¹⁹²Ta β⁻ decay **2009A130**

Type Author Citation Literature Cutoff Date

Full Evaluation Coral M. Baglin NDS 113, 1871 (2012) 15-Jun-2012

Parent: 192 Ta: E=0.0; J^{π} =(1,2); $T_{1/2}$ =2.2 s 7; $Q(\beta^{-})$ =6540 SY; $\%\beta^{-}$ decay=100.0

2009Al30: 192 Ta produced following projectile fragmentation of a 1 GeV/nucleon 208 Pb beam striking a natural Be target; residues separated and identified event by event using GSI fragment separator operated In monochromatic mode with Al wedge degrader; ions implanted into RISING active stopper (a series of double-sided Si strip detectors); γ spectrometer array (15 seven-element Ge cluster detectors); two multi-wire proportional counters for position measurement; two scintillators for time of flight and position information; two scintillators and MUSIC ionization chamber for energy loss measurements; particle identification; measured E γ , I γ , fragment- β - γ correlations, I β , parent T_{1/2}; total routhian surface calculations.

192W Levels

$$\frac{\text{E(level)}^{\dagger}}{0.0}$$
 $\frac{\text{J}^{\pi \ddagger}}{0^{+}}$ 219 $[2^{+}]$

β^- radiations

E(decay)	E(level)	Comments
(6321 <i>SY</i>)	219	av E β =3023.44 calc
		Log ft : ≤ 5.9 if Q(β^-)=6540 840 (from systematics) and %I $\beta \geq 40$.
$(6540^{\dagger} SY)$	0.0	$I\beta^-$: based on a comparison of the number of implants and associated $\beta\gamma$ coincidence events, 2009Al30
		find No strong evidence for direct β - feeding of the ¹⁹² W g.s., but cannot rule out such a branch.

[†] Existence of this branch is questionable.

$$\frac{\gamma^{(192\text{W})}}{219} = \frac{I_{\gamma}}{100 \ 26} = \frac{I_{\gamma}}{219} = \frac{I_{\gamma}}{[2^{+}]} = \frac{I_{f}}{0.0} = \frac{J_{f}^{\pi}}{0.0} = \frac{\text{Mult.}^{\ddagger}}{[E2]} = \frac{\alpha^{\#}}{0.228} = \frac{\text{Comments}}{\alpha(\text{K}) = 0.1322 \ 19; \ \alpha(\text{L}) = 0.0729 \ 11; \ \alpha(\text{M}) = 0.0181 \ 3;}{\alpha(\text{N}+...) = 0.00490 \ 7}$$

 $\alpha(N)=0.00428$ 6; $\alpha(O)=0.000607$ 9; $\alpha(P)=1.065\times10^{-5}$ 15

¹⁹²Ta-Uncertainty In Q(β ⁻) is 840 keV (2011AuZZ).

¹⁹²Ta-E: Ions presumed to be In g.s.

 $^{^{192}}$ Ta- $T_{1/2}$: From decay-time spectra of delayed events associated with 192 Re Ta $^{219}\gamma$ -gated.

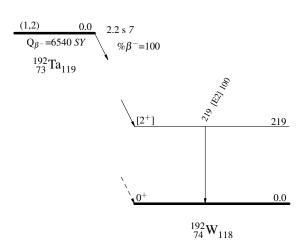
¹⁹²Ta-J^{π}: Absence of evidence for a 4⁺ to 2⁺ γ suggests J(¹⁹²Ta)=1 or 2; however, statistics are inadequate to exclusively rule out population of J>2 yrast states In ¹⁹²W.

¹⁹²Ta-T_{1/2}: From γ (t) (2009Al30).

[†] From Eγ.

[‡] From Adopted Levels.

[†] From 2009Al30; uncertainty unstated by authors.


[‡] From Adopted Levels.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹²Ta β^- decay **2009Al30**

Decay Scheme

Intensities: Relative I_{γ}

