#### 1975Li16,1978Me11 $Pt(\alpha, xn\gamma)$

| History         |                        |                   |                        |  |  |  |  |  |  |
|-----------------|------------------------|-------------------|------------------------|--|--|--|--|--|--|
| Туре            | Author                 | Citation          | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | M. Shamsuzzoha Basunia | NDS 143, 1 (2017) | 31-Mar-2017            |  |  |  |  |  |  |

1975Li16: <sup>195</sup>Pt( $\alpha$ ,6n $\gamma$ ), E( $\alpha$ )=80 MeV; <sup>196</sup>Pt( $\alpha$ ,7n $\gamma$ ), E( $\alpha$ )=90 MeV; <sup>194</sup>Pt( $\alpha$ ,5n $\gamma$ ), E( $\alpha$ )=65 MeV. Enriched Pt targets. Measured E $\gamma$ , I $\gamma$  (Ge(Li)),  $\gamma\gamma$  coin,  $\gamma\gamma$ (t),  $\gamma$ -ray angular distributions ( $\theta$  from 90° to 165° in 15° steps); used rotation-alignment

model to interpret level structure. Earlier report: 1974Be11.

1978Me11: <sup>192</sup>Pt, <sup>194</sup>Pt, <sup>198</sup>Pt( $\alpha$ , xn $\gamma$ ), E( $\alpha$ )=31-57 MeV. Enriched Pt targets. Measured ce(t).

# <sup>193</sup>Hg Levels

The level scheme is that proposed by 1975Li16.

| E(level) <sup>†</sup>                   | Jπ‡                              | $T_{1/2}^{\#}$ | Comments                                                                      |  |  |
|-----------------------------------------|----------------------------------|----------------|-------------------------------------------------------------------------------|--|--|
| 140.76 <sup>@</sup> 5                   | 13/2(+)                          | 11.8 h 2       | Additional information 1.<br>E(level),T <sub>1/2</sub> : From Adopted Levels. |  |  |
| 522.7 <sup>@</sup> 3                    | $17/2^{+}$                       |                |                                                                               |  |  |
| 747.1 <sup>&amp;</sup> 3                | $15/2^+$                         |                |                                                                               |  |  |
| 1145.0 <sup>@</sup> 4                   | $21/2^+$                         |                |                                                                               |  |  |
| 1380.3 <sup>&amp;</sup> 3               | $19/2^{+}$                       |                |                                                                               |  |  |
| 1523.3 4                                | $19/2^{(+)}$                     |                |                                                                               |  |  |
| 1755.5 <sup>a</sup> 4                   | $21/2^{(-)}$                     |                |                                                                               |  |  |
| 1883.6 <sup>@</sup> 5                   | $25/2^+$                         |                |                                                                               |  |  |
| 1886.0 <sup><i>a</i></sup> 5            | $25/2^{(-)}$                     | 1.58 ns 6      |                                                                               |  |  |
| 1890.3 4                                | $23/2^{(-)}$                     |                |                                                                               |  |  |
| 2095.2 5                                | $27/2^{(-)}$                     |                |                                                                               |  |  |
| 2188.5 <sup>4</sup> 6                   | 29/2(-)                          |                |                                                                               |  |  |
| 2501.3 ° 6                              | $29/2^+$                         |                |                                                                               |  |  |
| 2582.70                                 | $31/2^{(-)}$                     | 572 30         |                                                                               |  |  |
| 2694.5 /                                | $\frac{33}{2}$                   | 5/3 ps 30      |                                                                               |  |  |
| $2/01.4^{-7}$                           | 27/2<br>27/2+                    |                |                                                                               |  |  |
| 31/5.2 7                                | $\frac{31}{2}$<br>$\frac{35}{2}$ |                |                                                                               |  |  |
| 3222.37<br>3496 1 <sup><i>a</i></sup> 7 | $37/2^{(-)}$                     |                |                                                                               |  |  |
| 3879.6 <sup>@</sup> 8                   | $\frac{31/2}{41/2^+}$            |                |                                                                               |  |  |
| 3882.1.7                                | $\frac{71/2}{39/2^{(-)}}$        |                |                                                                               |  |  |
| 5002.17                                 | 5712                             |                |                                                                               |  |  |

<sup>†</sup> From least-squares fit to  $\gamma$ -ray energies, except otherwise noted.

<sup>‡</sup> From 1975Li16, based on multipolarities of transitions and fits of coincident  $\gamma$  rays into an interconnected set of rotational bands.

