¹⁹²₈₁Tl₁₁₁-1

Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,1871 (2012)	15-Jun-2012

 $Q(\beta^{-}) = -3.31 \times 10^{3} 4$; $S(n) = 7.66 \times 10^{3} 4$; $S(p) = 2.57 \times 10^{3} 4$; $Q(\alpha) = 3.98 \times 10^{3} 4$ 2012Wa38 Note: Current evaluation has used the following Q record -3316 34 7661 33 2568 39 4004 38 2011AuZZ. $Q(\beta^{-})$, S(n), S(p), Q(α) from 2003Au03 are -3320 30, 7660 30, 2570 40, 4000 40, respectively. Additional information 1. See 1987Bi08, 1987Bo44, 1990Di09, 1992Me07 (supersedes 1989MeZV, 1989MeZZ) for hfs and isotope shift data.

¹⁹²Tl has two isomers. The low-spin isomer (g.s.) is obtained following ¹⁹²Pb ε decay; the high-spin isomer (7⁺) is formed in

(HI,xny) reactions. There is no evidence that either isomer decays by any mode other than $\varepsilon + \beta^+$.

¹⁹²Tl Levels

J(IJKLM) Values proposed in $({}^{37}Cl,5n\gamma)$ based on observed band structure and unreported DCO data (parentheses added by evaluator). Values are highly tentative, and, since adopted J values in the $\pi = -\Delta J = 1$ sequence are 1 unit higher here than proposed by 1996RiZZ, it seems possible that these values should have been increased by 1 unit also; note that such an increase may jeopardize the validity of the configuration proposed by 1996RiZZ (for the (7⁺) band at least).

Cross Reference (XREF) Flags

			A 19 B 18 C 16 D 19	² Pb ε decay E ¹⁹⁶ Bi α decay: high spin ¹ Ta(¹⁸ O,7n γ), (¹⁶ O,5n γ) F ⁹ Be(²³⁸ U,X γ) ⁰ Gd(³⁷ Cl,5n γ):SD G ¹⁶⁰ Gd(³⁷ Cl,5n γ) ⁶ Bi α decay: low spin
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(2 ⁻) [#]	9.6 min 4	A D	$%ε+%β^+=100$ μ=+0.200 3; Q=-0.335 11 $Δ(^{192}Tl-^{205}Tl)=-0.60 7 (1992Me07).$ $^{1/2}(charge)=5.416 7 (2004An14).$ $μ: collinear fast-beam laser spectroscopy (1992Me07); value relative to μ=+1.63821461 12 for ^{205}Tl.Q: collinear fast-beam laser spectroscopy; -0.328 11 from 1992Me07, increased byevaluator by 2% (Sternheimer correction).T_{1/2}: weighted average of 9.4 min 2 (1979To06,1981So09) and 10.6 min 5(1975Va20). Others: 1961An03, 1963Di10, 1968Pe13.$
0.0+x ^e	(7 ⁺)		G	E(level): since the 251 γ from the (8 ⁻) isomer is coincident with most transitions reported by 1996RiZZ in ¹⁶⁰ Gd(³⁷ Cl,5n γ), the 217+x isomer must have been strongly populated in that study even though no linking transition between it and the 237+x level fed by the 83 γ (or the 0.0+x level) has been observed; thus, K is at least 6 \hbar to 8 \hbar for levels observed in (³⁷ Cl,5n γ) above the 217+x level. If the E=491 40 level fed in α decay: high spin is synonymous with the 320.4+x level from (³⁷ Cl,5n γ) then x=171 40.
138 45	(7 ⁺) [#]	10.8 min 2	B G	$%_{\mathcal{E}} + %_{\mathcal{B}}^{+} = 100$ $\mu = +0.518 4; Q = +0.473 20$ $\Delta < r^{2} > (^{192}\text{Tl} - ^{205}\text{Tl}) = -0.61 7 (1992\text{Me07}).$ $\mu: \text{ collinear fast-beam laser spectroscopy (1989\text{Ra17, from 1987Bo44}); value relative to \mu = +1.62225787 \ 12 \text{ for } ^{203}\text{Tl} and \mu = +1.63821461 \ 12 \text{ for } ^{205}\text{Tl}. Other value: +0.502 8 (collinear fast-beam laser spectroscopy; +0.464 20 from 1992Me07, increased by evaluator by 2% (Sternheimer correction).E(level): from Eγ=250.6 from 217+x 20, assuming x=171 40.$

Continued on next page (footnotes at end of table)

