¹⁹³Hg ε decay (3.80 h) 1974ViZS

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 143, 1 (2017)	31-Mar-2017

Parent: ¹⁹³Hg: E=0.0; $J^{\pi}=3/2^-$; $T_{1/2}=3.80$ h 15; $Q(\varepsilon)=2343$ 14; $\%\varepsilon+\%\beta^+$ decay=100.0

Sources from (p,xn) reactions on gold, E(p)=70, 80 MeV, isotope separation; measured Ey, Iy, E(ce), Ice, (Ge(Li), Si(Li)

(FWHM=1.2-2.5 keV), mag spect (resolution=0.1%)), $E\beta$ +, $I\beta$ ⁺ (mag spect), $\gamma\gamma$ coin.

Other studies of ¹⁹³Hg decays: 1976Di15, 1976ViZM, 1975Zg01, 1970Fo08, 1970Pi01, 1962Di05, 1958Br88, 1955Br12, 1954Gi04. 1974ViZS studied 1) freshly prepared Hg sources to measure the decay curves of the transitions, and 2) Hg sources which had reached transient equilibrium (40 to 100 hours after preparation). In the first case distinction could be made between transitions following the decay of ¹⁹³Hg (3.80 h) and ¹⁹³Hg (11.8 h). In the second case the relative intensities of transitions in both decays could be measured since in the metastable state ¹⁹³Hg (11.8 h) decays to the ground state ¹⁹³Hg (3.80 h) with %IT=7.2, and all transitions now decay with a T_{1/2}=11.8 h.

¹⁹³Au Levels

The decay scheme is from 1974ViZS and is constructed from transitions showing a 3.80 h component in the pre-equilibrium sources of ¹⁹³Hg. For high energy levels fed directly by ε decay, the entire γ intensity is assigned to this decay. For the medium levels, which are not directly fed by $\varepsilon + \beta^+$ but are fed by γ' s from both ¹⁹³Hg decays, the intensity of the deexciting transitions is divided according to the feeding.

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	3/2+	17.65 h 15	
38.245 23	$(1/2)^+$	3.81 ns 18	$T_{1/2}$: from (ce(K)(186.56 γ))(ce(L)(38.22 γ))t (1970Fo08); other: 4.2 ns 6 (γ (ce)(t) 1962Ja04).
224.81 <i>3</i>	$(3/2)^+$	<0.03 ns	$T_{1/2}$: from γ (ce(K) 187)(t) (1970Fo08).
257.99 <i>3</i>	5/2+	45 ps 20	-,- ,
290.20 4	$11/2^{-}$	3.9 s <i>3</i>	
381.61 4	5/2+		
508.26 5	7/2-	0.29 ns 2	
539.00? [#] 4			
827.67 14	$(1/2^+, 3/2^+)$		
1089.25 10			
1118.97 12	$(3/2)^+$		
1603.15 19	$(3/2^{-}, 5/2^{+})$		
1658.0 <i>3</i>	$1/2^{(+)}$ to $5/2^{(+)}$		
1815.1 <i>3</i>	$(1/2,3/2),(5/2)^+$		
1861.92 <i>21</i>	$(1/2, 3/2, 5/2^+)$		
2014.73 25			
2043.3 3	1/2,3/2,5/2		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

[#] This level is only fed by the 289.0 γ from the 827.7 level. However, since the 827.7 level is seen only in this decay, and the 539.0 level is seen only in the ¹⁹³Hg (11.8 h) decay it is not clear to which decay the 289.0 γ belongs, or whether the placement of the γ is correct.

¹⁹³Hg ε decay (3.80 h) 1974ViZS (continued)

ε, β^+ radiations

- The study of β^+ spectrum shows only one major β^+ group with $E(\beta^+)=1287$ 15 (1974ViZS,1976Di15). From the intensity balance in the level scheme shown (Σ Ti(to ¹⁹³Au g.s.) – Ti(¹⁹³Hg IT decay) \approx 0) 1974ViZS has deduced that this β^+ group does not go directly to ¹⁹³Au g.s. From intensity balance in the level scheme it appears that the group feeds the 224.8 level, resulting in Q+=2534 15. 2017Wa10 evaluation of atomic masses adopted Q+=2343 14, corresponding to feeding both the ground and first excited states, and was adopted in this evaluation.
- The fact that there is no significant direct $\varepsilon + \beta^+$ decay from the $3/2^{-193}$ Hg to the $3/2^+$ g.s. and $1/2^+$ level in ¹⁹³Au seems surprising. However, no systematics for these transitions has been established. In $\alpha = 189$ and $\alpha = 191$ the log ft's for these transitions have not been measured. In $\alpha = 195$ and $\alpha = 197$ J^{π}(Hg)= $1/2^-$ and the log ft's for the transitions to the $3/2^+$ Au g.s. are 7.3 and ≥ 8.0 .

