (continued	d)	
							$\gamma(^{193}\text{Pb})$			
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α #@	$I_{(\gamma+ce)}$	Comments
72.6 5		2214.0+x	(25/2+)	2141.3+x	(23/2+)	M1+E2	0.21 +4-3	5.3 4		$ \begin{array}{c} \alpha(L) = 4.1 \ 3; \ \alpha(M) = 0.98 \ 8 \\ \alpha(N) = 0.248 \ 20; \ \alpha(O) = 0.048 \ 4; \ \alpha(P) = 0.00445 \ 14 \\ \end{array} $
85.5 5		2612.6+x	(33/2+)	2527.1+x	(29/2+)	E2		12.1 4		Mult.,o: From $\alpha((L1+L2)/L3)(\exp)=8.8\ 20.$ $\alpha(L)=9.0\ 3;\ \alpha(M)=2.39\ 8$ $\alpha(N)=0.601\ 19;\ \alpha(O)=0.107\ 4;\ \alpha(P)=0.00404\ 13$ Mult.: $\alpha(L12/L3)(\exp)=0.93\ 19,\ \alpha(L/M)(\exp)=5.1$ 17; theory: $\alpha(L12/L3)(M1)=125.2,\ \alpha(L12/L3)(E2)=1.23,\ \alpha(L/M)(M1)=4.26,\ \alpha(L/M)(E2)=3.79.$
158.2 2	45.0 <i>53</i>	2585.1+x	(29/2 ⁻)	2426.9+x	(27/2+)	E1		0.1394	50.8 60	$\alpha(K)=0.1125 \ 17; \ \alpha(L)=0.0206 \ 3; \ \alpha(M)=0.00484 \ 7 \\ \alpha(N)=0.001213 \ 18; \ \alpha(O)=0.000232 \ 4; \\ \alpha(P)=1.95\times10^{-5} \ 3 \\ \text{Mult.:} \ A_2=-0.15 \ 5, \ A_4=-0.002 \ 74. \\ \alpha(P)=0.0027 \ 74. \\ \alpha(P)=0.0077 \ 74. \\ \alpha(P)=0.0077$
180.4 4	2.9 10	2322.4+x	(27/2 ⁻)	2142.0+x	(23/2 ⁻)				4.8 16	$\alpha_{L12}(\exp)=0.007777$; theory: $\alpha_{L12}=0.0170$. Mult., δ : E2 in 1991La07. But $\alpha_{\rm K}(\exp)=0.28351$, $\alpha_{\rm L}(\exp)=0.364$ indicates M1+E2 and a mixing ratio of $4+5-1$ for which theory value is $\alpha_{\rm k}=0.285$. Also A ₂ =+0.207, A ₄ =-0.2110. In Adopted Levels placement from (27/2 ⁻) to (25/2 ⁻)