¹⁹²Tl Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				J ^{π} : possible configuration: $(s_{1/2}i_{13/2})7^+$ (1991Va04); supported by μ
				(1992Me07). T _{1/2} : from 1975Va20 (10.8 min 2), 1981So09 (10.8 min 3). Others: 1961An03, 1963Di10, 1968Pe13.
167.49 10	$1^{(-)}$		A	J^{π} : M1,E2 168 γ to (2 ⁻) g.s.; log <i>ft</i> =5.7 3 (log $f^{4u}t < 8.5$) from 0 ⁺ .
178 40	(3+)		D	E(level): from Q(α) and measured E α in ¹⁹⁶ Bi α decay: low spin.
				J ^{π} : based on α hindrance (HF=1.6 8) from (3 ⁺) parent in ¹⁹⁰ Bi α decay: low spin. Possible α -parent configuration is (π 1h _{9/2})(ν 3p _{3/2})3 ⁺ (1991Va04); other members of this intruder multiplet have not yet been identified.
237.4+x 16	(9 ⁻)		В	G J^{π} : (M1) 83 γ from (10 ⁻) 320+x level. Level also proposed in (O,xn γ) study
				to allow for possible missed level(s) between the level deexcited by the 250.6γ and that deexcited by the 83γ ; J=9 favored by analogy with neighboring higher-mass Tl isotopes (1988Hu03).
				Probably deexcited by an unobserved $E\gamma < 40$ transition, analogous to higher A isotopes of Tl (1980Kr02, 1988Hu03).
320.4+x [@] 16	(10 ⁻) ^{&}		BEO	G E(level): 491 40 from E(5112 α) in ¹⁹⁶ Bi α decay: high spin and Q(α),
				assuming E=271 5 for the (10^{-}) isomer in ¹⁹⁰ Bi. Thus, x=171 40, provided that this is indeed the level fed in α decay, high spin
				J^{π} : α decay from (10 ⁻) in ¹⁹⁶ Bi α decay: high spin is probably allowed
				(HF=3.1 14). Possible α -parent configuration is $(\pi \ 1h_{9/2})(\nu \ 1i_{13/2})10^{-1}$
371.05.18	1(-)		۵	(1991 Va04). $I^{\pi} \cdot M1(+F2) 371\gamma$ to (2^{-}) g s : log ft=6.0 L (log f ^{1u} t<8.5) from 0 ⁺
388 45	(8 ⁻)	296 ns 5	B FO	3 = MI(122) 3717 to (2 -) g.s., tog $J = 0.07 (tog f - 10.07) Hom 0$.
				μ =+1.66 4; Q=0.44 7
				μ : differential perturbed angular distributions (1989Ka17, from 1982Da17); value relative to μ =3 607.8 for ¹⁹ F(197 level)
				Q: estimate from differential perturbed angular distributions (1989Ra17, from 1982Sc27); other estimate: 0.42 7 (differential perturbed angular distributions, 1082M.70)
				$E(\text{level}): (237+x-z)=217+x 20$, where $0 \le z \le 40$ keV (1991Va04) and $x=171 40$;
				z represents the energy of an unobserved transition from an expected level lying between the level deexcited by the 250.6γ and the one deexcited by the 83γ
				J^{π} : (E1) 251 γ to (7 ⁺) 138; J expected to increase with energy in (HI,xn γ)
				reactions. Analogous to 8^- isomers known in higher A Tl isotopes.
				$1_{1/2}$: from $\gamma\gamma(t)$ in (O,xn γ) (1982Da17). Other values: 272 ns 10 ($\gamma\gamma(t)$, 1980Kr02) in (O,xn γ); 313 ns 44 (2004Gl04, 2003Gl05) from fragment- $\gamma(t)$ in ⁹ Be(²³⁸ U.X γ).
413.98 <i>23</i> 445.0+x ^e 8	$(1^{-},2^{-})$ (8^{+})		A	J^{π} : M1(+E2) 414 γ to (2 ⁻) g.s.; 782 γ from 1 ⁺ 1195 level.
596.4+x [@] 16 674.0+x 18	$(11^{-})^{\&}$ (8 ⁺)		B (J ^{π} : D+Q 276 γ to (9 ⁻) 321+x; band assignment.
775.67 <i>14</i> 794.0+x ^e 8	$(0^{-},1^{-})$ (9^{+})		A	J^{π} : M1+E2 608 γ to 1 ⁽⁻⁾ 167; log <i>ft</i> =5.3 from 0 ⁺ .
$858.4 + x^{\textcircled{0}}16$ 1168 0 + $x^{\textcircled{0}}10$	$(12^{-})^{\bullet}$		B	J ^{π} : D+Q intraband 262 γ to (10 ⁻) 596+x; band assignment.
1195.46 18	1^+		A	J^{π} : log <i>ft</i> =4.7 from 0 ⁺ ; (E1) 1195 γ to (2 ⁻) g.s.
1254.7+x [@] 16 1303.0+x 15	$(13^{-})^{\&}$ (10^{+})		B (J ^{π} : D+Q 396 γ to (11 ⁻) 858+x; band assignment.
1432.2 + X 10 1563 $4 + x^{(0)} 16$	(11^{-})		R ($J = I^{\pi} \cdot D + O(309\gamma) \text{ to } (12^{-}) 1255 + x \cdot O(705\gamma) \text{ to } (11^{-}) 858 + x \cdot \text{ hand assignment}$
$1683.3 + x^e \ 18$	(12^+)			
1729.3+x f 17	(12 ⁺)		(3

¹⁹²Tl Levels (continued)

