	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017

 $Q(\beta^{-})=-56.6 \ 3; \ S(n)=7771.99 \ 20; \ S(p)=5943.0 \ 24; \ Q(\alpha)=1018 \ 8 2017Wa10$

¹⁹³Ir Levels

The rotational bands of ¹⁹³Ir with axially asymmetric core are discussed in 1979Vi06, 1983Ci01, 1987Pr10 and 1997Dr04. The band assignments are based on assignments in ¹⁹³Ir(n,n' γ) (1987Pr10), ¹⁹⁴Pt(t, α) (1983Ci01), ¹⁹²Os(³He,d) (1971Pr13) and ¹⁹²Ir(n, γ) (1997Dr04). Spin(6) symmetry and U(6/4), U(6/20) supersymmetry are used to describe ¹⁹³Ir (1983Ci01, 1984Mu19, 1987Mc01, 2000Be07).

Cross Reference (XREF) Flags

		$ \begin{array}{rl} A & {}^{193} \mathrm{Os} \ \beta^{-} \\ B & {}^{193} \mathrm{Ir} \ \mathrm{IT} \\ \mathrm{C} & {}^{193} \mathrm{Pt} \ \varepsilon \ \mathrm{c} \\ \mathrm{D} & {}^{191} \mathrm{Ir} (\mathrm{t}, \mathrm{p}) \\ \mathrm{E} & {}^{192} \mathrm{Ir} (\mathrm{n}, \gamma \\ \mathrm{F} & {}^{192} \mathrm{Os} (\mathrm{d}, \mathrm{d}) \end{array} $	$^{-}$ decay G decay (10.53 d) H decay (50 y) I) J ·) E=th K n γ) L	$\begin{array}{cccc} {}^{192}\mathrm{Os}({}^{3}\mathrm{He},\mathrm{d}),(\alpha,\mathrm{t}) & M & \mathrm{Coulomb\ excitation} \\ {}^{192}\mathrm{Os}({}^{7}\mathrm{Li},\alpha2\mathrm{n}\gamma) & N & {}^{194}\mathrm{Pt}(\mathrm{d},{}^{3}\mathrm{He}) \\ {}^{193}\mathrm{Ir}(\gamma,\gamma)\mathrm{:Mossbauer} & O & {}^{194}\mathrm{Pt}(\mathrm{pol\ t},\alpha),(\mathrm{t},\alpha) \\ {}^{193}\mathrm{Ir}(\gamma,\gamma')\mathrm{:res\ fluorescence} & P & \mathrm{Muonic\ atom} \\ {}^{193}\mathrm{Ir}(\mathrm{n},\mathrm{n}'\gamma) & Q & (\mathrm{HI},\mathrm{xn}\gamma) \\ \mathrm{Inelastic\ scattering} \end{array}$
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0@	3/2+	stable	ABCDEFGHI JKLMN	DPQ μ =+0.1637 6; Q=+0.751 9 J ^{π} : optical spectroscopy (1976Fu06), L(³ He,d)=2, L(d, ³ He)=2. μ : Atomic beam (direct) (2014StZZ,1984Bu15). Other: +0.1591 6 (NMR 2014StZZ,1968Na01). Q: Hyperfine structure of muonic x rays (2014StZZ,1984Ta04); Others: +0.7 2 Atomic beam (1978Bu17), +0.73 7 Laser spectroscopy (2006Ve10). Isotope shift: Δ <r<sup>2>(¹⁹¹Ir,¹⁹³Ir)=0.044 fm² 4 (1989Sa31); <r<sup>2>^{1/2}=5.40 fm 11 (2004An14).</r<sup></r<sup>
73.041 ^{&} 5	1/2+	6.09 ns <i>15</i>	A EFG I KLMN	 μ=+0.519 2 J^π: J=1/2 from ¹⁹³Ir(γ,γ): Mossbauer; π from M1+E2 γ to 3/2⁺ level. T_{1/2}: from ¹⁹³Os β⁻ decay; other: 4.1 ns 3 (B(E2) in Coulomb excitation). μ: Mossbauer (2014StZZ,1969Pe05). 2005Ki01 observed nuclear excitation by electron transitions (NEET) of 2.8×10⁻⁹ 4 times the K-shell photoelectric cross section at energy: Ir K-edge + 128 eV (76.229 keV); synchrotron radiation, internal conversion electron time spectroscopy using Si avalanche photodiode
80.238 ^{<i>a</i>} 6	11/2-	10.53 d 4	AB EFGH JK M	$ \begin{array}{l} & \text{Protocolocc.} \\ \text{O} \text{Q} & \text{\%IT}=100 \\ & \text{J}^{\pi}: \text{ M4 } \gamma \text{ to } 3/2^+. \\ & \text{T}_{1/2}: \text{ from } ^{193}\text{ Ir IT decay (10.53 d) (1987\text{Li16}).} \end{array} $
138.941 [@] 5	5/2+	69.7 ps <i>10</i>	A EFG I KLMN	DP μ =+0.89 4 J ^{π} : M1+E2 γ to 3/2 ⁺ level, M1+E2 γ from 7/2 ⁺ level; T _{1/2} : from recoil-distance method in Coulomb excitation (2000Be07). Other: 80 ps 5 (¹⁹³ Os β ⁻ decay); 80 ps 2 (¹⁹³ Ir(γ , γ):Mossbauer). μ : From transient field IMPAC measurement ((⁵⁸ Ni, ⁵⁸ Ni') and

¹⁹³Ir Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}		XR	REF		Comments
							$(^{65}Cu, ^{65}Cu') - 2000Be07)$. Others: +0.53 <i>3</i> transient field IMPAC measurement (($^{32}S, ^{32}S'$) (Coulomb excitation) 2014StZZ,1986Ko20); +0.93 <i>5</i> (1996St22) (transient field IMPAC measurement) (1996St22) (the reason for discrepancy with the datum from 1986Ko20 is not clear (1996St22)).
180.069 ^{&} 4	3/2+	44 ps 15	A	EFG	KLMNO		μ =1.1 4 (2014StZZ,1973II02) J ^{π} : M1+E2 γ to 1/2 ⁺ level.
							T _{1/2} : unweighted average of 59 ps 7 (¹⁵³ Os β^- decay) and 28 ps 4 (B(E2) in Coulomb excitation). μ : from integral perturbed angular correlation.
299.396 ^b 7	7/2-	0.19 ns 3	A	EFG	K MNO		J^{π} : L=3 in ¹⁹⁴ Pt(d, ³ He); J=L+1/2 ¹⁹⁴ Pt(pol t, α); E2 γ to 11/2 ⁻ level.
							T _{1/2} : from $\gamma\gamma$ (t) in ¹⁹³ Os β^- decay.
357.768 ^w 5	7/2+	18.7 ps 7	Α	EFG	KLM o		μ =+1.54 6 J^{π} : $\gamma\gamma(\theta)$ in Coulomb excitation (1958Mc02) is consistent only with J=7/2; M1+E2 γ to π =+ level; L=2 in inelastic scattering.
							$T_{1/2}$: from recoil-distance method in Coulomb excitation (2000Be07 1986Ko20)
							μ : From transient field IMPAC measurement ((⁵⁸ Ni, ⁵⁸ Ni') and
							(⁶⁵ Cu, ⁶⁵ Cu') – 2014StZZ, 2000Be07, 1996St22). Others:
							+1.7 3 (transient field IMPAC measurement in Coulomb
							Excitation – relative to μ (138.9 level)=+0.528 50 – 2014StZZ 1986Ko20)
361.857 <mark>&</mark> 5	5/2+‡	27 ps 3	Α	EFG	K MNO		I^{π} : L=2 in ¹⁹⁴ Pt(d ³ He). (E2) to $1/2^{+}$.
501.057 5	572	27 ps 5		210	it into		$T_{1/2}$: weighted average of 36 ps 7 (¹⁹³ Os β^- decay) and 25 ps 3 (B(E2) in Coulomb excitation).
460.538 [°] 4	3/2+	13.4 ps 10	A	EF	JKLMNO		J^{π} : M1+E2 γ to 1/2 ⁺ level, band structure.
							$T_{1/2}$: Weighted average of 17 ps 4 (¹⁹³ Os β^- decay), 13.8 ps
							10 (B(E2) in Coulomb excitation), 11 ps 2 (¹⁹⁵ Ir(γ, γ'):res
469.384 ^a 11	$(13/2^{-})^{\#}$			EF H	к	0	I^{π} : (M1) γ to $11/2^{-}$ level. Band structure.
478.988 ^{<i>a</i>} 14	$(15/2^{-})^{\#}$			EF H	ĸ	0	J^{π} : (E2) γ to $11/2^{-}$ level. Band structure.
516.414 ^{&} 6	$(7/2)^+$		Α	EF	КМ		J^{π} : (E2) γ to $3/2^+$ level, γ from (11/2 ⁺) level; band structure.
521.926 [@] 6	$(9/2)^+$	13.2 ps 19		EF	KLM		μ =+2.2 2
							J^{π} : (M1) γ to 7/2 ⁺ level, (E2) γ to 5/2 ⁺ level; band structure. T _{1/2} : From recoil-distance method in Coulomb excitation.
							μ : From transient field IMPAC measurement ((⁵⁸ Ni, ⁵⁸ Ni') – 2014StZZ, 1996St22). Other: +3.8 <i>11</i> (relative to μ (138.9 level)=+0.528 <i>30</i> , transient field IMPAC in Coulomb excitation (1986Ko20)).
557.413 [°] 6	$(1/2)^+$	34 ps 8	A	EF	JK M		J ^{π} : M1+E2 γ to 3/2 ⁺ level; 1/2 ⁺ consistent with band
							assignment.
550 208 5	5/2+1	1.09 mg 16		FEC	JIZ MNO		$1_{1/2}$: from 2200 g decay.
JJ9.298 J	5/2	1.08 ps 10	А	ErG	JK HNU		I^{π} : L=2 in ¹⁹⁴ Pt(d ³ He): M1 γ to 5/2 ⁺ level.
							$T_{1/2}$: from ¹⁹³ Ir(γ, γ') res fluorescence.
1							configuration: assigned as $5/2^+$ $5/2[402]$ state by 1971Pr13 (¹⁹³ Os(³ He,d), (α ,t)).
563.402 ^b 7	(9/2 ⁻) [#]		A	EF	ΚM		J^{π} : (M1) γ 's to 7/2 ⁻ and 11/2 ⁻ levels; band structure.
598.220 ^d 6	3/2-	2.8 ps +28-9	A	EF	JKLM		J^{π} : M1 γ from 5/2 ⁻ level; γ to 1/2 ⁺ level. Band structure. T _{1/2} : from ¹⁹⁴ Ir(γ , γ'): res fluorescence.