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	Ιε [‡]	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(300 14)	2043.3		1.6 4	6.12 13	1.6 4	εK=0.723 7; εL=0.206 5; εM+=0.0706 19
(328 14)	2014.73		2.1 5	6.10 12	2.1 5	εK=0.735 6; εL=0.198 4; εM+=0.0675 15
(481 14)	1861.92		4.0 6	6.22 8	4.0 6	εK=0.7670 19; εL=0.1748 14; εM+=0.0582 6
(528 14)	1815.1		3.4 7	6.39 10	3.4 7	εK=0.7725 16; εL=0.1708 11; εM+=0.0567 5
(685 14)	1658.0		2.6 6	6.76 11	2.6 6	εK=0.7847 9; εL=0.1620 6; εM+=0.05324 23
(740 14)	1603.15		3.6 6	6.69 8	3.6 6	εK=0.7876; εL=0.1600 5; εM+=0.05243 20
(1224 14)	1118.97		24 <i>3</i>	6.34 6	24 3	εK=0.8010; εL=0.15030 17; εM+=0.04869 7
(1254 14)	1089.25		3.2 21	7.2 3	3.2 21	εK=0.8014; εL=0.14997 16; εM+=0.04856 6
(1515 14)	827.67	0.0072 14	9.2 13	6.95 7	9.2 13	av E β =243 7; ε K=0.8041; ε L=0.1475; ε M+=0.04763
(1961 14)	381.61	0.12 6	13 6	7.03 21	13 6	av E β =440 7; ε K=0.8006; ε L=0.1438; ε M+=0.04628
(2118 14)	224.81	0.56 7	34 4	6.68 6	35 4	av E β =508 7; ε K=0.7960; ε L=0.14225 16;
						<i>ε</i> M+=0.04573 <i>6</i>
						E(decay): $E(\beta^+)=1287 \ 15$
						(1974ViZS,1976Di15,1976DiZM).
(2305 14)	38.245	<0.41	<15	>7.1	<15	av $E\beta$ =590 7; ε K=0.7878; ε L=0.14005 19;

[†] From intensity balance in the level scheme.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{193}\mathrm{Au})$

I γ normalization: From Σ Ti(to ¹⁹³Au g.s.)=100, assuming no g.s. feeding. Deduced value of I γ normalization=6.7 7 is in good agreement with the I γ normalization=6.8 obtained by applying the half-life correction to the equilibrium counting rate of 100 disintegrations of ¹⁹³Hg (11.8 h). All data are from 1974ViZS, unless otherwise noted. The transitions listed showed a 3.80 h component in the pre-equilibrium sources.