Comments

E(level) [†]	Jπ‡	XREF	
$1874.3 + x^{f}$ 18	(13^{+})	G	
$2021.6 + x^{@} 16$	(15 ⁻)&	BG	J ^π : D+O 458γ
$2043.3 + x^{f} 20$	(14^+)	G	
$2202.3 + x^{f} 20$	(15^+)	G	
$2336.8 + x^{g}$ 17	(15^{-})	G	
2493.3+x ^f 21	(16^{+})	G	
2512.5+x [@] 17	(16 ⁻) ^{&}	G	
2636.2+x ^g 17	(16 ⁻)	G	
2717.0+x ^g 18	(17 ⁻)	G	
2789.3+x ^f 21	(17^{+})	G	
2848.6+x [@] 19	(17 ⁻) ^{&}	G	
2977.1+x ^g 18	(18 ⁻)	G	
3109.6+x ^h 18	(16 ⁺)	G	
3139.8+x ⁱ 20	(17^{-})	G	
3170.3+x ^f 22	(18^{+})	G	
3198.1+x <mark>8</mark> 19	(19-)	G	
3348.0+x ^h 20	(17^{+})	G	
3495.2+x ^h 20	(18^{+})	G	
3508.8+x ⁱ 21	(18 ⁻)	G	
$3537.3 + x^{f} 22$	(19 ⁺)	G	
$3552.1 + x^{g} 20$	(20^{-})	G	
3753.8+x ⁱ 21	(19 ⁻)	G	
3788.1+x ^h 20	(19^{+})	G	
3894.1+x ^g 20	(21 ⁻)	G	
3952.3+x ^f 23	(20^{+})	G	
4020.2+x ^h 21	(20^{+})	G	
$4302.3 + x^{f} 23$	(21^{+})	G	
4306.1+x ^g 21	(22-)	G	
4370.2+x ^h 21	(21^{+})	G	
4702.2+x ^h 22	(22^{+})	G	
4718.1+x ^g 21	(23-)	G	
4772.3+x ^f 25	(22^{+})	G	
5099.2+x ^h 23	(23^{+})	G	
5156.1+x ^g 22	(24 ⁻)	G	
u ^a	(15)	С	
283.0+u ^{<i>a</i>} 2	(17)	C	
$603.8 + u^{a} 3$	(19)	C	
$962.8 + u^{a} 4$	(21)	C	
$1300.0 \pm u^{-4} 4$ $1797.7 \pm u^{-4} 5$	(25)	C	
$2273.8 + u^{a}$ 5	(23) (27)	c	
$2789.0 + u^a 6$	(29)	c	
3343.4+u ^a 6	(31)	С	
3936.4+u ^a 6	(33)	С	
4568.4+u ^a 7	(35)	C	
$5238.8 + u^{a} 8$	(37)	C	
5946.7+u ⁴⁴ 12	(39)	C	

 J^{π} : D+Q 458 γ to (13⁻) 1564+x; band assignment.

				192	² Tl Levels (continued)		
E(level) [†]	Jπ‡	XREF	E(level) [†]	J π ‡	XREF	E(level) [†]	J π ‡	XREF
vb	(18)	С	820.2+w ^C 4	(16)	С	467.1+s ^d 4	(13)	С
337.5+v ^b 2	(20)	С	1171.8+w ^C 4	(18)	С	760.4+s ^d 5	(15)	С
712.4+v ^b 3	(22)	С	1562.2+w ^C 5	(20)	С	1092.6+s ^d 5	(17)	С
1125.8+v ^b 4	(24)	С	1990.1+w ^C 5	(22)	С	1463.6+s ^d 5	(19)	С
1576.9+v ^b 4	(26)	С	2455.5+w ^C 6	(24)	С	1872.9+s ^d 6	(21)	С
2066.5+v ^b 5	(28)	С	2957.3+w ^c 6	(26)	С	2319.3+s ^d 6	(23)	С
2593.9+v ^b 5	(30)	С	3495.1+w ^c 6	(28)	С	2802.9+s ^d 6	(25)	С
3159.4+v ^b 6	(32)	С	4068.1+w ^C 7	(30)	С	3322.8+s ^d 7	(27)	С
3762.5+v ^b 6	(34)	С	4675.3+w ^c 7	(32)	С	3878.2+s ^d 7	(29)	С
4403.4+v ^b 7	(36)	С	5317.9+w ^c 8	(34)	С	4469.4+s ^d 8	(31)	С
5081.1+v ^b 9	(38)	С	5994.7+w ^C 9	(36)	С	5094.6+s ^d 8	(33)	С
5796.1+v ^b 12	(40)	С	6707.2+w ^c 12	(38)	С	5754.3+s ^d 9	(35)	С
w ^C	(10)	С	7451.9+w ^c 15	(40)	С	6448.1+s ^d 10	(37)	С
233.4+w ^c 2	(12)	С	s ^d	(9)	С	7175.4+s ^d 13	(39)	С
507.2+w ^C 3	(14)	С	213.4+s ^d 3	(11)	С			

[†] From least-squares fit to $E\gamma$, except as noted. The large uncertainties indicated here for some high spin levels arise from the large uncertainty in energy assumed for the (3⁺) level. See the relevant source datasets for more precise level energy differences for many high–spin levels. See also the comment on the energy of the 0.0+x level.

[‡] Values given without comment are from ¹⁶⁰Gd(³⁷Cl,5n γ):SD. Those for bands SD-1 and SD-2 were deduced from observed signature splitting and comparison with the $i_{13/2}$ proton excitations in ¹⁹³Tl. Those for bands SD-3 and SD-4 were deduced from fits to the dynamic moments of inertia.