<sup>#</sup> ce(t) (1978Me11), except otherwise noted.

<sup>@</sup> Member of i13/2 favored decoupled band.

& Member of i13/2 unfavored decoupled band.

<sup>*a*</sup> Member of  $\pi$ =– side band 1.

# **Pt**(*α*,**xn***γ*) **1975Li16,1978Me11** (continued)

 $\gamma(^{193}\text{Hg})$ 

All  $\gamma$  data are from 1975Li16.

| Eγ             | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | $\delta^{\dagger}$ | $I_{(\gamma+ce)}$ ‡ | Comments                                                                                                                                                              |
|----------------|---------------|----------------------|------------------|----------------------|--------------------|--------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130.5 3        | 1886.0        | $25/2^{(-)}$         | 1755.5           | $21/2^{(-)}$         | E2                 |                    | 37 8                | Mult.: $A_2 = +0.28 \ 2$ , $A_4 = -0.05 \ 3$ .                                                                                                                        |
| 134.6 <i>3</i> | 1890.3        | 23/2(-)              | 1755.5           | 21/2 <sup>(-)</sup>  | (D+Q)              |                    | 8 4                 | Mult.: $A_2 = -0.02 \ 10$ , $A_4 = +0.14 \ 15$ ; contains<br>contribution of contaminating 133.0 keV line<br>in <sup>192</sup> Hg.                                    |
| 193.2 <i>3</i> | 2694.5        | $33/2^{+}$           | 2501.3           | $29/2^{+}$           | E2                 |                    | 28 5                | Mult.: $A_2 = +0.26 2$ , $A_4 = -0.07 3$ .                                                                                                                            |
| 204.9 3        | 2095.2        | $27/2^{(-)}$         | 1890.3           | $23/2^{(-)}$         | E2                 |                    | 20 6                | Mult.: $A_2 = +0.32 2$ , $A_4 = -0.07 3$ .                                                                                                                            |
| 232.2 3        | 1755.5        | $21/2^{(-)}$         | 1523.3           | $19/2^{(+)}$         | (D)                |                    | 11 6                | Mult.: $A_2 = -0.33 8$ , $A_4 = +0.06 12$ .                                                                                                                           |
|                |               |                      |                  |                      |                    |                    |                     | $I_{(\gamma+ce)}$ : includes contribution from 232.8 $\gamma$ in <sup>194</sup> Hg.                                                                                   |
| 302.5 3        | 2188.5        | $29/2^{(-)}$         | 1886.0           | $25/2^{(-)}$         | E2                 |                    | 23 4                | Mult.: $A_2 = +0.31 2$ , $A_4 = -0.04 3$ .                                                                                                                            |
| 375.2 <i>3</i> | 1755.5        | $21/2^{(-)}$         | 1380.3           | $19/2^{+}$           | (D)                |                    | 20 5                | Mult.: $A_2 = -0.22 2$ , $A_4 = -0.01 3$ .                                                                                                                            |
| 382.0 <i>3</i> | 522.7         | $17/2^{+}$           | 140.76           | $13/2^{(+)}$         | E2                 |                    | 100 8               | Mult.: $A_2 = +0.29 2$ , $A_4 = -0.05 3$ .                                                                                                                            |
| 480.7 <i>3</i> | 3175.2        | $37/2^+$             | 2694.5           | $33/2^{+}$           | E2                 |                    | 23 5                | Mult.: $A_2 = +0.32 \ 3$ , $A_4 = -0.08 \ 4$ .                                                                                                                        |
| 487.5 <i>3</i> | 2582.7        | $31/2^{(-)}$         | 2095.2           | $27/2^{(-)}$         | E2                 |                    | 12 5                | Mult.: $A_2 = +0.37 4$ , $A_4 = -0.10 5$ .                                                                                                                            |
| 572.9 <i>3</i> | 2761.4        | 33/2 <sup>(-)</sup>  | 2188.5           | 29/2 <sup>(-)</sup>  | E2                 |                    | 19 5                | Mult.: $A_2$ =+0.15 3, $A_4$ =-0.08 4; contains contribution from contaminating line.                                                                                 |