¹⁹³Ir Levels (continued)

E(level) [†]	J^{π}	T _{1/2}		XR	EF	Comments
620.991 ^e 7	7/2+	4.3 ps 3	A	EFG	KLMNO	μ=+1.16 <i>14</i>
						J^{π} : L=4 in ¹⁹⁴ Pt(d, ³ He) and ¹⁹² Os(³ He,d), (α ,t);
						$J=L-1/2$ in ¹⁹⁴ Pt(pol t, α); γ to $3/2^+$.
						$T_{1/2}$: from recoil distance method and B(E2) in Coulomb
						excitation.
						-2014StZZ, 1996St22). Other: +0.5.4 (relative to
						μ (138.9 level)=+0.528 30 transient field IMPAC
						measurement in Coulomb excitation 2014StZZ,
	. 4					1986Ko20).
695.142 [°] 5	5/2++		A	EF	KLMNO	J^{π} : 234.6 γ M1+E2 to 3/2 ⁺ level, 337.3 γ to 7/2 ⁺ level.
712 180 5	3/2+‡	15 ns 14	۸	FF	K MNO	I^{π} : M1+E2 $\alpha's$ to $3/2^+$ and $5/2^+$ levels
/12.100 5	5/2	15 ps 14	л	LI	K IIIO	$T_{1/2}$: from ¹⁹³ Os β^- decay
740 380 <mark>d</mark> 6	5/2-		Α	EF	KLM	$I_{1/2}^{\pi}$. M1+E2 γ to 7/2 ⁻ level: M1 γ to 3/2 ⁻ level
806.902 8	$(5/2)^+$		A	EF	KM	J^{π} : (M1) γ to 7/2 ⁺ level, γ to 1/2 ⁺ level.
828.92 9	$(9/2^{-})^{\#}$				Ко	J^{π} : γ to $11/2^{-}$ level.
832.893 ^b 10	(11/2 ⁻) [#]			EF	Ко	J^{π} : (M1) γ to (9/2 ⁻) level, (E2) γ to 7/2 ⁻ level; band structure.
838.918 <mark>&</mark> 8	$(9/2^+)$			EF	М	J ^{π} : (M1) γ to (7/2) ⁺ level, (E2) γ to 5/2 ⁺ level; band
						structure.
848.967 13	$3/2^{(+)}, 5/2^{(+)}$		A	Еg	K nO	J^{π} : 388.60 γ (M1) to 3/2 ⁺ level, 487.217 γ (E2) to 5/2 ⁺ level, 491.26 γ to 7/2 ⁺ .
857.027 [@] 7	$(11/2)^+$	4.2 ps 4		EFg	KLM	μ =+2.7 7
						J^{π} : (E2) γ to 7/2 ⁺ level, (M1) γ to (9/2) ⁺ level; band
						$T_{1/2}$: From B(E2) to 357.8 level in Coulomb excitation
						μ : From transient field IMPAC measurement ((⁵⁸ Ni, ⁵⁸ Ni')
						– 2014StZZ, 1996St22).
874.290 8	$3/2^+, 5/2^+$		A	EF	K nO	J^{π} : γ' s to $1/2^+$ and $7/2^+$. Assigned $7/2^+$ member of the
						second $K'' = 1/2$ band in $(n, n' \gamma)$; however, this assignment is inconsistent with observed transitions to
						$1/2^+$ levels.
879.49 17			Α			
882.19 7			A			
890.41 7	(0/2+)		A		W . W	T^{T} / ($5/2^{+}$) ($0/2^{+}$) 1) 1 , ($1/2^{-}$
892.269° 11	$(9/2^+)$			EF	KM	J [*] : γ 's to 5/2 ⁺ and (9/2) ⁺ levels; band structure.
918.3634 /	(7/2)"			EF	K	J^{*} : (M1) γ to 5/2 level, (E2) γ to 3/2 level; band structure.
930.429 ^a 16	(17/2 ⁻) [#]			EF H	K Q	J^{π} : γ to (15/2 ⁻) level; band structure.
959.73 <i>3</i>			A			
964.41 3	1/2+		A	G	K N	XREF: G(969). J^{π} : L=0 in ¹⁹⁴ Pt(d, ³ He).
972.872 11	$(5/2^+)^{\#}$			EF	K O	J^{π} : γ 's to $1/2^+$, $5/2$ and $7/2^+$ levels.
975.330 <i>13</i>	$(11/2^{-})^{\ddagger}$			Ε	0	J^{π} : (E2) γ to (15/2 ⁻) level, (M1) γ to (13/2 ⁻) level.
1009.354 10	$(11/2^+)^{\#}$			E	K	J^{π} : (E2) γ to (7/2) ⁺ level, γ to (13/2 ⁻) level.
1019.589 ^{&} 10	$(11/2^+)^{\#}$			E	K	J^{π} : (E2) γ to (7/2) ⁺ level; band structure.
1026.0 ^{<i>a</i>} 3	(19/2 ⁻)			Н	Q	J^{π} : 545.7 γ Q to (17/2 ⁻), band structure.
1035.465 [@] 8	(13/2+)			EF	M	J^{π} : (M1) γ to (11/2) ⁺ level, (E2) γ to (9/2) ⁺ level; band structure.
1035.855 25	$3/2^+, 5/2^{(+)}, 7/2^+$			EF	Ко	XREF: o(1032).

¹⁹³Ir Levels (continued)

E(level) [†]	J^{π}		XR	EF		Comments
						J^{π} : γ 's to $3/2^+$ and $7/2^+$ levels; $5/2^-$ not consistent with ¹⁹³ Ir(n,n' γ) data.
1038.054 10	$(5/2^+,7/2^+)^{\#}$		E	K	0	XREF: $o(1032)$. $I^{\pi} \cdot \gamma' s$ to $(9/2)^+$ and $3/2^+$ levels
1065.89 6	1/2+,3/2(+),5/2+		g	K	0	J^{π} : γ 's to $1/2^+$ and $5/2^+$ levels; $3/2^-$ not consistent with ¹⁹³ Ir(n,n' γ) data: multiply placed γ to $7/2^+$ level would rule out $1/2^+$.
1076.47 8	$(3/2^+)^{\#}$		g	K	0	XREF: $o(1080)$. $I^{\pi} \cdot \gamma' s$ to $5/2^+$ and $7/2^+$ levels
1077.99 14	(3/2 ⁻ ,5/2 ⁻) [#]	A	Fg	K	ο	XREF: $o(1080)$. I^{π} : γ' s to $5/2^{-}$ and $7/2^{-}$ levels.
1126				L		
1131.17 11	5/2-		G	K	0	XREF: O(1146). J^{π} : L=3 in ¹⁹² Os(³ He,d), (α ,t); γ to 3/2 ⁺ level. Assigned as 5/2 ⁻ 1/2[541] state by 1971Pr13 (¹⁹² Os(³ He,d), (α ,t)).
1145.614 ^{<i>d</i>} 10	(9/2)-		EG	K	0	XREF: G(1150)O(1146). J^{π} : L=5 in ¹⁹² Os(³ He,d), (α ,t); 9/2 ⁻ consistent with band assignment. Alternatively assigned as 9/2 ⁻ 1/2[541] state by 1971Pr13 (¹⁹² Os(³ He,d), (α ,t)).
1163 3	(13/2)+		G		0	XREF: O(1146). J ^{π} : L=6 in ¹⁹² Os(³ He,d), (α ,t). Assigned as 13/2 ⁺ 1/2[660] state by 1971Pr13
1168.06 ^b 13	$(13/2^{-})^{\#}$			к		J^{π} : γ 's to $(11/2^{-})$ and $(13/2^{-})$ levels: band structure.
1169.170 ^e 8 1193	$(11/2^+)^{\#}$		EF	K M L		J^{π} : (E2) γ to 7/2 ⁺ level, (M1) γ to (11/2) ⁺ level; band structure.
1201 <i>3</i>	1/2-,3/2-‡		G		0	E(level): from ¹⁹² Os(³ He,d), (α ,t). J ^{π} : L=1 in ¹⁹² Os(³ He,d), (α ,t).
1250.42 8	$(3/2,5/2)^{+\#}$			K	0	J^{π} : γ 's to $5/2^+$ and $7/2^+$ levels.
1286	5/2-,7/2-		G		0	E(level): from ¹⁹² Os(³ He,d), (α ,t). I^{π} . L=3 in ¹⁹² Os(³ He,d), (α ,t).
1358.8 5	(19/2 ⁻)		Н	L	0	XREF: L(1347)O(1344). J ^{π} : 428.4 γ d to (17/2 ⁻).
1398 <i>10</i> 1407			G		0	
1438.429 ^{&} 11	$(13/2^+)^{\#}$		E	K		J^{π} : γ to $(9/2^+)$ level; band structure.
1459.968 [@] 11	$(15/2)^+$		EF	М		J^{π} : γ 's to $(11/2)^+$ and $(13/2)^+$ levels; band structure.
1511.714 17	$(3/2^+)^{\ddagger}$		EF	KL	0	XREF: O(1504). J^{π} : (M1+E2) γ to 5/2 ⁺ level, γ to (1/2) ⁺ level.
1527.7 4	$(21/2^{-})$		Н		Q	J^{π} : 501.3 γ d to (19/2 ⁻), γ to (17/2 ⁻).
1592.6^{a} 4	(21/2 ⁻)		Н		0 Q	XREF: O(1583). I^{π_1} 662.7 γ O to (17/2 ⁻), band structure.
1609 <i>5</i> 1639 <i>5</i>					0 0	
1650.5 [@] 5 1690 5	$(17/2^+)$			M	0	J^{π} : γ to $(13/2)^+$ level; band structure.
1698 <i>3</i>	3/2+,5/2,7/2-		G			J^{π} : L=2 or 3 in (³ He,d), (α ,t).
1714.9 ^{<i>a</i>} 4 1728.5 4	$(23/2^{-})$ $(23/2^{-},25/2^{-})$		H H		QQ	J^{π} : Q γ to (19/2 ⁻), band structure. J^{π} : 200.8 γ to (19/2 ⁻).
1759f 3	$(3/2)^{-}$		G		U	I^{π} · L = 1 in ¹⁹² Os(³ He d) (α t): hand structure
1820^{f} 3	$(7/2)^{-}$		G			I^{π} : L=3 in ¹⁹² Os(³ He.d). (α .t): band structure
1823.7 4	(23/2)		U		Q	J^{π} : 231.3 γ to (23/2 ⁻ ,25/2 ⁻), 797.4 γ to (19/2 ⁻).