Eγ	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{\ddagger e}$	α^{d}	$I_{(\gamma+ce)}f$	Comments
32.21 3		290.20	11/2-	257.99	5/2+	E3		9.29×10 ⁴	0.5 2	$\begin{array}{l} {\rm ce(L)}/(\gamma+{\rm ce})=0.699 \ 9; \ {\rm ce(M)}/(\gamma+{\rm ce})=0.232 \ 5\\ {\rm ce(N)}/(\gamma+{\rm ce})=0.0592 \ 13; \\ {\rm ce(O)}/(\gamma+{\rm ce})=0.00907 \ 20; \\ {\rm ce(P)}/(\gamma+{\rm ce})=7.33\times10^{-6} \ 16\\ \alpha({\rm L})=6.50\times10^4 \ 10; \ \alpha({\rm M})=2.16\times10^4 \ 4\\ \alpha({\rm N})=5.50\times10^3 \ 9; \ \alpha({\rm O})=843 \ 13; \ \alpha({\rm P})=0.681\\ 10 \end{array}$
38.24 <i>3</i>		38.245	(1/2)+	0.0	3/2+	M1+E2	0.42 +5-4	88 <i>14</i>	7.7 10	$I_{(γ+ce)}: From Ti(32.21γ)=Ti(218.07γ).$ Mult.: see ¹⁹³ Hg (11.8 h) decay. ce(L)/(γ+ce)=0.75 9; ce(M)/(γ+ce)=0.19 4 ce(N)/(γ+ce)=0.046 10; ce(O)/(γ+ce)=0.0076 17; ce(P)/(γ+ce)=0.000119 19 α(L)=67 11; α(M)=17 3 α(N)=4.1 7; α(O)=0.68 11; α(P)=0.0106 4 Mult.: L1:L2:L3=205 12: 320 20: 330 20; M1:M2:M3=43 5: 85 9: 95 9. δ: from L1/L3=0.50 10, weighted average from 1974ViZS and 1970Fo08 (¹⁹³ Au IT decay). I _(γ+ce) : Ti(from equilibrium source) – Ti(attributed to ¹⁹³ Hg(11.8 h) decay).
126.56 10	0.008 [@] 4	508.26	7/2-	381.61	5/2+	(E1)		0.229		$\alpha(y+ce) = 2 \ rce + 1y = 11.7 \ s.$ $\% I\gamma = 0.05 \ 3$ $\alpha(K) = 0.185 \ 3; \ \alpha(L) = 0.0336 \ 5; \ \alpha(M) = 0.00781$ II $\alpha(N) = 0.00191 \ 3; \ \alpha(O) = 0.000332 \ 5;$ $\alpha(P) = 1.574 \times 10^{-5} \ 23$
186.56 3		224.81	(3/2)+	38.245	(1/2)+	M1+E2	0.26 5	1.186 25	4.9 <i>4</i>	Mult.: from ¹⁹³ Hg (11.8 h) decay. ce(K)/(γ +ce)=0.440 7; ce(L)/(γ +ce)=0.0784 <i>14</i> ; ce(M)/(γ +ce)=0.0183 4 ce(N)/(γ +ce)=0.00456 9; ce(O)/(γ +ce)=0.000831 <i>16</i> ; ce(P)/(γ +ce)=5.26×10 ⁻⁵ <i>15</i> α (K)=0.963 24; α (L)=0.171 3; α (M)=0.0401 7