- [#] Assignments for both the (2⁻) and the (7⁺) isomers are based on J^{π} systematics for even-mass Tl isotopes and on measured μ values, interpreted via the additivity rule as arising from coupling of the s_{1/2} proton hole (known in neighboring odd-A Tl) to an odd neutron; apparent configurations (1991Va04,1992Me07) are ((π 3s_{1/2})(ν 3p_{3/2})) for (2⁻) ¹⁹²Tl, and ((π 3s_{1/2})(ν 1i_{13/2})) for (7⁺) ¹⁹²Tl, and these are supported by measured Q (1992Me07). $\varepsilon + \beta^+$ decay to ¹⁹²Hg from a mixed-isomer Tl source is compatible with these J^{π} .
- ^(a) Band(A): $\pi = -\Delta J = 1$ sequence (1996RiZZ). A $K^{\pi} = 7^{-} \pi 9/2[505] + v 5/2[642]$ configuration was proposed in (³⁷Cl,5n γ) (1996RiZZ) but J=7, 8, 9 members not identified. Involvement of π h_{9/2} is suggested by analogy to states in neighboring odd-a Tl nuclei above the 9/2⁻ isomer. J values shown here are based on the presumption that the level fed by α decay: high spin is a member of this band. This implies J values 1 unit higher than proposed by 1996RiZZ and 1 unit lower than proposed by 1980Kr02 in (¹⁸O,7n γ).
- [&] based on cascade of $\Delta J=1$ in-band gammas feeding 320+x level and sequence of crossover transitions feeding 320+x and 237+x levels, assuming J(320+x)=(10⁻) as implied if that is the level fed in α decay from (10⁻) ¹⁹⁶Bi. Note that J^{π} proposed by 1996RiZZ in (³⁷Cl,5n γ) is 1 unit lower and J^{π} favored by 1980Kr02 in (¹⁸O,7n γ) is 1 unit higher than adopted here.
- ^{*a*} Band(B): SD-1 band (1996Fi02,1992Li21). Configuration=(($\nu j_{15/2}$)($\pi i_{13/2}$)), α =1 (coupling of favored (α =-1/2) $j_{15/2}$ neutron and unfavored (α =-1/2) $i_{13/2}$ proton) (1996Fi02). Percent population=0.9 (1992Li21) in (³⁷Cl,5n γ):SD.
- ^b Band(C): SD-2 band (1996Fi02,1992Li21). Configuration=(($\gamma j_{15/2}$)($\pi i_{13/2}$)), α =0 (coupling of favored (α =-1/2) $j_{15/2}$ neutron and favored (α =+1/2) $i_{13/2}$ proton) (1996Fi02). SD-1 and SD-2 bands are proposed (1996Fi02) as signature partners on the basis of transition energies. There is also weak evidence (from $\gamma\gamma$ data) of crosstalk between SD-1 and SD-2 bands. However, the population intensity of this band is \approx 1/2 of that for SD-1, which is not expected for signature partner bands. This band seems to display Δ J=2 staggering for seven transitions in J=24 to 36 range. From $\gamma\gamma$ coin data, 1996Fi02 deduce limits on B(M1)/B(E2), with B(M1) \approx 1 μ_n^2 . Percent population=1.1 (1992Li21) in (37 Cl,5n γ):SD; however, 1996Fi02 report that intensity of this band is \approx 1/2 that of SD-1 band (i.e., \approx 0.45%).
- ^{*c*} Band(D): SD-3 band (1996Fi02,1992Li21). Configuration=((ν 5/2[512])(π 5/2[642])), α =0 (1996Fi02). The neutron and proton orbitals arise from h_{9/2} and i_{13/2}, respectively. Percent population=0.5 (1992Li21) in (³⁷Cl,5n γ):SD.
- ^d Band(E): SD-4 band (1996Fi02). Configuration=((ν 5/2[512])(π 5/2[642])), α =1 (1996Fi02). The neutron and proton orbitals

¹⁹²Tl Levels (continued)

arise from $h_{9/2}$ and $i_{13/2}$, respectively. SD-3 and SD-4 bands are proposed as signature partners, with no evidence of crosstalk (1996Fi02). The two bands remain strongly coupled (no evidence of signature splitting) over the whole range.

- ^{*e*} Band(F): $K^{\pi}=7+?, \pi 9/2[505] \otimes v 5/2[503]$ band. Band interacts with $\pi 9/2[505]+v 5/2[642]$ band, so must be a high-K band also. $K^{\pi}=7^+$ favored by Gallagher-Moszkowski rule. Similarity of Routhian plot to that for a ¹⁹²Hg band excludes excitation of a single $i_{13/2}$ neutron (1996RiZZ).
- ^{*f*} Band(G): π =(+) band-1. High-K band (see comment on 9/2[505] \otimes 5/2[503] band also); interacts with K^{π} =7⁻ band.
- ^g Band(H): π 9/2[505]⊗ν 5/2[642]⊗i²_{13/2} band. Crosses π 9/2[505] ⊗ ν 5/2[642] band at J≈15 (ħω≈0.26 MeV, alignment gain ≈9ħ) (1996RiZZ). High-K band (see comment on 9/2[505] ⊗ 5/2[503] band also).
- ^{*h*} Band(I): π =(+) band-2. Feeds into K^{π} =7⁻ band at J=(15).