¹⁹³Ir Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
1826 5 1845.2 6 1866 5	(23/2)			0 Q 0	J ^π : J=L+1/2 in ¹⁹⁴ Pt(pol t,α). J ^π : 819.2γ to (19/2 ⁻).
1893.9 5	(25/2 ⁻)		Н	0 Q	XREF: O(1898). J^{π} : 165.3 γ M1 to (23/2 ⁻).
1935 5	$(5/2^+)^{\ddagger}$			0	
1944.3 5	25/2-,27/2-			Q	J^{π} : 215.8 γ M1+E2 to (23/2 ⁻).
1970 <i>3</i>			G		,
1999 <i>3</i>			G		
2029			G		
2052.3 5	$(27/2^{-})$			Q	J^{π} : 323.9 γ (E2) to (23/2 ⁻), 158.3 γ M1 to (27/2 ⁻).
2179.0 [@] 5	$(19/2^+)$			М	J^{π} : decay to $(15/2)^+$ level; band structure.
2231.7 6	$(29/2^+)$			Q	J^{π} : 337.8 γ M2 to (25/2 ⁻).
2278.9 5	$31/2^{+}$	124.8 µs 21		Q	%IT=100
					T _{1/2} : from γ (t) (HI,xn γ). configuration: possible $\nu(9/2^{-}[505],11/2^{+}[615]) \otimes \pi(11/2^{-}[505])$.
2404? [@]	$(21/2^+)$			М	J^{π} : possible member of rotational band (Coulomb excitation).

[†] For levels seen in ¹⁹³Os β^- decay, ¹⁹²Ir(n, γ), ¹⁹²Os(d,n γ) and ¹⁹³Ir(n,n' γ) reaction and Coulomb excitation, E(level) is from a least-squares fit to E γ , assuming Δ E=0.5 keV for missing uncertainties. Fifteen γ transitions fit poorly. Uncertainty tripled for those γ rays during the fit: 96.815 γ , 418.431 γ from 557.427; 154.721 γ , 573.267 γ from 712.169; 181.38 γ , 176.907 γ from 740.376; 388.60 γ , 487.217 γ , 709.924 γ from 848.982; 282.34 γ , 418.31 γ from 879.49; 369.81 γ , 752.73 γ from 892.262; 459.5 γ from 930.430; and 662.636 γ from 1511.665. χ^2_{crit} =1.3, prior χ^2 =6 and later χ^2 =1.8. 282.34 γ , 418.31 γ yet had a poor fit. 740 keV level during the fit. For levels seen only in particle reactions, the source is given only if an ambiguity exists.

- [‡] From angular distributions and analyzing powers in ¹⁹⁴Pt(pol t, α), (t, α).
- [#] From comparison of experimental and theoretical level-population rates in ¹⁹³Ir(n,n' γ), and γ -ray decay systematics (1987Pr10).
- [@] Band(A): $K^{\pi} = 3/2^+$, 3/2[402] band.
- [&] Band(B): $K^{\pi} = 1/2^+$, 1/2[400] band.
- ^{*a*} Band(C): $K^{\pi} = 11/2^{-}$, 11/2[505] band.
- ^{*b*} Band(D): $K^{\pi} = 7/2^{-}$, 7/2[523] band.
- ^c Band(E): $K^{\pi} = 1/2^+$, 1/2[411] band.
- ^{*d*} Band(E): $K^{\pi} = 3/2^{-}$, 3/2[532] band.
- ^{*e*} Band(G): $K^{\pi} = 7/2^+$, 7/2[404] band.
- ^{*f*} Band(G): $R^{\pi} = 1/2^{-}$, 1/2[530] band.

						Adopted Le	vels, Gammas	(continued)		
							$\gamma(^{193}\mathrm{Ir})$			
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{h}}$	$\mathbf{I}_{(\gamma+ce)}$	Comments
73.041	1/2+	73.029 [#] 15	100	0.0	3/2+	M1+E2	-0.558 5	6.10 <i>10</i>		α(L)=4.63 8; α(M)=1.148 19 $ α(N)=0.279 5; α(O)=0.0446 7; $ $ α(P)=0.001240 18 $ B(M1)(W.u.)=0.00100 3; B(E2)(W.u.)=22.6 8 δ: from ¹⁹³ Ir(γ,γ): Mossbauer.
80.238	11/2-	80.234 ^{bf} 7	100	0.0	3/2+	M4		2.11×10 ⁴		$\alpha(K)=103.5 \ I5; \ \alpha(L)=1.451\times10^4 \ 21; \\ \alpha(M)=5.03\times10^3 \ 7 \\ \alpha(N)=1289 \ I8; \ \alpha(O)=196 \ 3; \ \alpha(P)=3.57 \ 5 \\ B(M4)(W.u.)=2.15 \ 4 \\ Mult : From \ ^{193}tr \ IT \ decay \ (10 \ 53 \ d)$
138.941	5/2+	138.930 18	100	0.0	3/2+	M1+E2	-0.362 ^{<i>a</i>} 6	2.26	#	$\begin{aligned} \alpha(\mathrm{K}) = 1.79 \ 3; \ \alpha(\mathrm{L}) = 0.360 \ 6; \ \alpha(\mathrm{M}) = 0.0850 \\ 13 \\ \alpha(\mathrm{N}) = 0.0208 \ 3; \ \alpha(\mathrm{O}) = 0.00358 \ 6; \\ \alpha(\mathrm{P}) = 0.000221 \ 4 \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.0320 \ 6; \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 84 \ 3 \\ \delta: \ \mathrm{Others:} \ 0.316 \ 15, \ 0.353 \ 21, \ 0.329 \ 12 \\ (^{193}\mathrm{Os} \ \beta^{-} \ \mathrm{decay}). \end{aligned}$
180.069	3/2+	41.18 [#] 7 107.022 [@] 5	100 [@] 4	138.941 73.041	5/2 ⁺ 1/2 ⁺	M1+E2	+0.164 8	5.00	12# 3	α (K)=4.06 6; α (L)=0.721 11; α (M)=0.168 β α (N)=0.0411 7; α (O)=0.00720 11; α (P)=0.000504 8 B(M1)(W.u.)=0.061 23; B(E2)(W.u.)=55 22
		180.071 [@] 7	28.6 [@] 14	0.0	3/2+	M1+E2	-0.48 2	1.028 17		α (K)=0.814 <i>15</i> ; α (L)=0.1646 <i>24</i> ; α (M)=0.0388 <i>6</i> α (N)=0.00951 <i>15</i> ; α (O)=0.001633 <i>24</i> ; α (P)=9.93×10 ⁻⁵ <i>19</i> B(M1)(W.u.)=0.0031 <i>12</i> ; B(E2)(W.u.)=8 <i>4</i> I_{γ} : Other: 71 <i>8</i> (Coulomb Excitation).
299.396	7/2-	219.158 [@] 7	100	80.238	11/2-	E2		0.254		$\begin{aligned} &\alpha(\mathbf{K}) = 0.1343 \ 19; \ \alpha(\mathbf{L}) = 0.0905 \ 13; \\ &\alpha(\mathbf{M}) = 0.0229 \ 4 \\ &\alpha(\mathbf{N}) = 0.00555 \ 8; \ \alpha(\mathbf{O}) = 0.000870 \ 13; \\ &\alpha(\mathbf{P}) = 1.374 \times 10^{-5} \ 20 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 71 \ 12 \end{aligned}$
357.768	7/2+	218.826 [@] 7	87 [@] 4	138.941	5/2+	M1+E2 ^a	-0.280 ^{<i>a</i>} 9	0.638 10		$\begin{array}{l} \alpha({\rm K}) \!=\! 0.522 \; 8; \; \alpha({\rm L}) \!=\! 0.0898 \; 13; \\ \alpha({\rm M}) \!=\! 0.0208 \; 3 \\ \alpha({\rm N}) \!=\! 0.00511 \; 8; \; \alpha({\rm O}) \!=\! 0.000897 \; 13; \\ \alpha({\rm P}) \!=\! 6.39 \!\times\! 10^{-5} \; 10 \end{array}$