184.1 <i>3</i>	53.0 <i>36</i>	1585.9+x	(21/2 ⁻)	1401.8+x	(21/2 ⁺)	E1+M2	0.049 +15-20	0.116 <i>14</i>	59.1 40	$\alpha(K) = 0.092 \ 10; \ \alpha(L) = 0.018 \ 3; \ \alpha(M) = 0.0044 \ 8$ $\alpha(N) = 0.00111 \ 19; \ \alpha(O) = 0.00021 \ 4;$ $\alpha(P) = 1.9 \times 10^{-5} \ 4$ Mult., δ : From $\alpha_{K}(\exp) = 0.0916 \ 92$. Also $A_{2} = +0.19 \ 5, \ A_{4} = -0.02 \ 6.$
204.8 4	0.7 6	2527.1+x	(29/2+)	2322.4+x	(27/2 ⁻)	E1+M2	0.63 14	0.0736	2.5 16	$\alpha(K) = 1.24 \ 38; \ \alpha(L) = 0.35 \ 11; \ \alpha(M) = 0.087 \ 27$ $\alpha(K) = 0.0224 \ 70; \ \alpha(O) = 0.0044 \ 14; \ \alpha(P) = 4.2 \times 10^{-4}$ 14 Mult., δ : From $\alpha_{K}(\exp) = 1.9 \ 16, \ \alpha_{L12}(\exp) = 0.21$ $12; \ Also \ A_{2} = -0.29 \ 6, \ A_{4} = +0.33 \ 12. \ \text{theory:} \ \alpha_{K}(E1) = 0.0594, \ \alpha_{K}(M2) = 4.18, \ \alpha_{K}(E1) = 0.0000, \ \alpha_{K}(M2) = 1.087$
212.9 3	26.0 33	2426.9+x	(27/2+)	2214.0+x	(25/2 ⁺)	M1		1.100	54.5 70	$\alpha_{L12}(E1)=0.0090, \ \alpha_{L12}(M2)=1.087.$ $\alpha(K)=0.898 \ 13; \ \alpha(L)=0.1543 \ 23; \ \alpha(M)=0.0362 \ 6$ $\alpha(N)=0.000196 \ 3;$ $Mult.: A_2=-0.19 \ 4, A_4=+0.03 \ 7. \ \alpha_K(exp)=1.05 \ 6,$ $\alpha_{K}(exp)=0.146 \ 10$
219.1 3	1.6 7	2214.0+x	(25/2+)	1994.4+x	(25/2+)	(M1)		1.015	3.1 12	$\alpha_{L12}(exp)=0.140$ 10. $\alpha(K)=0.829$ 12; $\alpha(L)=0.1424$ 21; $\alpha(M)=0.0334$ 5 $\alpha(N)=0.00848$ 13; $\alpha(O)=0.001690$ 25; $\alpha(P)=0.000181$ 3 Mult.: $\alpha_{K}(exp)=1.14$ 13, $\alpha_{L12}(exp)=0.107$ 57; Theory: $\alpha_{K}(M1)=0.829$. The anomalously high $\alpha(K)$ conversion coefficient might be due to a