^{*i*} Band(J): band fragment.

					Ad	opted Levels, G	ammas (conti	nued)	
						$\gamma(1)$	⁹² Tl)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [†]	δ^{\dagger}	α ^C	Comments
167.49 178	$1^{(-)}$ (3 ⁺)	167.5 <i>1</i> (178 <i>40</i>)	100 100	0.0 0.0	(2 ⁻) (2 ⁻)	M1,E2 [E1]		1.4 <i>6</i> 0.10 <i>9</i>	E_{γ} : from level-energy difference. Consistent with $E_{\gamma}=200$ 50 based on systematics of E_{γ} for low-lying 3 ⁺ level to 2 ⁻ g.s. transition in lower-mass Tl isotopes (1991Va04). γ has not been observed.
320.4+x	(10 ⁻)	83 [#] I	100	237.4+x	(9 ⁻)	(M1) [#]		2.710	 Placement from level fed in ¹⁹⁶Bi α decay: high spin is indicated in level scheme in fig. 2 of 1991Va04. Mult.: not E1 based on α(exp)≥1.0 7 (from intensity balance at parent level in ¹⁸¹Ta(¹⁸O,7nγ), (¹⁶O,5nγ)). M1 assignment supported by similarity with structure in higher-mass even-A Tl.
371.05	$1^{(-)}$	371.0 2	100	0.0	(2 ⁻)	M1(+E2)	0.6 +5-6	0.18 5	
388	(8-)	250.6 [#] 2	100	138	(7 ⁺)	(E1) [#]		0.0439	B(E1)(W.u.)=4.18×10 ⁻⁸ 8 Mult.: D from $\gamma(\theta)$ in (O,xn γ); hindrance favors E1 (B(E1)(W.u.)=4×10 ⁻⁸ cf. B(M1)(W.u.)=3×10 ⁻⁶).
413.98	$(1^-, 2^-)$	414.1 <i>3</i>	100	0.0	(2 ⁻)	M1(+E2)	≤2.2	0.11 5	
445.0+x	(8 ⁺)	445 ^{&}	100	0.0+x	(7^{+})				
596.4+x	(11-)	275.8 [#] 2 359.0 2	100 <i>15</i> 20 <i>3</i>	320.4+x 237.4+x	(10 ⁻) (9 ⁻)	(M1+E2) [#]		0.32 18	
775.67	$(0^{-},1^{-})$	404.5 3	17.1 [@] 24	371.05	1(-)	[M1,E2]		0.11 7	
		608.2 1	100 [@] 8	167.49	$1^{(-)}$	M1+E2	1.7 +7-4	0.029 5	
794.0+x	(9 ⁺)	349 ^{&} 794 ^{&}		445.0+x 0.0+x	(8 ⁺) (7 ⁺)				
858.4+x	(12 ⁻)	261.8 [#] 2 538.2 [#] 2	100 <i>16</i> 46 7	596.4+x 320.4+x	(11 ⁻) (10 ⁻)	(M1+E2) [#]		0.37 20	
1168.0+x	(10+)	374 ^{&} 723 ^{&}		794.0+x 445.0+x	(9 ⁺) (8 ⁺)				
1195.46	1+	781.6 3	$18^{@} 2$	413.98	$(1^-, 2^-)$	[E1]			
		1195.4 2	100 [@] 6	0.0	(2 ⁻)	(E1)			Mult.: E1,E2 from $\alpha(K)exp$; $\Delta \pi = yes$ from level scheme.
1254.7+x	(13 ⁻)	396.4 [#] 2 658.3 [#] 2	100 <i>15</i> 71 <i>10</i>	858.4+x 596.4+x	(12^{-}) (11^{-})	(M1(+E2)) [#]		0.12 7	
1303.0+x	(10 ⁺)	135 ^{&} 629 ^{&} 707 ^{&} 982 ^{&}		1168.0+x 674.0+x 596.4+x 320.4+x	(10 ⁺) (8 ⁺) (11 ⁻) (10 ⁻)				Tentatively assigned by 1996RiZZ as a $\Delta J=0$ transition.