From ENSDF

 $^{193}_{77} \mathrm{Ir}_{116}$ -6

L

I						A	Adopted Le	vels, Gammas	s (continued)	
							$\gamma(1)$	⁹³ Ir) (continu	ed)	
	E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{h}	Comments
	357.768	7/2+	357.761 [#] 10	100 [#] 2	0.0	3/2+	E2 ^{<i>a</i>}		0.0571	B(M1)(W.u.)=0.0375 24; B(E2)(W.u.)=23.8 21 α(K)=0.0388 6; α(L)=0.01389 20; α(M)=0.00342 5 α(N)=0.000833 12; α(O)=0.0001349 19; α(P)=4.26×10 ⁻⁶ 6 B(E2)(W.u.)=32.3 17 Mult: Q from Coulomb excitation, E2 from ce data $\binom{192}{192}$ Ir(n 20)
	361.857	5/2+	181.792 [@] 7	66 <i>3</i>	180.069	3/2+	M1+E2	+0.149 11	1.107	$\alpha(K)=0.910 \ 13; \ \alpha(L)=0.1518 \ 22; \ \alpha(M)=0.0351 \ 5 \\ \alpha(N)=0.00862 \ 13; \ \alpha(O)=0.001521 \ 22; \ \alpha(P)=0.0001120 \ 16 \\ B(M1)(W.u.)=0.026 \ 5; \ B(E2)(W.u.)=6.8 \ 16 \\ I_{\gamma}: Weighted average of data from \beta^{-} decay, (n,\gamma), (d,n\gamma), Coul. Ex., and (n,n'\gamma).$
			288.819 [#] 10	49.5 6	73.041	1/2+	(E2)		0.1063	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0661 \ 10; \ \alpha(\mathrm{L}) = 0.0304 \ 5; \ \alpha(\mathrm{M}) = 0.00758 \ 11 \\ \alpha(\mathrm{N}) = 0.00184 \ 3; \ \alpha(\mathrm{O}) = 0.000294 \ 5; \ \alpha(\mathrm{P}) = 7.06 \times 10^{-6} \ 10 \\ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 22 \ 4 \\ \mathrm{I}_{\gamma}: \text{ Weighted average of data from } \beta^{-} \text{ decay, } (\mathrm{n},\gamma), \text{ Coul.} \\ \mathrm{Ex., and } (\mathrm{n},\mathrm{n}'\gamma). \end{array}$
			361.858 [#] 10	100 ^{<i>a</i>} 7	0.0	3/2+	M1+E2	-0.315 19	0.159 3	$\alpha(K)=0.1310\ 21;\ \alpha(L)=0.0217\ 4;\ \alpha(M)=0.00501\ 8$ $\alpha(N)=0.001230\ 18;\ \alpha(O)=0.000217\ 4;\ \alpha(P)=1.59\times10^{-5}\ 3$ B(M1)(W,u)=0.0041\ 7;\ B(E2)(W,u)=1.21\ 25
	460.538	3/2+	98.681 [#] 10	0.42 [#] 1	361.857	5/2+	M1		6.36	B(M1)(W.u.)=0.0032 6 α (K)=5.24 8; α (L)=0.863 12; α (M)=0.199 3 α (N)=0.0489 7; α (O)=0.00866 13; α (P)=0.000652 10
			280.465 [@] 3	31.7 [#] 2	180.069	3/2+	M1+E2	-0.049 12	0.337	α (K)=0.279 4; α (L)=0.0451 7; α (M)=0.01037 15 α (N)=0.00255 4; α (O)=0.000452 7; α (P)=3.41×10 ⁻⁵ 5 B(M1)(W,u)=0.0105 8; B(E2)(W,u)=0.12 7
			321.604 [@] 7	32.1 [#] 2	138.941	5/2+	M1+E2	+0.234 10	0.225	$\alpha(K)=0.185 \ 3; \ \alpha(L)=0.0305 \ 5; \ \alpha(M)=0.00703 \ 10$ $\alpha(N)=0.001726 \ 25; \ \alpha(O)=0.000305 \ 5; \ \alpha(P)=2.26\times10^{-5} \ 4$ B(M1)(W.u.)=0.0067 \ 6; B(E2)(W.u.)=1.38 \ 16 I_{γ} : Other: 42 3 (n,n' γ).
			387.509 [#] 10	31.6 [#] 2	73.041	1/2+	M1+E2	-0.24 4	0.136 <i>3</i>	α (K)=0.1122 22; α (L)=0.0183 3; α (M)=0.00421 7 α (N)=0.001034 17; α (O)=0.000183 3; α (P)=1.36×10 ⁻⁵ 3 B(M1)(W,u)=0.0038 3; B(E2)(W,u)=0.56 19
			460.547 [@] 7	100.0 [#] 5	0.0	3/2+	M1+E2	-0.64 3	0.0718 <i>16</i>	α (K)=0.0587 <i>13</i> ; α (L)=0.01010 <i>18</i> ; α (M)=0.00234 <i>4</i> α (N)=0.000575 <i>10</i> ; α (O)=0.0001007 <i>19</i> ; α (P)=7.06×10 ⁻⁶ <i>17</i> B(M1)(W,u)=0.0053 <i>5</i> ; B(E2)(W,u)=4.0 <i>4</i>
	469.384	(13/2 ⁻)	389.140 [@] 10	100	80.238	11/2-	(M1) [@]		0.1395	$\alpha(K)=0.1155 \ 17; \ \alpha(L)=0.0185 \ 3; \ \alpha(M)=0.00425 \ 6$ $\alpha(N)=0.001046 \ 15; \ \alpha(O)=0.000185 \ 3; \ \alpha(P)=1.406 \times 10^{-5} \ 20$
	478.988	(15/2 ⁻)	398.775 [@] 23	100	80.238	11/2-	(E2) [@]		0.0424	$\alpha(K) = 0.0299 5; \alpha(L) = 0.00956 14; \alpha(M) = 0.00234 4$ $\alpha(K) = 0.000570 8; \alpha(O) = 9.31 \times 10^{-5} 13; \alpha(P) = 3.32 \times 10^{-6} 5$
	516.414	$(7/2)^+$	154.554 [@] 7	24 [@] 3	361.857	5/2+	(M1) [@]		1.770	$\alpha(K) = 1.460 \ 21; \ \alpha(L) = 0.239 \ 4; \ \alpha(M) = 0.0550 \ 8$

 \neg

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}7$

L

					Ad	lopted Level	s, Gammas (continued	<u>I)</u>
						$\gamma(^{193})$	Ir) (continued	<u>d)</u>	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{h}	Comments
516.414	(7/2)+	336.343 [@] 9	99 [@] 9	180.069	3/2+	(E2) [@]		0.0679	
		377.477 [@] 7	100 ^a 7	138.941	5/2+	(M1) [@]		0.1513	$\alpha(K)=0.1253 \ l8; \ \alpha(L)=0.0201 \ 3; \ \alpha(M)=0.00462 \ 7 \\ \alpha(N)=0.001135 \ l6; \ \alpha(O)=0.000201 \ 3; \ \alpha(P)=1.526\times10^{-5} \ 22$
		516.475 ^{@gk} 15	≤11 [@]	0.0	$3/2^{+}$				γ multiply placed in ¹⁹² Ir(n, γ).
521.926	(9/2)+	164.158 [@] 4	10.5 8	357.768	7/2+	(M1) [@]		1.493	B(M1)(W.u.)=0.028 5 α (K)=1.232 18; α (L)=0.201 3; α (M)=0.0463 7 α (N)=0.01139 16; α (O)=0.00202 3; α (P)=0.0001520 22 I _y : Weighted average of data (n, γ) and Coul. Ex.
		382.989 [@] 7	100 ^{<i>a</i>} 3	138.941	5/2+	(E2) [@]		0.0473	B(E2)(W.u.)=61 9 α (K)=0.0329 5; α (L)=0.01096 16; α (M)=0.00269 4 α (N)=0.000655 10; α (O)=0.0001067 15; α (P)=3.64×10 ⁻⁶ 5
557.413	$(1/2)^+$	96.815 [#] 15	7.18 [#] 15	460.538	3/2+	M1+E2	0.171 <i>19</i>	6.68	α (K)=5.40 9; α (L)=0.982 21; α (M)=0.229 6 B(M1)(W.u.)=0.027 7; B(E2)(W.u.)=32 11 α (N)=0.0562 13; α (O)=0.00980 21; α (P)=0.000672 11
		377.340 [@] 10	4.96 [#] 4	180.069	3/2+	M1(+E2)	1.0 5	0.10 <i>3</i>	$\alpha(K)=0.08 \ 3; \ \alpha(L)=0.016 \ 3; \ \alpha(M)=0.0037 \ 6$ $\alpha(N)=0.00091 \ 14; \ \alpha(O)=0.00016 \ 3; \ \alpha(P)=1.0\times10^{-5} \ 4$ B(M1)(W.u.)=0.00016 \ 10; B(E2)(W.u.)=0.4 \ 3
		418.431 [#] 16	3.98 [#] 3	138.941	5/2+	[E2]		0.0373	$\alpha(K)=0.0266\ 4;\ \alpha(L)=0.00814\ 12;\ \alpha(M)=0.00199\ 3$ $\alpha(N)=0.000484\ 7;\ \alpha(O)=7.94\times10^{-5}\ 12;\ \alpha(P)=2.97\times10^{-6}\ 5$ B(E2)(W.u.)=0.44\ 11 I _y : Other: 8.7\ 15 (n,y).
		484.359 [#] 10	12.85 [#] 18	73.041	1/2+	(M1)		0.0782	$\alpha(K)=0.0648 \ 9; \ \alpha(L)=0.01031 \ 15; \ \alpha(M)=0.00237 \ 4 \\ \alpha(N)=0.000582 \ 9; \ \alpha(O)=0.0001033 \ 15; \ \alpha(P)=7.85\times10^{-6} \ 11$
		557.401 [#] 10	100.0 [#] 9	0.0	3/2+	(M1)		0.0541	B(M1)(W.u.)=0.0020 5 α (K)=0.0449 7; α (L)=0.00712 10; α (M)=0.001633 23 α (N)=0.000401 6; α (O)=7.12×10 ⁻⁵ 10; α (P)=5.42×10 ⁻⁶ 8
559.298	5/2+	197.486 [#] 24	0.89 [#] 5	361.857	5/2+	[M1,E2]		0.6 3	α (K)=0.5 3; α (L)=0.130 11; α (M)=0.031 4 α (N)=0.0077 10; α (O)=0.00127 8; α (P)=5.E-5 4
		201.535 [@] 7	0.78 [#] 7	357.768	7/2+	[M1,E2]		0.6 3	α (K)=0.4 3; α (L)=0.121 8; α (M)=0.029 4 α (N)=0.0071 8; α (O)=0.00118 6; α (P)=5.E-5 4
		379.230 [@] 11	2.08 [#] 8	180.069	3/2+	[M1,E2]		0.10 5	α (K)=0.08 5; α (L)=0.016 5; α (M)=0.0037 9 α (N)=0.00090 23; α (O)=0.00015 5; α (P)=9.E-6 6
		420.351 [@] 8	32.8 [#] 3	138.941	5/2+	M1		0.1136	B(M1)(W.u.)= $0.061 \ 10$ α (K)= $0.0941 \ 14; \ \alpha$ (L)= $0.01505 \ 21; \ \alpha$ (M)= $0.00346 \ 5$