2

 $^{193}_{82} Pb_{111}\text{-}2$

 $^{193}_{82} Pb_{111}\text{-}2$

L

					18	2 W(16 O,5n γ) 1991La07	(continued)		
						$\gamma(^{19}$	³ Pb) (continue	<u>d)</u>		
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [†]	δ^{\dagger}	α #@	$I_{(\gamma+ce)}$	Comments
253.6 10		3220.4+x?	(33/2+)	2966.8+x?	(31/2+)					significant E0 component in the transition, ΔJ=0. $\alpha(K)=0.553$ 10; $\alpha(L)=0.0947$ 17; $\alpha(M)=0.0222$ 4 $\alpha(N)=0.00564$ 10; $\alpha(O)=0.001124$ 20; $\alpha(P)=0.0001202$ 22 E _γ : a comparable 252.3γ from 2939.2+x in Adopted Levels
381.7 <i>10</i> <i>x</i> 497.7 <i>4</i>	8.3 5	2966.8+x?	(31/2+)	2585.1+x	(29/2 ⁻)	E2		0.0297	8.5 5	$\alpha(K)=0.0210 \ 3; \ \alpha(L)=0.00659 \ 10; \\ \alpha(M)=0.001638 \ 24 \\ \alpha(N)=0.000415 \ 6; \ \alpha(O)=7.83\times10^{-5} \ 12; \\ \alpha(D)=6 \ 10\times10^{-6} \ 0$
520.2 2	88.1 78	1401.8+x	(21/2+)	881.6+x	(17/2+)	E2		0.0267	90.4 80	Mult.: $\alpha_{\rm K}(\exp)=0.0224\ 51;\ \alpha_{\rm L12}(\exp)=0.0044\ 22.$ $\alpha({\rm K})=0.0191\ 3;\ \alpha({\rm L})=0.00575\ 8;\ \alpha({\rm M})=0.001425\ 20$ $\alpha({\rm N})=0.000361\ 5;\ \alpha({\rm O})=6.84\times10^{-5}\ 10;$
528.0 4	6.0 10	1550.1+x	(19/2+)	1022.0+x	(15/2+)	E2		0.0258	6.2 10	$\alpha(P)=5.42\times10^{-6} 8$ Mult.: A ₂ =+0.24 5, A ₄ =-0.12 8. $\alpha_{K}(exp)=0.0225$ 15, $\alpha_{L12}(exp)=0.00433$ 32, $\alpha_{L3}(exp)=0.0011$ 3. $\alpha(K)=0.0185$ 3; $\alpha(L)=0.00550$ 8; $\alpha(M)=0.001361$ 20
532.2 3	8.5 <i>5</i>	2527.1+x	(29/2+)	1994.4+x	(25/2+)	E2(+M3)	0.14 +5-7	0.0370 96	8.8 5	$\alpha(N)=0.000345 5; \alpha(O)=6.53\times10^{-5} 10; \alpha(P)=5.22\times10^{-6} 8 Mult.: A_2=+0.35 5, A_4=-0.16 10. \alpha_{\rm K}(\exp)=0.0210 39. \alpha({\rm K})=0.0267 70; \alpha({\rm L})=0.0078 20; \alpha({\rm M})=0.00194 50 $
556.1 4	6.5 5	2142.0+x	(23/2 ⁻)	1585.9+x	(21/2 ⁻)	E2		0.0229	6.6 5	$\alpha(K) = 0.01664 \ 24; \ \alpha(L) = 0.00471 \ 7; \alpha(M) = 0.001162 \ 17 \alpha(N) = 0.000294 \ 5; \ \alpha(O) = 5.60 \times 10^{-5} \ 8; \alpha(P) = 4.56 \times 10^{-6} \ 7$
591.2 4	12.5 29	2141.3+x	(23/2 ⁺)	1550.1+x	(19/2+)	E2		0.0199	12.7 30	Mult.: From $\alpha_{\rm K}(\exp)=0.015 \ 3$. Also A ₂ =+0.13 5, A ₄ =+0.06 9. $\alpha({\rm K})=0.01468 \ 21; \ \alpha({\rm L})=0.00394 \ 6;$ $\alpha({\rm M})=0.000969 \ 14$ $\alpha({\rm N})=0.000245 \ 4; \ \alpha({\rm O})=4.68\times10^{-5} \ 7;$ $\alpha({\rm P})=3.90\times10^{-6} \ 6$ Mult.: $\alpha_{\rm K}(\exp)=0.0189 \ 29.$