					¹⁹³ Hg	ε decay (3.8	0 h) 1974	ViZS (contin	nued)
						$\gamma(^{193}$	Au) (continu	ed)	
Eγ	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger e}$	α^{d}	Comments
									$\begin{array}{l} \alpha(\mathrm{N}) = 0.00997 \ 17; \ \alpha(\mathrm{O}) = 0.00182 \ 3; \ \alpha(\mathrm{P}) = 0.000115 \ 3\\ \mathrm{Mult.}\delta: \ \mathrm{L1:L2:L3} = 31 \ 3: \ 4.5 \ 5: \ 1.1 \ 2, \ \mathrm{K/L} = 6.0 \ 7.\\ \mathrm{I}_{(\gamma+ce)}: \ \Sigma \ \mathrm{Ice} + \ \mathrm{I}\gamma; \ \mathrm{I}\gamma = 2.22 \ 21 \ \mathrm{deduced \ from} \\ \mathrm{Ice}(\mathrm{K}) = 2.20 \ 15 \ \mathrm{and} \ \alpha(\mathrm{K}) = 0.99 \ 2. \end{array}$
218.07 4	0.4 [@] 1	508.26	7/2-	290.20	11/2-	E2		0.280	%Iγ=2.7 8 α (K)=0.1370 20; α (L)=0.1073 15; α (M)=0.0274 4 α (N)=0.00677 10; α (O)=0.001111 16; α (P)=1.411×10 ⁻⁵ 20 Mult.: from ¹⁹³ Hg (11.8 h) decay.
219.75 4	0.07 [#] 2	257.99	5/2+	38.245	(1/2)+	E2		0.273	%I γ =0.47 15 α (K)=0.1344 19; α (L)=0.1039 15; α (M)=0.0266 4 α (N)=0.00655 10; α (O)=0.001076 15; α (P)=1.385×10 ⁻⁵ 20 Mult.: see ¹⁹³ Hg (11.8 h) decay.
224.81 4	0.15 3	224.81	(3/2)+	0.0	3/2+	(E2)		0.253	%Iy=1.01 23 α (K)=0.1270 18; α (L)=0.0946 14; α (M)=0.0242 4 α (N)=0.00596 9; α (O)=0.000980 14; α (P)=1.312×10 ⁻⁵ 19 I ₂ : other: Iy(224.8y)/Iy(185.6y)<0.052 (1970F008).
258.00 4	1.3 [#] 3	257.99	5/2+	0.0	3/2+	M1+E2	0.62 4	0.407 11	%I γ =8.7 20 α (K)=0.323 10; α (L)=0.0645 10; α (M)=0.01528 22 α (N)=0.00380 6; α (O)=0.000681 11; α (P)=3.81×10 ⁻⁵ 12 Mult δ : from ¹⁹³ Hg (11.8 h) decay
289.0 ^h	0.16 8	827.67	(1/2+,3/2+)	539.00?					%I γ =1.1 6 I $_{\gamma}$: estimated from coincidence data. It is not clear whether this γ belongs in this decay or the ¹⁹³ Hg (11.8 h) decay. See comment with the 539.0 level. 2014Th02 (p,2n γ) do not support this placement. Not adopted by evaluator
381.60 4	2.3 7	381.61	5/2+	0.0	3/2+	M1+E2	1.2 +5-3	0.102 <i>19</i>	%I _γ =15 5 α(K)=0.079 17; $α(L)=0.0171$ 17; $α(M)=0.0041$ 4 $α(N)=0.00102$ 9; $α(O)=0.000180$ 18; $α(P)=9.2\times10^{-6}$ 20 I _γ : from I _γ =3.1 6 in equilibrium source less I _γ =0.8 2 attributed to ¹⁹³ Hg (11.8 h) decay. Mult δ: $α(K)=x_0=0.081$ 14 K/L 1=5.7 10
^x 429.51 ^c 5						(M1+E2)		0.08 5	$\alpha(K)=0.07 \ 4; \ \alpha(L)=0.013 \ 5; \ \alpha(M)=0.0030 \ 10$ $\alpha(N)=0.00075 \ 23; \ \alpha(O)=0.00014 \ 5; \ \alpha(P)=8.E-6 \ 5$ Mult.: $\alpha(K)\exp=0.046 \ 12;$ theory: $\alpha(K)(M1)=0.072, \ \alpha(K)(E2)=0.024.$
446.5 5 *567.2 <mark>%</mark> 5	0.10 3	827.67	$(1/2^+, 3/2^+)$	381.61	5/2+				%Iy=0.67 22 %Iy=0.047 21
580.97 8	0.63	1089.25		508.26	7/2-				$\%_{I} = 0.07721$ $\%_{I} = 4.021$ Multi- $\%_{I} = 0.010.7$
789.21 20	0.65 13	827.67	(1/2+,3/2+)	38.245	$(1/2)^+$	(M1)		0.0258	% $I_{\gamma}=4.4 \ I0$ $\alpha(K)=0.0214 \ 3; \ \alpha(L)=0.00343 \ 5; \ \alpha(M)=0.000792 \ 11$