 ∞

					A	dopted Leve	els, Gammas ((continued)	
						$\gamma(^{19}$	³ Ir) (continued	d)	
E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{h}	Comments
									α (N)=0.000850 <i>12</i> ; α (O)=0.0001507 <i>21</i> ; α (P)=1.144×10 ⁻⁵ <i>16</i>
559.298	5/2+	486.255 [#] 10	2.19 [#] 2	73.041	1/2+	[E2]		0.0254	α (K)=0.0188 3; α (L)=0.00504 7; α (M)=0.001218 17 B(E2)(W.u.)=5.6 12 α (N)=0.000297 5; α (O)=4.93×10 ⁻⁵ 7; α (P)=2.12×10 ⁻⁶ 3
		559.289 [#] 10	100.0 [#] 8	0.0	3/2+	(M1)		0.0537	α (K)=0.0445 7; α (L)=0.00705 10; α (M)=0.001619 23 α (N)=0.000398 6; α (O)=7.06×10 ⁻⁵ 10; α (P)=5.38×10 ⁻⁶ 8 B(M1)(W,u)=0.077 13
563.402	(9/2-)	264.005 [@] 5	100.0 [@] 5	299.396	7/2-	(M1) [@]		0.398	α (K)=0.329 5; α (L)=0.0533 8; α (M)=0.01226 18 α (N)=0.00301 5; α (O)=0.000534 8; α (P)=4.04×10 ⁻⁵ 6
		483.160 [@] 8	63 [@] 4	80.238	11/2-	(M1) [@]		0.0787	α (K)=0.0652 <i>10</i> ; α (L)=0.01038 <i>15</i> ; α (M)=0.00238 <i>4</i> α (N)=0.000586 <i>9</i> ; α (O)=0.0001039 <i>15</i> ; α (P)=7.90×10 ⁻⁶ <i>11</i>
598.220	3/2-	236.31 [#] 4	0.35 [#] 6	361.857	5/2+				
		298.828 [@] 10	100.0 [#] 10	299.396	7/2-	(E2)		0.0959	$\alpha(K)=0.0607 \ 9; \ \alpha(L)=0.0267 \ 4; \ \alpha(M)=0.00666 \ 10$ $\alpha(N)=0.001618 \ 23; \ \alpha(O)=0.000259 \ 4; \ \alpha(P)=6.51\times10^{-6} \ 10$ B(E2)(W.u.) exceeds RUL, however, with considerable uncertainty.
		418 [#]	3.8 [#] 8	180.069	3/2+	[E1]		0.01176	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00980 \ 14; \ \alpha(\mathrm{L}) = 0.001517 \ 22; \ \alpha(\mathrm{M}) = 0.000347 \ 5 \\ \alpha(\mathrm{N}) = 8.47 \times 10^{-5} \ 12; \ \alpha(\mathrm{O}) = 1.470 \times 10^{-5} \ 21; \ \alpha(\mathrm{P}) = 9.99 \times 10^{-7} \\ 14 \end{array} $
			0						$B(E1)(W.u.) = 3.0 \times 10^{-5} + 12 - 30$
		525.190 [#] 10	10.8 ^{&} 4	73.041	1/2+	[E1]		0.00717	$\alpha(K)=0.00599 \ 9; \ \alpha(L)=0.000911 \ 13; \ \alpha(M)=0.000208 \ 3$ B(E1)(W.u.)=4.0×10 ⁻⁵ +14-40 $\alpha(M)=5.08\times10^{-5} \ 9; \ \alpha(D)=8.86\times10^{-6} \ 12; \ \alpha(D)=6.20\times10^{-7} \ 0$
		598.42 [#] 7	0.38 [#] 13	0.0	3/2+	[E1]		0.00547	$\alpha(N) = 3.08 \times 10^{-5} \text{ s}, \alpha(O) = 8.00 \times 10^{-15}, \alpha(P) = 0.20 \times 10^{-5} \text{ g}$ $\alpha(K) = 0.00458 \text{ 7}; \alpha(L) = 0.000689 \text{ 10}; \alpha(M) = 0.0001571 \text{ 22}$ $\alpha(N) = 3.84 \times 10^{-5} \text{ 6}; \alpha(O) = 6.72 \times 10^{-6} \text{ 10}; \alpha(P) = 4.77 \times 10^{-7} \text{ 7}$ $B(E1)(W.u.) = 1.0 \times 10^{-6} \text{ +} 5 - 10$
620.991	7/2+	259.8 ^{&} 13	5.5 ^{&} 20	361.857	5/2+	[M1,E2]		0.28 14	$\alpha(K)=0.22 \ 13; \ \alpha(L)=0.051 \ 6; \ \alpha(M)=0.0121 \ 8$ $\alpha(N)=0.00297 \ 20; \ \alpha(O)=0.00050 \ 6; \ \alpha(P)=2.6\times10^{-5} \ 17$ I _v : relative to I _V (620.98)=74.
		263.218 [@] 8	13.6 [@] 7	357.768	7/2+	M1+E2 ^{<i>a</i>}	-0.26 ^{<i>a</i>} 11	0.385 16	$\alpha(K)=0.316\ 15;\ \alpha(L)=0.0531\ 10;\ \alpha(M)=0.01227\ 20$ $\alpha(N)=0.00301\ 5;\ \alpha(O)=0.000531\ 10;\ \alpha(P)=3.87\times10^{-5}\ 19$ B(M1)(Wu)=0.0174\ 20; B(F2)(Wu)=7.6
		482.048 [@] 8	100 ^{<i>a</i>} 4	138.941	5/2+	M1+E2 ^{<i>a</i>}	-0.93 ^a 11	0.054 4	$\alpha(K)=0.044 \ 3; \ \alpha(L)=0.0080 \ 4; \ \alpha(M)=0.00187 \ 8 \\ \alpha(N)=0.000458 \ 19; \ \alpha(O)=8.0\times10^{-5} \ 4; \ \alpha(P)=5.3\times10^{-6} \ 4 \\ B(M1)(W,u)=0.0119 \ 18; \ B(E2)(W,u)=17 \ 3 \\ \end{array}$
		620.98 [@] 3	75 [@] 6	0.0	3/2+	[E2]		0.01425	B(E2)(W.u.)=7.8 8 α (K)=0.01103 <i>16</i> ; α (L)=0.00246 <i>4</i> ; α (M)=0.000587 9 α (N)=0.0001434 <i>20</i> ; α (O)=2.42×10 ⁻⁵ <i>4</i> ; α (P)=1.255×10 ⁻⁶ <i>18</i>

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}9$

I

					-	Adopted Level	<mark>s, Gammas</mark> (conti	nued)	
						$\gamma(^{193})$	Ir) (continued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{h}}$	Comments
695.142	5/2+	96.969 [#] 15 135.88 [@] 3	0.73 [#] 16 1.9 [@] 10	598.220 559.298	3/2 ⁻ 5/2 ⁺	[M1,E2]		2.0 6	$\alpha(K)=1.3 \ 9; \ \alpha(L)=0.53 \ 19; \ \alpha(M)=0.13 \ 6$ $\alpha(N)=0.032 \ 13; \ \alpha(O)=0.0051 \ 17; \ \alpha(P)=0.00015 \ 11$ L : Unweighted average from β^{-}_{-} decay and (n, γ)
		234.608 [@] 7	100.0 [#] 2	460.538	3/2+	M1+E2	-0.36 9	0.505 21	$\alpha(K)=0.410\ 20;\ \alpha(L)=0.0732\ 11;\ \alpha(M)=0.01704\ 24$ $\alpha(N)=0.00418\ 6;\ \alpha(O)=0.000730\ 12;\ \alpha(P)=5.0\times10^{-5}\ 3$
		333.28 [@] 4	5.3 [#] 4	361.857	5/2+	(M1) [@]		0.211	$\alpha(K) = 0.1749 \ 25; \ \alpha(L) = 0.0282 \ 4; \ \alpha(M) = 0.00647 \ 9 \\ \alpha(N) = 0.001591 \ 23; \ \alpha(O) = 0.000282 \ 4; \\ \alpha(P) = 2.14 \times 10^{-5} \ 3$
		337.33 [@] 3	1.38 [#] 24	357.768	7/2+	[M1,E2]		0.14 7	$\alpha(K)=0.11$ 7; $\alpha(L)=0.022$ 5; $\alpha(M)=0.0052$ 11 $\alpha(N)=0.0013$ 3; $\alpha(O)=0.00022$ 6; $\alpha(P)=1.3\times10^{-5}$ 8 I_{γ} : Others: 80 20 (d,n γ), 100 10 (n, γ) (discrepant data).
		515.064 [@] 9	23.8 [#] 3	180.069	3/2+	(M1+E2) [@]		0.044 23	α (K)=0.036 20; α (L)=0.0065 23; α (M)=0.0015 5 α (N)=0.00037 13; α (O)=6.5×10 ⁻⁵ 24; α (P)=4.3×10 ⁻⁶ 24
		556.175 [@] 9	6.1 [@] 5	138.941	5/2+	(M1+E2) [@]		0.036 18	$\alpha(K)=0.030 \ 16; \ \alpha(L)=0.0053 \ 19; \ \alpha(M)=0.0012 \ 5$ $\alpha(N)=0.00030 \ 11; \ \alpha(O)=5.2\times10^{-5} \ 20; \ \alpha(P)=3.5\times10^{-6}$ 20
		695.159 [#] 14	5.53 [#] 16	0.0	3/2+	[M1,E2]		0.021 10	α (K)=0.017 9; α (L)=0.0029 11; α (M)=0.00067 25 α (N)=0.00017 6; α (O)=2.9×10 ⁻⁵ 11; α (P)=2.0×10 ⁻⁶ 11
712.180	3/2+	154.721 [@] 4	12.96 [#] 24	557.413	(1/2)+	M1+E2	+0.26 3	1.71 <i>3</i>	$\alpha(K)=1.38 \ 3; \ \alpha(L)=0.248 \ 5; \ \alpha(M)=0.0578 \ 11$ $\alpha(N)=0.0142 \ 3; \ \alpha(O)=0.00248 \ 4; \ \alpha(P)=0.000170 \ 4$ B(M1)(W.u.)=0.019 \ 18; B(E2)(W.u.)=20 \ 20 I_{v} : Other: 32 \ 15 (n,n' γ).
		251.635 [@] 7	100.0 [#] 13	460.538	3/2+	M1+E2	-0.11 3	0.451	$\alpha(K)=0.372\ 6;\ \alpha(L)=0.0607\ 9;\ \alpha(M)=0.01399\ 20$ $\alpha(N)=0.00344\ 5;\ \alpha(O)=0.000609\ 9;\ \alpha(P)=4.56\times10^{-5}\ 7$ B(M1)(W.u.)=0.04\ 4; B(E2)(W.u.)=3\ 3
		350.325 [@] 9	2.64 [#] 22	361.857	5/2+	[M1,E2]		0.12 7	α (K)=0.10 6; α (L)=0.020 5; α (M)=0.0047 10 α (N)=0.00114 25; α (O)=0.00020 5; α (P)=1.2×10 ⁻⁵ 7 I_{γ} : 69 10 (n, γ).
		354.25 [#] 12	0.043 [#] 24	357.768	7/2+				
		532.126 [#] 10	40.0 [#] 4	180.069	3/2+	M1+E2	+0.48 +32-16	0.053 9	α (K)=0.044 8; α (L)=0.0073 9; α (M)=0.00167 19 α (N)=0.00041 5; α (O)=7.2×10 ⁻⁵ 9; α (P)=5.3×10 ⁻⁶ 9 B(M1)(W.u.)=0.0013 13; B(E2)(W.u.)=0.4 +6-4
		573.267 [#] 10	9.72 [#] 9	138.941	5/2+	M1+E2	+0.03 2	0.0503	α (N)=0.000373 6; α (O)=6.61×10 ⁻⁵ 10; α (P)=5.04×10 ⁻⁶ 7 B(M1)(W.u.)=0.0003 3 α (K)=0.0417 6; α (L)=0.00661 10; α (M)=0.001516 22
		639.151 [#] 10	3.69 [#] 4	73.041	1/2+	[M1,E2]		0.026 13	$\alpha(K) = 0.021 \ II; \ \alpha(L) = 0.0036 \ I4; \ \alpha(M) = 0.0008 \ 3 \ \alpha(N) = 0.00021 \ 8; \ \alpha(O) = 3.6 \times 10^{-5} \ I4; \ \alpha(P) = 2.5 \times 10^{-6}$

