¹⁹⁴Pt(d,³He) **1981Iw01**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017			

E(d)=50 MeV, $\theta=15^{\circ}$; enriched ¹⁹⁴Pt targets; measured E(level) (mag spect, resolution ≈ 30 keV), differential cross sections, angular distributions; compared results with predictions of supersymmetry model.

¹⁹³Ir Levels

E(level)	$J^{\pi \dagger}$	L [‡]	$C^2S^{\#}$	Comments
0.0	3/2+	2	1.17	
73	$1/2^{+}$	0	0.43	Includes minor component from 80 level $(J^{\pi}=11/2^{-})$.
139	5/2+	2	0.09	• • • • •
180	3/2+	2	0.09	
299	7/2-	3	0.03	
362	5/2+	2	0.25	Includes minor component from 358 level $(J^{\pi}=7/2^+)$.
460	3/2+	2	0.87	
559	$5/2^{+}$	2	1.15	Includes minor component from 557 level $(J^{\pi}=(1/2)^+)$.
621	7/2+	4	0.24	
695	$5/2^{+}$	2	0.31	695 and 712 levels not resolved.
				L: for 695 and 712 levels combined.
				$C^2S=0.52$ if entire cross section is assumed to be for 695 level.
712	$3/2^{+}$	2	$0.30^{@}$	695 and 712 levels not resolved.
/ 12	0/2	-	0.00	L: for 695 and 712 levels combined.
				C^2 S=0.73 if entire cross section is assumed to be for 712 level
849	5/2+	2	0.56	849 and 874 levels not resolved
012	5/2	-	0.00	L C ² S: for 8/0 and 874 levels combined
874	3/2+ 5/2+	2	0.56	See comments with 849 level
964	$1/2^+$	õ	0.41	See comments with 617 level.
707	1/2	0	0.71	

[†] From Adopted Levels.

[‡] From DWBA analysis of angular distributions.

[#] From DWBA analysis, with $C^2S=(2J+1) \times (d\sigma/d\Omega)\exp/(N (d\sigma/d\Omega)(DWBA))$ where N=2.95; uncertainties are large, except for the ±5% attributed to relative values for states corresponding to the same proton single-particle orbital.

[@] If $\sigma(695)/\sigma(712)$ is assumed to be same as in (t,α) .