From ENSDF

 $^{192}_{81}\text{Tl}_{111}\text{-}6$

 $^{192}_{81}\mathrm{Tl}_{111}\text{-}6$

I

$\gamma(^{192}\text{Tl})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ [‡]	\mathbf{E}_{f}	J_f^π	Mult. [†]	α ^{C}
1432.2+x	(11^{+})	129 <mark>&</mark>		1303.0+x	(10^{+})		
	. ,	836 <mark>&</mark>		596.4+x	(11 ⁻)		
1563.4+x	(14 ⁻)	308.7 [#] 2	37 5	1254.7+x	(13 ⁻)	(M1+E2) [#]	0.23 13
		705.0 [#] 2	100 17	858.4+x	(12 ⁻)	(E2) [#]	0.01292
1683.3+x	(12^{+})	251		1432.2+x	(11^{+})		
1729.3+x	(12^{+})	297 <mark>&</mark>		1432.2+x	(11^{+})		
		871 &		858.4+x	(12 ⁻)		
1874.3+x	(13 ⁺)	145 ^{&}		1729.3+x	(12^{+})		
		191 ^{&}		1683.3+x	(12^{+})		
2021.6+x	(15 ⁻)	458.2 [#] 2		1563.4+x	(14 ⁻)	(M1+E2) [#]	0.08 5
		767.6 [#]		1254.7+x	(13 ⁻)		
2043.3+x	(14^{+})	169 <mark>&</mark>		1874.3+x	(13 ⁺)		
2202.3+x	(15^{+})	159 <mark>&</mark>		2043.3+x	(14^{+})		
		328 <mark>&</mark>		1874.3+x	(13 ⁺)		
2336.8+x	(15 ⁻)	315 &		2021.6+x	(15 ⁻)		
		773 ^{&}		1563.4+x	(14 ⁻)		
2493.3+x	(16 ⁺)	291 ^{&}		2202.3+x	(15^{+})		
		450 <mark>&</mark>		2043.3+x	(14^{+})		
2512.5+x	(16 ⁻)	491 ^{&}		2021.6+x	(15 ⁻)		
		949 <mark>&</mark>		1563.4+x	(14 ⁻)		
2636.2+x	(16 ⁻)	124 <mark>&</mark>		2512.5+x	(16 ⁻)		
		299 <mark>&</mark>		2336.8+x	(15 ⁻)		
		615 ^{&}		2021.6+x	(15 ⁻)		
2717.0+x	(17 ⁻)	81 &		2636.2+x	(16 ⁻)		
		380 <mark>&</mark>		2336.8+x	(15 ⁻)		
2789.3+x	(17^{+})	296 <mark>&</mark>		2493.3+x	(16^{+})		
		587 <mark>&</mark>		2202.3+x	(15^{+})		
2848.6+x	(17 ⁻)	827 <mark>&</mark>		2021.6+x	(15 ⁻)		
2977.1+x	(18 ⁻)	260 <mark>&</mark>		2717.0+x	(17 ⁻)		
		341 ^{&}		2636.2+x	(16 ⁻)		
3109.6+x	(16 ⁺)	597 <mark>&</mark>		2512.5+x	(16 ⁻)		
		773 <mark>&</mark>		2336.8+x	(15 ⁻)		
3139.8+x	(17 ⁻)	803 ^{&}		2336.8+x	(15 ⁻)		

7

 $^{192}_{81}\mathrm{Tl}_{111}\text{--}7$

$\gamma(^{192}\text{Tl})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
3170.3+x	(18^{+})	381 ^{&}	2789.3+x	(17^{+})	4772.3+x	(22^{+})	820 ^{&}	3952.3+x	(20^{+})
		677 <mark>&</mark>	2493.3+x	(16 ⁺)	5099.2+x	(23 ⁺)	397 <mark>&</mark>	4702.2+x	(22^{+})
3198.1+x	(19 ⁻)	221 ^{&b}	2977.1+x	(18 ⁻)			729 <mark>&</mark>	4370.2+x	(21^{+})
		481 <mark>&</mark>	2717.0+x	(17 ⁻)	5156.1+x	(24 ⁻)	438 <mark>&</mark>	4718.1+x	(23 ⁻)
3348.0+x	(17^{+})	238 <mark>&</mark>	3109.6+x	(16 ⁺)			850 <mark>&</mark>	4306.1+x	(22 ⁻)
3495.2+x	(18^{+})	147 <mark>&</mark>	3348.0+x	(17^{+})	283.0+u	(17)	283.0 ^{<i>a</i>} 2	u	(15)
		386 <mark>&</mark>	3109.6+x	(16 ⁺)	603.8+u	(19)	320.8 ^{<i>a</i>} 2	283.0+u	(17)
3508.8+x	(18 ⁻)	369 <mark>&</mark>	3139.8+x	(17 ⁻)	962.8+u	(21)	359.0 ^a 2	603.8+u	(19)
3537.3+x	(19 ⁺)	367 <mark>&</mark>	3170.3+x	(18^{+})	1360.6+u	(23)	397.8 ^a 2	962.8+u	(21)
		748 <mark>&</mark>	2789.3+x	(17^{+})	1797.7+u	(25)	437.1 ^{<i>a</i>} 2	1360.6+u	(23)
3552.1+x	(20^{-})	354 ^{&}	3198.1+x	(19 ⁻)	2273.8+u	(27)	476.1 ^{<i>a</i>} 2	1797.7+u	(25)
		575 <mark>&</mark>	2977.1+x	(18 ⁻)	2789.0+u	(29)	515.2 ^a 2	2273.8+u	(27)
3753.8+x	(19 ⁻)	245 <mark>&</mark>	3508.8+x	(18 ⁻)	3343.4+u	(31)	554.4 ^a 2	2789.0+u	(29)
		614 ^{&}	3139.8+x	(17^{-})	3936.4+u	(33)	593.0 ^a 2	3343.4+u	(31)
3788.1+x	(19 ⁺)	293 &	3495.2+x	(18^{+})	4568.4+u	(35)	632.0 ^a 3	3936.4+u	(33)
		440 ^{&}	3348.0+x	(17^{+})	5238.8+u	(37)	670.4 ^a 4	4568.4+u	(35)
3894.1+x	(21 ⁻)	342	3552.1+x	(20 ⁻)	5946.7+u	(39)	707.9 ^a 8	5238.8+u	(37)
		696 ^{&}	3198.1+x	(19 ⁻)	337.5+v	(20)	337.5 ^a 2	V	(18)
3952.3+x	(20^{+})	415 ^{&}	3537.3+x	(19 ⁺)	712.4+v	(22)	374.9 ^a 2	337.5+v	(20)
		782 ^{&}	3170.3+x	(18 ⁺)	1125.8+v	(24)	413.4 ^{<i>a</i>} 2	712.4+v	(22)
4020.2+x	(20^{+})	232	3788.1+x	(19 ⁺)	1576.9+v	(26)	451.1 ^{<i>a</i>} 2	1125.8+v	(24)
		525 &	3495.2+x	(18+)	2066.5+v	(28)	489.6 ^a 2	1576.9+v	(26)
4302.3+x	(21^{+})	350	3952.3+x	(20^{+})	2593.9+v	(30)	527.4 ^a 2	2066.5+v	(28)
		765 ^{&}	3537.3+x	(19 ⁺)	3159.4+v	(32)	565.5 ^a 2	2593.9+v	(30)
4306.1+x	(22 ⁻)	412 ^{&}	3894.1+x	(21 ⁻)	3762.5+v	(34)	603.1 ^a 3	3159.4+v	(32)
		754 ^{&}	3552.1+x	(20 ⁻)	4403.4+v	(36)	640.9 ^a 3	3762.5+v	(34)
4370.2+x	(21^{+})	350	4020.2+x	(20^{+})	5081.1+v	(38)	677.7 ^a 5	4403.4+v	(36)
		582 ^{&}	3788.1+x	(19+)	5796.1+v	(40)	715.0 ^a 8	5081.1+v	(38)
4702.2+x	(22^{+})	332	4370.2+x	(21^{+})	233.4+w	(12)	233.4 ^a 2	W	(10)
		682 ^{&}	4020.2+x	(20^{+})	507.2+w	(14)	273.8 ^a 2	233.4+w	(12)
4718.1+x	(23 ⁻)	412 ^X	4306.1+x	(22 ⁻)	820.2+w	(16)	313.0 ^{<i>a</i>} 2	507.2+w	(14)
		824 ^{&}	3894.1+x	(21 ⁻)	1171.8+w	(18)	351.6 ^{<i>a</i>} 2	820.2+w	(16)