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}10$

L

					Ad	opted Leve	ls, Gamma	s (continued)	
						$\gamma(^{193})$	³ Ir) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{\boldsymbol{h}}$	Comments
									$\alpha(N)=0.00016\ 6;\ \alpha(O)=2.7\times10^{-5}\ 11;\ \alpha(P)=1.9\times10^{-6}\ 10$
740.380	5/2-	142.159 [@] 3	75.8 [#] 13	598.220	3/2-	M1		2.24	α (K)=1.85 3; α (L)=0.303 5; α (M)=0.0697 10 α (N)=0.01714 24; α (O)=0.00304 5; α (P)=0.000229 4
		176.907 [#] 16	<1.28#	563.402	$(9/2^{-})$				
		181.38 [#] 4	0.18 [#] 4	559.298	5/2+				
		378.533 8	1.9 3	361.857	5/2+	[E1]		0.01470	$\alpha(K)=0.01223 \ ls; \ \alpha(L)=0.00191 \ 3; \ \alpha(M)=0.000437 \ 7$ $\alpha(N)=0.0001066 \ ls; \ \alpha(O)=1.85\times10^{-5} \ 3; \ \alpha(P)=1.237\times10^{-6} \ ls$ I_{γ} : Weighted average of data from β^- decay and (n,γ) .
		382.63 [#] 15	$0.08^{\#} 4$	357.768	$7/2^{+}$				
		440.980 [@] 13	100 [#] 5	299.396	7/2-	M1+E2	-0.37 4	0.0920 21	α (K)=0.0758 <i>18</i> ; α (L)=0.01247 <i>23</i> ; α (M)=0.00288 <i>6</i> α (N)=0.000707 <i>13</i> ; α (O)=0.0001247 <i>24</i> ; α (P)=9.17×10 ⁻⁶ <i>22</i>
		560.33 [@] 3	3.1# 9	180.069	3/2+	[E1]		0.00626	$\alpha(K)=0.00524 \ 8; \ \alpha(L)=0.000792 \ 11; \ \alpha(M)=0.000181 \ 3$ $\alpha(N)=4.42\times10^{-5} \ 7; \ \alpha(O)=7.72\times10^{-6} \ 11; \ \alpha(P)=5.44\times10^{-7} \ 8$ I_{γ} : there is a disagreement about this I_{γ} . The branching ratios are given as 3.1 9 (¹⁹³ Os β^{-} decay, deduced from $\gamma\gamma$ data), 31 4 (¹⁹² Ir(n, γ)), 44 7 (¹⁹² Os(d,n γ)). See ¹⁹² Ir(n, γ) for comment.
		601.45 [@] 5	0.28 [@] 4	138.941	$5/2^{+}$				I_{γ} : Other 16 3 (n, γ).
806.902	$(5/2)^+$	445.023 [@] 14	5.6 [@] 7	361.857	5/2+				
		449.149 [@] 18	53 [@] 5	357.768	7/2+	(M1) [@]		0.0953	α (K)=0.0790 <i>11</i> ; α (L)=0.01261 <i>18</i> ; α (M)=0.00290 <i>4</i> α (N)=0.000712 <i>10</i> ; α (O)=0.0001262 <i>18</i> ; α (P)=9.59×10 ⁻⁶ <i>14</i>
		626.88 [@] 8	8.0 [@] 10	180.069	3/2+				
		667.963 [@] 9	$100^{@}_{7}$	138.941	5/2+				
		733.93 ^{&} 15 807 ^a	7.9 ^{&} 16	73.041 0.0	1/2 ⁺ 3/2 ⁺				
828.92	(9/2 ⁻)	748.68 ^{&} _9	100	80.238	$11/2^{-}$	_			
832.893	(11/2 ⁻)	269.490 [@] 7	100 [@] 5	563.402	(9/2 ⁻)	(M1) [@]		0.377	α (K)=0.311 5; α (L)=0.0503 7; α (M)=0.01158 17 α (N)=0.00285 4; α (O)=0.000505 7; α (P)=3.81×10 ⁻⁵ 6
		533.51 [@] 3	70 [@] 7	299.396	7/2-	(E2) [@]		0.0203	α (K)=0.01531 22; α (L)=0.00380 6; α (M)=0.000915 13 α (N)=0.000223 4; α (O)=3.73×10 ⁻⁵ 6; α (P)=1.735×10 ⁻⁶ 25
		752.73 ^{j&} 15	<35 <i>j</i> &	80.238	11/2-				multiply placed, with undivided intensity $I\gamma=30.5$ in 193 Ir(n,n' γ).
838.918	$(9/2^+)$	279.611 [@] 18	2.3 ^(a) 4	559.298	5/2+	Ø			
		322.505 ^{^w} 21	33.4 ^{^w} 20	516.414	$(7/2)^+$	(M1) [@]		0.231	α (K)=0.191 3; α (L)=0.0308 5; α (M)=0.00708 10 α (N)=0.001740 25; α (O)=0.000308 5; α (P)=2.33×10 ⁻⁵ 4
		477.062 [@] 8	100 [@] 5	361.857	5/2+	(E2) [@]		0.0267	α (K)=0.0197 3; α (L)=0.00534 8; α (M)=0.001294 19 α (N)=0.000316 5; α (O)=5.22×10 ⁻⁵ 8; α (P)=2.22×10 ⁻⁶ 4

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}12$

From ENSDF

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}12$

					Adopte	d Levels, Gan	nmas (contin	ued)
						$\gamma(^{193}\text{Ir})$ (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{\boldsymbol{h}}$	Comments
848.967	3/2 ⁽⁺⁾ ,5/2 ⁽⁺⁾	290 [#]	≈10 [#]	559.298	5/2+	[M1,E2]	0.21 11	$\alpha(K)=0.16\ 10;\ \alpha(L)=0.036\ 6;\ \alpha(M)=0.0085\ 10$ $\alpha(N)=0.0021\ 3;\ \alpha(O)=0.00035\ 7;\ \alpha(P)=1.9\times10^{-5}\ 13$
		388.60 ^{@c} 4	100 [@] 21	460.538	3/2+	(M1) [@]	0.1400	$\alpha(K)=0.1159 \ 17; \ \alpha(L)=0.0186 \ 3; \ \alpha(M)=0.00427 \ 6 \ \alpha(N)=0.001050 \ 15; \ \alpha(O)=0.000186 \ 3; \ \alpha(P)=1.411\times10^{-5} \ 20$
		487.217 ^{@c} 13	64 [@] 6	361.857	5/2+	(E2) [@]	0.0253	$\alpha(K) = 0.0188 \ 3; \ \alpha(L) = 0.00501 \ 7; \ \alpha(M) = 0.001210 \ 17 \ \alpha(N) = 0.000295 \ 5; \ \alpha(Q) = 4.90 \times 10^{-5} \ 7; \ \alpha(P) = 2.12 \times 10^{-6} \ 3$
		491.26 [#] 8	3.9 [#] 16	357.768	$7/2^{+}$			
		709.924 [#] 13	46.5 [#] 18	138.941	5/2+	[M1,E2]	0.020 10	α (K)=0.016 8; α (L)=0.0028 11; α (M)=0.00064 23 α (N)=0.00016 6; α (O)=2.7×10 ⁻⁵ 11; α (P)=1.9×10 ⁻⁶ 10
		775.9 [#] 3	9 ^{#} 40	73.041	1/2+	[E2]	0.00876	α (K)=0.00697 <i>10</i> ; α (L)=0.001371 <i>20</i> ; α (M)=0.000323 <i>5</i> α (N)=7.90×10 ⁻⁵ <i>11</i> ; α (O)=1.351×10 ⁻⁵ <i>19</i> ; α (P)=7.94×10 ⁻⁷ <i>12</i>
		848.944 [#] 16	100 [#] 3	0.0	3/2+	[M1,E2]	0.013 6	α (K)=0.011 5; α (L)=0.0017 7; α (M)=0.00040 15 α (N)=0.00010 4; α (O)=1.7×10 ⁻⁵ 7; α (P)=1.2×10 ⁻⁶ 6
857.027	(11/2)+	335.101 [@] 11	31 [@] 3	521.926	(9/2)+	(M1) [@]	0.208	α (K)=0.1724 25; α (L)=0.0277 4; α (M)=0.00638 9 α (N)=0.001568 22; α (O)=0.000278 4; α (P)=2.10×10 ⁻⁵ 3 B(M1)(W.u.)≈0.043
		499.254 [@] 8	100 ^{<i>a</i>} 4	357.768	7/2+	(E2) [@]	0.0238	α (K)=0.01775 25; α (L)=0.00464 7; α (M)=0.001121 16 α (N)=0.000274 4; α (O)=4.54×10 ⁻⁵ 7; α (P)=2.00×10 ⁻⁶ 3 B(E2)(W,u)=57 10
874.290	$3/2^+, 5/2^+$	253.08 [#] 8	<9 #	620.991	$7/2^{+}$			
		314.93 [#] 5	10.4 ^{#} 21	559.298	5/2+			
		317 [#]	5.4 [#] 15	557.413	$(1/2)^+$	[M1,E2]	0.16 8	α (K)=0.13 8; α (L)=0.027 6; α (M)=0.0064 11 α (N)=0.0016 3; α (O)=0.00027 6; α (P)=1.5×10 ⁻⁵ 10
		413.756 [@] 8	23 3	460.538	3/2+	(M1,E2) [@]	0.08 4	α (K)=0.06 4; α (L)=0.012 4; α (M)=0.0028 8 α (N)=0.00069 20; α (O)=0.00012 4; α (P)=7.E-6 5
		512.3 [#] 3	8 [#] 4	361.857	5/2+	[M1,E2]	0.045 23	α (K)=0.036 20; α (L)=0.0066 23; α (M)=0.0015 5 α (N)=0.00038 13; α (O)=6.6×10 ⁻⁵ 24; α (P)=4.3×10 ⁻⁶ 25
		516.52 [#] 4	15.2 [#] 4	357.768	7/2+	[M1,E2]	0.044 22	α (K)=0.036 20; α (L)=0.0064 23; α (M)=0.0015 5 α (N)=0.00037 13; α (O)=6.4×10 ⁻⁵ 23; α (P)=4.2×10 ⁻⁶ 24
		735.32 [#] <i>34</i>	5.6 [#] 2	138.941	5/2+	[M1,E2]	0.018 9	α (K)=0.015 8; α (L)=0.0025 10; α (M)=0.00058 21 α (N)=0.00014 6; α (Q)=2.5×10 ⁻⁵ 10; α (P)=1.8×10 ⁻⁶ 9
		800.9 [#] 3	1.5 [#] 7	73.041	1/2+	[M1,E2]	0.015 7	α (K)=0.012 6; α (L)=0.0020 8; α (M)=0.00047 17 α (N)=0.00011 5; α (O)=2.0×10 ⁻⁵ 8; α (P)=1.4×10 ⁻⁶ 7
		874.306 [#] 25	100 [#] 6	0.0	3/2+	[M1,E2]	0.012 6	α (K)=0.010 5; α (L)=0.0016 6; α (M)=0.00037 14 α (N)=9.E-5 4; α (O)=1.6×10 ⁻⁵ 6; α (P)=1.2×10 ⁻⁶ 6
879.49		282.34 [#] 9 418.31 [#] 7	100 [#] 12 48 [#] 28	598.220 460.538	3/2 ⁻ 3/2 ⁺			