4

From ENSDF

 $^{193}_{79}\mathrm{Au}_{114}\text{-}4$

L

 $^{193}_{79}\mathrm{Au}_{114}\text{-}4$

				¹⁹³ Hg	ε decay	(3.80 h)	1974ViZS ((continued)	
						γ(¹⁹³ Au) (c	ontinued)		
E_{γ}	$_{\mathrm{I}_{\gamma}}^{\dagger}f$	E _i (level)	J_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger e}$	α^d	Comments
827.81 20	0.57 10	827.67	(1/2+,3/2+)	0.0	3/2+	(E2)		0.00840	$\alpha(N)=0.000197 \ 3; \ \alpha(O)=3.63\times10^{-5} \ 5; \\ \alpha(P)=2.49\times10^{-6} \ 4 \\ Mult.: \ \alpha(K)exp=0.017 \ 5. \\ \%I\gamma=3.8 \ 8 \\ \alpha(K)=0.00667 \ 10; \ \alpha(L)=0.001328 \ 19; \\ \alpha(M)=0.000315 \ 5 \\ \end{array}$
861.11 <i>17</i>	1.8 <i>3</i>	1118.97	(3/2)+	257.99	5/2+	M1+E2	+1.33 40	0.0124 23	$\alpha(N)=7.81\times10^{-5} 11; \ \alpha(O)=1.394\times10^{-5} 20; \alpha(P)=7.39\times10^{-7} 11 Mult.: \ \alpha(K)exp=0.0068 20. \%I\gamma=12.1 24 \alpha(K)=0.0101 20; \ \alpha(L)=0.0018 3; \ \alpha(M)=0.00041 6 \alpha(N)=0.000102 16; \ \alpha(O)=1.9\times10^{-5} 3; \alpha(P)=1.15\times10^{-6} 23 Multiple and a statement of the s$
^x 920.0 4	0.11 3								Mult.: From Adopted Gammas. α (K)exp=0.0061 16, K/L12=6.1 13 (1974ViZS); Theory: α (K)(E2)=0.00618 9, K/L12=5.49 11; α (K)(M1+E2, δ =1.33 40)=0.0101 20, K/L12=5.8 12. %I γ =0.74 22
953.7 4 x1040 5 <mark>4</mark> 6	0.14 4	2043.3	1/2,3/2,5/2	1089.25					%Iy=0.9 3 %Iy=2.2.6
1040.5 0	0.53 8	1118.97	(3/2)+	38.245	$(1/2)^+$				$\% I \gamma = 2.2 \text{ o}$ $\% I \gamma = 3.6 \text{ 7}$
1094.5 <i>4</i> 1118.84 <i>17</i>	0.080 <i>24</i> 1.16 <i>17</i>	1603.15 1118.97	$(3/2^{-}, 5/2^{+})$ $(3/2)^{+}$	508.26 0.0	$7/2^{-}$ $3/2^{+}$	(E2)		0.00462	$\%$ I γ =0.54 17 $\%$ I γ =7.8 14
1221-1-5	0.020.12	1602.15	(2)2-5(2+)	291 (1	5/0+				$\alpha(\dot{\mathbf{K}})=0.00375\ 6;\ \alpha(\mathbf{L})=0.000663\ 10;\ \alpha(\mathbf{M})=0.0001549\ 22$ $\alpha(\mathbf{N})=3.85\times10^{-5}\ 6;\ \alpha(\mathbf{O})=6.95\times10^{-6}\ 10;\ \alpha(\mathbf{P})=4.13\times10^{-7}\ 6;\ \alpha(\mathbf{IPF})=3.60\times10^{-7}\ 6$ Mult.: $\alpha(\mathbf{K})$ exp=0.0049\ 12.
1221.1 5 1276.38 ^b 25	0.039 12	1658.0	(5/2, 5/2) $1/2^{(+)}$ to $5/2^{(+)}$	381.61	5/2 ⁺	(E2)		0.00360	$\%_{I\gamma}=0.26 \text{ g}$ $\%_{I\gamma}=2.5 \text{ 6}$ $\alpha(\text{K})=0.00294 \text{ 5}; \alpha(\text{L})=0.000499 \text{ 7};$ $\alpha(\text{M})=0.0001162 17$ $\alpha(\text{N})=2.89\times10^{-5} 4; \alpha(\text{O})=5.24\times10^{-6} 8;$ $\alpha(\text{P})=3.23\times10^{-7} 5; \alpha(\text{IPF})=1.285\times10^{-5} 19$
1378.5 <i>4</i> 1565.0 <i>6</i> 1603.4 ^g <i>3</i>	$\begin{array}{c} 0.085 \ 25 \\ 0.016 \ 8 \\ 0.30^{g} \ 6 \end{array}$	1603.15 1603.15 1603.15	$(3/2^-, 5/2^+)$ $(3/2^-, 5/2^+)$ $(3/2^-, 5/2^+)$	224.81 38.245 0.0	$(3/2)^+$ $(1/2)^+$ $3/2^+$				Mult: $\alpha(K)\exp=0.0036$ 13. %I $\gamma=0.57$ 18 %I $\gamma=0.11$ 6 %I $\gamma=2.0$ 5
1603.4 ^g 3 1662.1 4	0.30 ^g 6 0.087 22	1861.92 2043.3	(1/2,3/2,5/2 ⁺) 1/2,3/2,5/2	257.99 381.61	5/2+ 5/2+				Mult.: $a'(K)exp=0.0026$ 10. %Iγ=2.0 5 %Iγ=0.58 16