 ∞

 $^{192}_{81}\mathrm{Tl}_{111}_{111}\text{-}8$

γ ⁽¹⁹²Tl) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
1562.2+w	(20)	390.4 ^{<i>a</i>} 2	1171.8+w ((18)	6707.2+w	(38)	712.5 ^a 8	5994.7+w	(36)	2802.9+s	(25)	483.6 ^{<i>a</i>} 2	2319.3+s (23)
1990.1+w	(22)	427.9 ^a 2	1562.2+w ((20)	7451.9+w	(40)	744.7 <mark>a</mark> 8	6707.2+w	(38)	3322.8+s	(27)	519.9 <mark>a</mark> 2	2802.9+s (25)
2455.5+w	(24)	465.4 ^a 2	1990.1+w ((22)	213.4+s	(11)	213.4 ^a 3	S	(9)	3878.2+s	(29)	555.4 ^a 2	3322.8+s (27)
2957.3+w	(26)	501.8 ^a 2	2455.5+w ((24)	467.1+s	(13)	253.7 <mark>a</mark> 2	213.4+s	(11)	4469.4+s	(31)	591.2 ^a 3	3878.2+s (29)
3495.1+w	(28)	537.8 ^a 2	2957.3+w ((26)	760.4+s	(15)	293.3 ^a 2	467.1+s	(13)	5094.6+s	(33)	625.2 ^a 3	4469.4+s (31)
4068.1+w	(30)	573.0 ^a 2	3495.1+w ((28)	1092.6+s	(17)	332.2 ^a 2	760.4+s	(15)	5754.3+s	(35)	659.7 <mark>a</mark> 3	5094.6+s (33)
4675.3+w	(32)	607.2 ^a 3	4068.1+w ((30)	1463.6+s	(19)	371.0 ^a 2	1092.6+s	(17)	6448.1+s	(37)	693.8 <mark>a</mark> 4	5754.3+s (35)
5317.9+w	(34)	642.6 ^a 4	4675.3+w ((32)	1872.9+s	(21)	409.3 ^a 2	1463.6+s	(19)	7175.4+s	(39)	727.3 ^a 8	6448.1+s (37)
5994.7+w	(36)	676.8 ^a 3	5317.9+w ((34)	2319.3+s	(23)	446.4 ^a 2	1872.9+s	(21)				

[†] From ¹⁹²Pb ε decay, except where noted.

^{\ddagger} Relative photon branching from each level; values are from ¹⁸¹Ta(¹⁸O,7n γ), (¹⁶O,5n γ), unless noted to the contrary.

[#] From ¹⁸¹Ta(¹⁸O,7n γ), (¹⁶O,5n γ). $\Delta \pi$ =(no) assigned for intraband transitions.

[@] From ¹⁹²Pb ε decay.

9

[&] From 160 Gd(37 Cl,5n γ).

^{*a*} From ¹⁶⁰Gd(³⁷Cl,5nγ):SD.