From ENSDF

γ (¹⁹³Ir) (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{h}	Comments
882.19		283.97 [#] 7	100	598.220 3/2-			
890.41		292.19 [#] 7	100	598.220 3/2-			
892.269	$(9/2^+)$	$271.282^{@}$ 12	47 [@] 5	$620.991 7/2^+$			
	(369.81 ^{&} 10	65 ^a 17	$521.926 (9/2)^+$			I_{ν} : Other: 26 4 (n,n' γ).
		534.482 [@] 21	$100^{@} 6$	357.768 7/2+			
		752.73 ^{j&} 15	<47 <i>j</i> &	$138.941 \ 5/2^+$			
918.363	(7/2 ⁻)	177.986 [@] 7	100 [@] 8	740.380 5/2-	(M1) [@]	1.189	α (K)=0.982 <i>14</i> ; α (L)=0.1601 <i>23</i> ; α (M)=0.0369 <i>6</i> α (N)=0.00906 <i>13</i> ; α (O)=0.001605 <i>23</i> ; α (P)=0.0001210 <i>17</i>
		320.142 [@] 17	11.8 [@] 18	598.220 3/2-	(E2) [@]	0.0783	α (K)=0.0510 8; α (L)=0.0207 3; α (M)=0.00514 8 α (N)=0.001249 18; α (O)=0.000201 3; α (P)=5.53×10 ⁻⁶ 8
		354.960 [@] 7	17.6 [@] 26	563.402 (9/2 ⁻)	(M1) [@]	0.1784	α (K)=0.1477 21; α (L)=0.0237 4; α (M)=0.00545 8 α (N)=0.001341 19; α (O)=0.000238 4; α (P)=1.80×10 ⁻⁵ 3
		618.94 [@] 3	51 4	299.396 7/2-			I_{γ} : Weighted average of branching data from (n,γ) E=th and $(n,n'\gamma)$.
930.429	$(17/2^{-})$	451.441 [@] 8	100	478.988 (15/2-)	D+Q		E_{γ} ,Mult.: Other: 449.3 5 (⁷ Li, $\alpha 2n\gamma$). Mult: From (HI,xn γ).
		459.5 ^d 5		469.384 (13/2 ⁻)			
959.73		361.51 [#] 3	100	598.220 3/2-			
964.41	1/2+	784.43 [#] 5	24.3 23	180.069 3/2+	[M1,E2]	0.016 7	$\alpha(K)=0.013 \ 6; \ \alpha(L)=0.0021 \ 8; \ \alpha(M)=0.00049 \ 18 \ \alpha(N)=0.00012 \ 5; \ \alpha(O)=2.1\times10^{-5} \ 8; \ \alpha(P)=1.5\times10^{-6} \ 8 \ I_{\gamma}$: Weighted average of branching data from (n,γ) E=th and $(n,n'\gamma)$.
		891.34 [#] 3	100 [#] 5	73.041 1/2+	[M1,E2]	0.011 5	$\alpha(K)=0.009 5; \alpha(L)=0.0015 6; \alpha(M)=0.00036 13$ $\alpha(N)=9.E-5 4; \alpha(O)=1.5\times10^{-5} 6; \alpha(P)=1.1\times10^{-6} 5$
972.872	$(5/2^+)$	232.507 [@] 19	14.6 [@] 15	740.380 5/2-			
		351.864 [@] 14	61 [@] 5	620.991 7/2+			
		611.037 [@] 21	100 [@] 18	361.857 5/2+			I_{γ} : 71 16 (n,n' γ).
		615.09 [@] 5	94 [@] 13	357.768 7/2+			
		899.98 ^{&} 13	100 ^{&} 14	73.041 1/2+			E_{γ} : Only reported in $(n, n'\gamma)$.
		972.08 ^{g&k} 24	49 <mark>&</mark> 16	0.0 3/2+			
975.330	(11/2 ⁻)	496.345 [@] 8	100 [@] 10	478.988 (15/2 ⁻)	(E2) [@]	0.0242	α (K)=0.0180 3; α (L)=0.00473 7; α (M)=0.001142 16 α (N)=0.000279 4; α (O)=4.63×10 ⁻⁵ 7; α (P)=2.03×10 ⁻⁶ 3
		505.943 [@] 8	50 [@] 4	469.384 (13/2 ⁻)	(M1) [@]	0.0697	α (K)=0.0578 8; α (L)=0.00919 13; α (M)=0.00211 3 α (N)=0.000519 8; α (O)=9.20×10 ⁻⁵ 13; α (P)=7.00×10 ⁻⁶ 10
1009.354	$(11/2^+)$	492.940 8	100 [@] 9	516.414 (7/2)+	(E2) [@]	0.0246	α (K)=0.0183 3; α (L)=0.00483 7; α (M)=0.001167 17 α (N)=0.000285 4; α (O)=4.72×10 ⁻⁵ 7; α (P)=2.06×10 ⁻⁶ 3
		539.92 [@] 8	17 [@] 3	469.384 (13/2 ⁻)			
1019.589	$(11/2^+)$	503.174 [@] 8	100	516.414 (7/2)+	(E2) [@]	0.0234	α (K)=0.01744 25; α (L)=0.00453 7; α (M)=0.001094 16 α (N)=0.000267 4; α (O)=4.44×10 ⁻⁵ 7; α (P)=1.97×10 ⁻⁶ 3
1026.0	$(19/2^{-})$	96.0 ^e 5		930.429 (17/2 ⁻)			

14

				Ad	opted Lev	els, Gamm	<mark>as</mark> (continu	ned)		
$\gamma(^{193}\text{Ir})$ (continued)										
E _i (level)	J_i^π	Eγ	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	α^{h}	Comments		
1026.0	(19/2 ⁻)	545.7 ^e 5	100	478.988	$(15/2^{-})$	0		Mult.: From (HI.xny).		
1035.465	$(13/2^+)$	178.441 [@] 4	5.0 [@] 10	857.027	$(11/2)^+$	(M1) [@]	1.181	α (K)=0.975 <i>14</i> ; α (L)=0.1589 <i>23</i> ; α (M)=0.0366 <i>6</i> α (N)=0.00900 <i>13</i> ; α (O)=0.001594 <i>23</i> ; α (P)=0.0001201 <i>17</i>		
		513.529 [@] 8	100 [@] 8	521.926	(9/2)+	(E2) [@]	0.0222	α (K)=0.01666 24; α (L)=0.00426 6; α (M)=0.001028 15 α (N)=0.000251 4; α (O)=4.17×10 ⁻⁵ 6; α (P)=1.88×10 ⁻⁶ 3		
1035.855	3/2+,5/2(+),7/2+	340.1 ^{&} 9	31 ^{&} 23	695.142	5/2+					
		678.085 [@] 24	100 ^{&} 13	357.768	7/2+					
		856.5 <mark>&</mark> 6	16 ^{&} 10	180.069	3/2+					
1038.054	$(5/2^+, 7/2^+)$	516.153 [@] 23	30.3 [@] 24	521.926	$(9/2)^+$					
		676.192 [@] 13	100 [@] 17	361.857	$5/2^{+}$					
		680.280 [@] 15	69 [@] 14	357.768	7/2+					
		858.2 ^{&} 3	67 ^{&} 27	180.069	$3/2^{+}$					
065.89	$1/2^+, 3/2^{(+)}, 5/2^+$	444.75 ^{&} 12	8 <mark>&</mark> 5	620.991	7/2+			γ multiply placed in (n,n' γ); only observed in (n,n' γ).		
		704.01 ^{&} 11	35 ^{&} 6	361.857	$5/2^{+}$					
		885.91 ^{&} 8	100 ^{&} 14	180.069	3/2+					
		992.2 ^{i&} 5	18 ^{i&} 11	73.041	$1/2^{+}$					
1076.47	$(3/2^+)$	718.72 ^{&} 10	100 ^{&} 10	357.768	7/2+					
		937.49 ^{&} 13	30 ^{&} 5	138.941	$5/2^{+}$					
1077.99	$(3/2^-, 5/2^-)$	337.8 2	8.3 ^{&} 25	740.380	5/2-					
		778.43 [#] 19	100 10	299.396	7/2-	[M1,E2]	0.016 8	α (K)=0.013 6; α (L)=0.0022 9; α (M)=0.00050 19 α (N)=0.00012 5; α (O)=2.2×10 ⁻⁵ 9; α (P)=1.5×10 ⁻⁶ 8		
1131.17	5/2-	951.10 ^{&} 11	100 27	180.069	$3/2^{+}$					
		992.2 ^{i&} 5	37 ^{i&} 22	138.941	5/2+					
145.614	(9/2)-	227.252 [@] 7	100 [@] 9	918.363	$(7/2^{-})$					
		582.201 [@] 20	17 3	563.402	$(9/2^{-})$			I_{γ} : Weighted average of data from (n,γ) and $(n,n'\gamma)$.		
168.06	$(13/2^{-})$	335.21 ^{&} 19	100 & 44	832.893	$(11/2^{-})$					
		698.64 ^{&} 17	67 26	469.384	$(13/2^{-})$	0				
1169.170	$(11/2^+)$	276.890 ^(@) 20	14.5 [@] 21	892.269	(9/2+)	(M1) [@]	0.350	α (K)=0.289 4; α (L)=0.0467 7; α (M)=0.01075 15 α (N)=0.00264 4; α (O)=0.000468 7; α (P)=3.54×10 ⁻⁵ 5		
		312.125 [@] 9	9.7 [@] 24	857.027	$(11/2)^+$	-				
		548.19 [@] 3	75 [@] 4	620.991	7/2+	(E2) [@]	0.0190	α (K)=0.01443 21; α (L)=0.00351 5; α (M)=0.000843 12 α (N)=0.000206 3; α (O)=3.44×10 ⁻⁵ 5; α (P)=1.636×10 ⁻⁶ 23		
		647.257 [@] 8	100 [@] 11	521.926	$(9/2)^+$					
		654 ^a		516.414	$(7/2)^+$					
1050 10	(2) 2 5 (2) +	812"	100 0 87 0	357.768	7/2+ 5/2+					
1250.42	$(3/2,5/2)^+$	888.42 ^{cc} 10	100.0 9	361.857	5/2+					