| 606.3 <i>3</i> | 747.1         | 15/2+                | 140.76           | 13/2 <sup>(+)</sup>  | D+Q                |                    | 94                  | Mult., $\delta$ : A <sub>2</sub> =-0.74 5, A <sub>4</sub> =+0.15 7; A <sub>2</sub> does<br>not agree with A <sub>2</sub> measured in (HI,xn $\gamma$ )<br>experiment. |
| 617.7 <i>3</i> | 2501.3        | 29/2+                | 1883.6           | $25/2^{+}$           | E2                 |                    | 26 4                | Mult.: $A_2 = +0.34 \ 3$ , $A_4 = -0.07 \ 4$ .                                                                                                                        |
| 622.4 <i>3</i> | 1145.0        | $21/2^{+}$           | 522.7            | $17/2^{+}$           | E2                 |                    | 61 5                | Mult.: $A_2 = +0.29 2$ , $A_4 = -0.05 3$ .                                                                                                                            |
| 633.1 <i>3</i> | 1380.3        | $19/2^{+}$           | 747.1            | $15/2^{+}$           | E2                 |                    | 10 4                | Mult.: $A_1 = +0.38 6$ , $A_4 = -0.04 9$ .                                                                                                                            |
|                |               |                      |                  |                      |                    |                    |                     | $I_{(\gamma+ce)}$ : includes contributions from 633.1 $\gamma$ and 634.8 $\gamma$ in <sup>192</sup> Hg.                                                               |
| 639.6 <i>3</i> | 3222.3        | $35/2^{(-)}$         | 2582.7           | $31/2^{(-)}$         | E2                 |                    | 11 4                | Mult.: $A_2 = +0.35 6$ , $A_4 = +0.02 9$ .                                                                                                                            |
| 659.8 <i>3</i> | 3882.1        | $39/2^{(-)}$         | 3222.3           | $35/2^{(-)}$         | E2                 |                    | 73                  | Mult.: A <sub>2</sub> =+0.39 7, A <sub>4</sub> =-0.09 10.                                                                                                             |
| 704.4 <i>3</i> | 3879.6        | $41/2^{+}$           | 3175.2           | $37/2^+$             | E2                 |                    | 63                  | Mult.: $A_2 = +0.36$ 7, $A_4 = -0.08$ 10.                                                                                                                             |
| 734.7 <i>3</i> | 3496.1        | $37/2^{(-)}$         | 2761.4           | $33/2^{(-)}$         | E2                 |                    | 11 4                | Mult.: $A_2 = +0.28 4$ , $A_4 = -0.04 6$ .                                                                                                                            |
| 738.6 <i>3</i> | 1883.6        | $25/2^+$             | 1145.0           | $21/2^+$             | E2                 |                    | 39 4                | Mult.: $A_2 = +0.32 \ 2$ , $A_4 = -0.05 \ 3$ .                                                                                                                        |
| 745.4 3        | 1890.3        | $23/2^{(-)}$         | 1145.0           | 21/2+                | (D)                |                    | 16 8                | Mult.: $A_2 = -0.23 \ 6$ , $A_4 = +0.01 \ 8$ ; $\gamma(\theta)$ from $^{194}\text{Pt}(\alpha,5n\gamma)$ at 65 MeV.                                                    |
|                |               |                      |                  |                      |                    |                    |                     | $I_{(\gamma+ce)}$ : includes contribution from 745.4 $\gamma$ in <sup>192</sup> Hg.                                                                                   |
| 857.5 <i>3</i> | 1380.3        | $19/2^{+}$           | 522.7            | $17/2^{+}$           | D+Q                | 0.33 6             | 14 <i>3</i>         | Mult., $\delta$ : A <sub>2</sub> =-0.76 4, A <sub>4</sub> =+0.15 6.                                                                                                   |
| 1000.5 3       | 1523.3        | $19/2^{(+)}$         | 522.7            | $17/2^{+}$           | (D+Q)              |                    | 9 <i>3</i>          | Mult.: $A_2 = -0.16 \ 12$ , $A_4 = +0.16 \ 18$ .                                                                                                                      |

<sup>†</sup> From  $\gamma$ -ray angular distributions; stretched E2 assignments were based on large positive A<sub>2</sub>. 1975Li16 assume probable E1 to pure dipole transitions, and M1+E2 to D+Q transitions, however, evaluator list those as D and D+Q.

<sup>‡</sup> From 1975Li16 – relative to  $I(\gamma+ce)=100$  for 382.0 $\gamma$ .

## **Pt**(*α*,**xn***γ*) **1975Li16,1978Me11**

## Level Scheme