ω

 $^{193}_{82} \mathrm{Pb}_{111}\text{-}3$

I

$\frac{^{182}W(^{16}O,5n\gamma)}{1991La07} $ (continued)											
$\gamma(^{193}\text{Pb})$ (continued)											
	L.										
Eγ	Ιγ [‡]	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ	α # @	$I_{(\gamma+ce)}$	Comments	
593.1 4	15.6 19	1994.4+x	(25/2+)	1401.8+x	(21/2+)	E2(+M3)	0.16 3	0.0289 85	16.0 20	$\begin{aligned} \alpha(\text{K}) &= 0.0214 \ 63; \ \alpha(\text{L}) = 0.0057 \ 17; \ \alpha(\text{M}) = 0.00141 \\ 42 \\ \alpha(\text{N}) &= 3.6 \times 10^{-4} \ 11; \ \alpha(\text{O}) = 6.9 \times 10^{-5} \ 22; \\ \alpha(\text{P}) &= 6.1 \times 10^{-6} \ 21 \\ \text{Mult.}, \delta: \ \alpha_{\text{K}}(\exp) = 0.0232 \ 35, \ \alpha_{\text{L}12}(\exp) = 0.0048 \end{aligned}$	
668.7 <i>3</i>	9.9 10	1550.1+x	(19/2+)	881.6+x	(17/2+)	M1+E2	1.8 +9-5	0.023 4	10.1 10	10. $\alpha(K)=0.019 4; \alpha(L)=0.0038 5; \alpha(M)=0.00090 11$ $\alpha(N)=0.00023 3; \alpha(O)=4.5\times10^{-5} 6;$ $\alpha(P)=4.3\times10^{-6} 7$	
739.6 <i>3</i>	13.9 24	2141.3+x	(23/2+)	1401.8+x	(21/2+)	M1+E2	0.63 17	0.031 3	14.3 25	Mult., δ : From $\alpha_{\rm K}(\exp)=0.0183$ 32. $\alpha({\rm K})=0.0253$ 24; $\alpha({\rm L})=0.0044$ 4; $\alpha({\rm M})=0.00103$ 8 $\alpha({\rm N})=0.000261$ 20; $\alpha({\rm O})=5.2\times10^{-5}$ 4; $\alpha({\rm P})=5.4\times10^{-6}$ 5	
812.2 4	5.0 15	2214.0+x	(25/2+)	1401.8+x	(21/2+)	(E2)		0.01008	5.0 15	Mult., δ : From $\alpha_{\rm K}(\exp)=0.0255\ 23$. Also $A_2=-0.47\ 8$, $A_4=+0.27\ 10$. $\alpha({\rm K})=0.00785\ 11$; $\alpha({\rm L})=0.001693\ 24$; $\alpha({\rm M})=0.000408\ 6$ $\alpha({\rm N})=0.0001033\ 15$; $\alpha({\rm O})=2.00\times10^{-5}\ 3$; $\alpha({\rm P})=1.84\times10^{-6}\ 3$	
881.6 2	100	881.6+x	(17/2 ⁺)	0.0+x	(13/2+)	E2		0.00854	100	Mult.: $\alpha_{\rm K}(\exp)=0.0038\ 28$; Theory: $\alpha_{\rm K}(E2)=0.00785$ – inconsistent with experimental value. $\alpha({\rm K})=0.00672\ 10;\ \alpha({\rm L})=0.001387\ 20;\ \alpha({\rm M})=0.000332\ 5$ $\alpha({\rm M})=0.000332\ 5$ $\alpha({\rm N})=8.42\times10^{-5}\ 12;\ \alpha({\rm O})=1.637\times10^{-5}\ 23;\ \alpha({\rm P})=1.537\times10^{-6}\ 22$ Mult.: A ₂ =+0.25 6, A ₄ =-0.02 9. $\alpha_{\rm K}(\exp)=0.0074$	
1022.0 2	14.5 <i>18</i>	1022.0+x	(15/2+)	0.0+x	(13/2+)	(M1+E2)		0.0116 <i>53</i>	14.7 <i>18</i>	5, $\alpha_{L12}(exp)=0.00147$ 16. $\alpha(K)=0.0095$ 44; $\alpha(L)=0.00163$ 65; $\alpha(M)=3.8\times10^{-4}$ 15 $\alpha(N)=9.7\times10^{-5}$ 38; $\alpha(O)=1.93\times10^{-5}$ 77; $\alpha(P)=2.01\times10^{-6}$ 89 Mult.: A ₂ =-0.01 5, A ₄ =+0.01 8. $\alpha_{K}(exp)=0.0051$ 7.	

4

[†] The multipolarities have been deduced from the measured conversion coefficients, and the angular distribution coefficients. The mixing ratio for a few transitions has been deduced from the experimental conversion coefficients. Additional information from the other (HI,xn γ) datasets has been also used in assigning the multipolarities listed here (see Adopted dataset).

[‡] The γ -ray intensities have been calculated by the evaluator using the measured total intensities and the conversion coefficients obtained from the quoted multipolarities. The calculated relative γ intensities have been normalized to 100 for the 881.6-keV transition.

From ENSDF

 182 W(16 O,5n γ) 1991La07 (continued)

 $\gamma(^{193}\text{Pb})$ (continued)

[#] Theoretical total conversion coefficients for the stated multipolarities, and mixing ratio, if available.

^(a) Additional information 1. ^x γ ray not placed in level scheme.