$^{193}_{77}\mathrm{Ir}_{116}\text{-}15$

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}15$

From ENSDF

γ (¹⁹³Ir) (continued)

E _i (level)	J_i^π	Eγ	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α^{h}	Comments
1250.42	$(3/2, 5/2)^+$	892.89 ^{&} 13	92 ^{&} 12	357.768	7/2+			
1358.8	(19/2 ⁻)	428.4 ^d 5	100	930.429	(17/2 ⁻)	D		
1438.429 1459.968	$(13/2^+)$ $(15/2)^+$	599.510 [@] 7 425 ^a	100	838.918 1035.465	(9/2 ⁺) (13/2 ⁺)			
		440.37 [@] 5	15.8 [@] 24	1019.589	$(11/2^+)$			
		602.940 [@] 8	$100^{@} 12$	857.027	$(11/2)^+$			
1511.714	(3/2 ⁺)	538.845 [@] 20	34 [@] 4	972.872	(5/2 ⁺)	(M1+E2) [@]	0.039 20	α (K)=0.032 <i>17</i> ; α (L)=0.0057 <i>21</i> ; α (M)=0.0013 <i>5</i> α (N)=0.00033 <i>12</i> ; α (O)=5.7×10 ⁻⁵ <i>21</i> ; α (P)=3.8×10 ⁻⁶ <i>22</i>
		637.46 [@] 3	100 [@] 6	874.290	3/2+,5/2+			
		662.636 [@] 15	100 [@] 33	848.967	$3/2^{(+)}, 5/2^{(+)}$			
		954.37 ^{&} 15	100 ^{&} 20	557.413	$(1/2)^+$			
1527.7	(21/2 ⁻)	501.3 ^d 5 597.7 ^e 5	100	1026.0 930.429	(19/2 ⁻) (17/2 ⁻)	D		
1592.6	$(21/2^{-})$	566.3 ^d 5	100 ^d 9	1026.0	(19/2 ⁻)	D+Q		Mult.: From (HI, $xn\gamma$).
		662.7 ^d 5	43 ^d 4	930.429	$(17/2^{-})$	Q		
1650.5	$(17/2^+)$	615 ^a	100	1035.465	$(13/2^+)$			
1714.9	$(23/2^{-})$	187.3 ^e 5		1527.7	$(21/2^{-})$			
		688.8 ^{<i>a</i>} 5	100	1026.0	$(19/2^{-})$	Q		Mult.: From (HI, $xn\gamma$).
1728.5	(23/2 ⁻ ,25/2 ⁻)	135.9 ^{<i>a</i>} 5	56 ^{<i>a</i>} 11	1592.6	$(21/2^{-})$	M1+E2	2.0 6	$\alpha(K)=1.3 \ 9; \ \alpha(L)=0.53 \ 19; \ \alpha(M)=0.13 \ 6$ $\alpha(N)=0.032 \ 13; \ \alpha(O)=0.0051 \ 17; \ \alpha(P)=0.00015 \ 11$
		200.8 ^{<i>d</i>} 5	100 ^d 11	1527.7	(21/2 ⁻)	(E2)	0.341 6	$\alpha(K)=0.168 \ 3; \ \alpha(L)=0.1301 \ 23; \ \alpha(M)=0.0330 \ 6 \ \alpha(N)=0.00800 \ 14; \ \alpha(O)=0.001249 \ 22; \ \alpha(P)=1.70\times10^{-5} \ 3 \ \delta; \ From (HLxn\gamma).$
1823.7	(23/2)	231.3 ^e 5		1592.6	$(21/2^{-})$			
		797.4 ^e 5		1026.0	(19/2 ⁻)			
1845.2	(23/2)	819.2 ^e 5	100	1026.0	$(19/2^{-})$	241	1 464 04	
1893.9	(25/2)	165.3° 5		1728.5	(23/2 ,25/2)	MI	1.464 <i>24</i>	$\alpha(K)=1.208\ 20;\ \alpha(L)=0.197\ 4;\ \alpha(M)=0.0454\ 8$ $\alpha(N)=0.01117\ 19;\ \alpha(O)=0.00198\ 4;\ \alpha(P)=0.0001491\ 25$ Mult.: M1 in (HI,xny) for a placement from 25/2 ⁻ to 23/2 ⁻ ,25/2 ⁻ .
		178.9 ^d 5	100	1714.9	(23/2 ⁻)	E2	0.507 9	$\alpha(K)=0.225 4; \alpha(L)=0.212 4; \alpha(M)=0.0541 10$ $\alpha(N)=0.01310 25; \alpha(O)=0.00203 4; \alpha(P)=2.25\times10^{-5} 4$ Mult : From (HL xng)
1944.3	25/227/2-	120.7 ^e .5		1823.7	(23/2)			wom. 110m (111,Any).
171110		215.8 ^e 5		1728.5	$(23/2^{-}, 25/2^{-})$	M1+E2	0.48 22	$\alpha(K)=0.36\ 22;\ \alpha(L)=0.0949\ 23;\ \alpha(M)=0.0229\ 16$ $\alpha(N)=0.0056\ 4;\ \alpha(O)=0.000931\ 16;\ \alpha(P)=4.E-5\ 3$
2052.3	$(27/2^{-})$	158.3 ^e 5		1893.9	$(25/2^{-})$	M1	1.65.3	$\alpha(K) = 1.365 \ 23; \ \alpha(L) = 0.223 \ 4; \ \alpha(M) = 0.0514 \ 9$
	((/			

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}16$

From ENSDF

 $^{193}_{77}\mathrm{Ir}_{116}\text{--}16$

Adopted Levels, Gammas (continued)												
γ ⁽¹⁹³ Ir) (continued)												
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [‡]	$\alpha^{\boldsymbol{h}}$	Comments				
2052.3	(27/2-)	323.9 ^e 5		1728.5	(23/2 ⁻ ,25/2 ⁻)	(E2)	0.0757	$\alpha(N)=0.01263 \ 21; \ \alpha(O)=0.00224 \ 4; \ \alpha(P)=0.000168 \ 3$ Mult.: $\alpha(\exp)=1.60 \ 30 \ (HI,xn\gamma).$ $\alpha(K)=0.0496 \ 8; \ \alpha(L)=0.0198 \ 3; \ \alpha(M)=0.00492 \ 8$ $\alpha(N)=0.001196 \ 18; \ \alpha(O)=0.000192 \ 3; \ \alpha(P)=5.38\times10^{-6} \ 8$ Mult.: $\alpha(\exp)=0.02 \ 12 \ (HI,xn\gamma).$				
2179.0	$(19/2^+)$	719 ^a	100	1459.968	$(15/2)^+$							
2231.7	(29/2+)	337.8 ^e 5		1893.9	(25/2 ⁻)	M2	0.743	$\alpha(K)=0.580 \ 9; \ \alpha(L)=0.1249 \ 19; \ \alpha(M)=0.0299 \ 5$ $\alpha(N)=0.00739 \ 11; \ \alpha(O)=0.001295 \ 20; \ \alpha(P)=9.09\times10^{-5} \ 14$ Mult.: $\alpha(\exp)=0.68 \ 16 \ (HI, xn\gamma).$				
		503.3 ^e 5		1728.5	(23/2 ⁻ ,25/2 ⁻)							
2278.9	31/2+	226.7 ^e 5	41.3 ^e 12	2052.3	(27/2 ⁻)	M2	2.81 5	$\alpha(K)=2.13 \ 4; \ \alpha(L)=0.522 \ 9; \ \alpha(M)=0.1267 \ 21 \ \alpha(N)=0.0314 \ 6; \ \alpha(O)=0.00548 \ 9; \ \alpha(P)=0.000373 \ 6 \ B(M2)(W.u.)\approx0.0051 \ Mult: \ \alpha(exp)=3.30 \ 20 \ (HLxny)$				
		334.5 ^e 5	100.0 ^e 14	1944.3	25/2 ⁻ ,27/2 ⁻	(E3)	0.303	$\alpha(K)=0.1248 \ 19; \ \alpha(L)=0.1335 \ 21; \ \alpha(M)=0.0346 \ 6 \ \alpha(N)=0.00845 \ 14; \ \alpha(O)=0.001329 \ 21; \ \alpha(P)=1.95\times10^{-5} \ 3 \ B(E3)(W.u.)=3.2 \ 9 \ What is \ \alpha(\alpha P)=0.21 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ $				
		385.0 ^e 5	9.4 ^e 11	1893.9	(25/2 ⁻)	[E3]	0.179	$\alpha(K)=0.0863 \ I3; \ \alpha(L)=0.0699 \ I1; \ \alpha(M)=0.0180 \ 3 \\ \alpha(N)=0.00439 \ 7; \ \alpha(O)=0.000696 \ I1; \ \alpha(P)=1.298\times10^{-5} \ I9 \\ B(E3)(W.u.)=0.11 \ 4$				
2404?	$(21/2^+)$	753 ^{ak}	100	1650.5	$(17/2^+)$							

[†] The statistical agreement among different datasets is good. When values are discrepant, branching value from β^- decay and other values are listed. Overall (d,ny) data are less in agreement with other datasets.

[‡] From ¹⁹³Os β^- decay, unless otherwise noted.

[#] From ¹⁹³Os β^- decay.

- ^{*a*} From ¹⁹²Ir(n,γ).
- [&] From ¹⁹³Ir(n,n' γ).

^{*a*} From Coulomb excitation.

^b Weighted average of 80.22 keV 2 (1987Li16 – IT decay) and 80.236 keV 7 (1997Dr04 -(n, γ)).

^c The γ placed from a slightly higher but different state at 849.084 keV, while the levels could be the same as noted in 2006Ac01 (previous evaluation). Based on measurements in 2005Za15, evaluator merged these two levels into one.

^{*d*} From (⁷Li, $\alpha 2n\gamma$).

^{*e*} From (HI,xn γ).

^f Additional information 1.

^g Additional information 2.

^h Additional information 3.

 $\gamma(^{193}$ Ir) (continued)

ⁱ Multiply placed with undivided intensity.
 ^j Multiply placed with intensity suitably divided.
 ^k Placement of transition in the level scheme is uncertain.

 $^{193}_{77}\mathrm{Ir}_{116}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}24$

From ENSDF

 $^{193}_{77}\mathrm{Ir}_{116}\text{-}24$

From ENSDF

¹⁹³₇₇Ir₁₁₆

Band(H): $K^{\pi}=1/2^{-}$, 1/2[530] band (7/2)⁻ 1820

(3/2)- 1759

 $^{193}_{~77}\mathrm{Ir}_{116}$