^b Presumed to differ from a questionable $E\gamma=220.9 \ 2 \ D+Q$ line reported in $(O,xn\gamma)$ and tentatively placed from a lower-energy level that is not adopted here.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

 $^{192}_{81}{\rm Tl}_{111}$

9.6 min 4

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

(36)		4403.4+v
(34)		3762.5+v
(32)		3159.4+v
(30)		2593.9+v
(28)		2066.5+v
(26)		1576.9+v
(24)		1125.8+v
(22)		712.4+v
(20) (18)	¥_??	<u>337.5+v</u> v
(39)		<u>5946.7+u</u>
(37)		5238.8+u
(35)		4568.4+u
(33)	Se S	3936.4+u
(31)		3343 4+11
(20)		2700.0
(29)	 ,©`	2789.0+u
(27)	↓ Ŷ 	2273.8+u
(25)	↓ [∞] .	<u> 1797.7+u</u>
(23)		1360.6+u
$\frac{(21)}{(19)}$	 ↓ ∽,	<u>962.8+u</u> 603.8+u
(17)		<u></u>
$\frac{(15)}{(24^{-})}$		<u>u</u>
$\frac{(24)}{(23^+)}$		- 5150.1+x = 5099.2+x
(23 ⁻)		4718.1+x
(22+)		4702.2+x
$\frac{(21^+)}{(22^-)}$		4370.2+x
(22)	•	4306.1+x
(2-)		0.0

 $^{192}_{81}{\rm Tl}_{111}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

12

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{192}_{81}{\rm Tl}_{111}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

14

Band(D): SD-3 band
(1996Fi02,1992Li21)

(40)		7451.9+w
(38)	745	6707.2+w
(36)	712	5994.7+w
(34)	677	5317.9+w
(32)	643	4675.3+w
(30)	607	4068.1+w
(28)	573	3495.1+w
(26)	-5/5	2957.3+w
(24)	538	2455.5+w
(22)	502	1/990.1+w
(20)	465	1/562.2+w
(18)	428	1/171.8+w
(16)	390	820.2+w
(14)	352	507.2+w
(12)	313	
(10)	122	w
	- 433	

Band(C): SD-2 band (1996Fi02,1992Li21)

(40)		5796.1+v
(38)	715	5081.1+v
(36)	678	³ 4403.4+v
(34)	641	3762.5+v
(32)	603	³ 3159.4+v
(30)	566	2593.9+v
(28)	527	2066.5+v
(26)	490) 1576.9+v
(24)	451	1125.8+v
(22)	413	712.4+v
(20)	375	337.5+v
(18)	338	3 V

Band(B): SD-1 band
(1996Fi02,1992Li21)

(39)		5946.7+u
(37)	70	⁸ 5238.8+u
(35)	67	⁰ 4568.4+u
(33)	63	² 3936.4+u
(31)	59	³ 3343.4+u
(29)	55	4 2789.0+u
(27)	51	5 2273.8+u
(25)	1	1797.7+u
(23)	4/	• 1360.6+u
(21)	43	⁷ /962.8+u
(19)	39	8 603.8+u
(17)	35	$\frac{9}{283.0+u}$
(15)	32	
	_ 20	<u> </u>

Band(A): π=- ΔJ=1 sequence (1996RiZZ)

(17-)		2848.6+x
(16 ⁻)		2512.5+x
(15-)	27	2021.6+x
(14-)	<u>491</u> 9	49/1563.4+x
(13 ⁻)	458 68	1254.7+x
(12 ⁻)		858.4+x
(11-)	<u> </u>	596.4 +x
(10 ⁻)		320.4+x

 $^{192}_{81}{\rm Tl}_{111}$

Adopted Levels, Gammas (continued)

Band(E): SD-4 band (1996Fi02)			
(39)	7175.4+s		
(37)	727 6448.1+s		
(35)	694 5754.3+s		
(33)	660 5094.6 +s		
(31)	625 4469.4+s		
(29)	591 3878.2+s		
(27)	555 3322.8+s		
(25)	520 2802.9+s		
(23)	⁴⁸⁴ 2319.3+s		
(21)	446 1872.9+s		
(19)	409 1463.6+s		
(17)	³⁷¹ 1092.6+s		
(15)	332 760.4+s		
$\frac{(13)}{(11)}$	²⁹³ 467.1+s		
$\frac{(11)}{(9)}$	254 213.4+s 213 s		

Band(G): π =(+) band-1

		(22+)	4772.3+x
		<u>(21⁺)</u> 820	4302.3+x
		(20 ⁺) 350	3952.3+x
		(19^+) 782 415	765 3537.3+x
		(18 ⁺) 367	3170.3+x
		(17 ⁺) 381	2789.3+x
		(16 ⁺) 677	2493.3+x
Band(F)· K ^π :	$=7+? \pi 9/2[505] \otimes v$	(15 ⁺)	587 2202.3+x
5/2	[503] hand	(14^+) 291	2043.3+x
0/2	[000] build	(13+)	1874.3+x
(12 ⁺)	1683.3+x	(12+) 145_	1729.3+x
(10+)	1168.0+x		
(9 ⁺)	³⁷⁴ 723 794.0+x		
<u>(8+)</u> 794-	³⁴⁹ 445.0+x		
(7+)	445 0.0+x		

 $^{192}_{81}{\rm Tl}_{111}$

 $^{192}_{81}{\rm Tl}_{111}$