S

 $^{193}_{79}\mathrm{Au}_{114}$ -5

L

					¹⁹³ Hg ε	decay (3.80 h)	1974ViZS (continued)	
						γ ⁽¹⁹³ Au) (c	continued)	
Eγ	$_{\mathrm{I}_{\gamma}}^{\dagger f}$	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π			Comments
1756.7 5 1776.4 4 1815.6 4 1824.3 4 1862.2 4 1976.6 4 2014.6 4	0.045 <i>14</i> 0.12 <i>3</i> 0.37 9 0.075 <i>22</i> 0.21 <i>4</i> 0.25 <i>6</i> 0.008 <i>2</i>	2014.73 1815.1 1815.1 1861.92 1861.92 2014.73 2014.73	$(1/2,3/2),(5/2)^+ (1/2,3/2),(5/2)^+ (1/2,3/2,5/2^+) (1/2,3/2,5/2^+) (1/2,3/2,5/2^+)$	257.99 38.245 0.0 38.245 0.0 38.245 0.0 38.245 0.0	$ \overline{5/2^{+}} (1/2)^{+} 3/2^{+} (1/2)^{+} 3/2^{+} (1/2)^{+} 3/2^{+} (1/2)^{+} 3/2^{+} $	%Iy=0.30 10 %Iy=0.80 22 %Iy=2.5 7 %Iy=0.50 16 %Iy=1.4 3 %Iy=1.7 5 %Iy=0.054 15		

[†] Intensity determined in the ¹⁹³Hg (11.8 h) source in equilibrium with the ¹⁹³Hg (3.80 h) decay. Intensity per 100 disintegrations of ¹⁹³Hg (11.8 h). Applying the half-life correction for transient equilibrium, the intensity is per 148 ¹⁹³Au (3.80 h) decays.

[‡] From $\alpha(K)$ exp and/or ce subshell ratios, except where noted. The photon and ce intensity scales were normalized through the theoretical $\alpha(K)$ of 218.07, 219.75, 573.25 and 932.37 transitions (1974ViZS).

[#] From the decay scheme of 1974ViZS 2.3% of the decay from the 258 level follows decay from levels seen in ¹⁹³Hg (3.80 h) g.s., 98% follows decay from ¹⁹³Hg (11.8 h) isomer. From intensity balance there is no direct ε feeding to this level.

^(a) I γ divided on the basis of feeding from high levels as shown on the level scheme. From intensity balance there is no direct ε feeding. For the 508.23 level 7% of decay is from 3.80 h decay, 93% from 11.8 h decay.

[&] γ belongs in this decay from composite T_{1/2}. Placed from the 2043 level by 1974ViZS feeding the 1477 level where the deexciting γ shows no composite T_{1/2}. However, this γ is weak and would contribute only \approx 10% or less to the deexciting G. Possible spin assignments for these levels – make the placement unlikely. The list as unplaced.

^{*a*} Multiply placed γ by 1974ViZS in composite level scheme. γ placed from the 2043 level to a 1004 level in ¹⁹³Hg(3.80 h) decay. However, the multiply placed 746.11 γ from the 1004 level is weaker than the 1040 γ and is not shown as possessing a composite T_{1/2}.

^b γ shows composite T_{1/2}. Placement here supported by $\gamma\gamma$ results. 1974ViZS also shows the γ from the 2139 level in the ¹⁹³Hg(11.8 h) decay with no $\gamma\gamma$ support for that placement. The evaluator has included total I γ in this decay.

 $c \gamma$ is shown as exhibiting composite T_{1/2} in pre-equilibrium source, but appears to be in coincidence only with γ 's from ¹⁹³Hg(11.8 h) decay.

^{*d*} Additional information 1.

6

^e If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^f For absolute intensity per 100 decays, multiply by 6.7 7.

^{*g*} Multiply placed with undivided intensity.

^{*h*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{193}_{79}\mathrm{Au}_{114}\text{-}6$

¹⁹³Hg ε decay (3.80 h) 1974ViZS

