¹⁸¹Ta(¹⁸O,7n γ), (¹⁶O,5n γ) **1980Kr02**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012							

Others: 1982Da17, 1982Sc27, 1983Ma79 ((¹⁶O,5ny), E=100 MeV).

1980Kr02: $E(^{18}O)=105-125$ MeV, $E(^{16}O)=95-105$ MeV; natural tantalum targets; measured E γ , I γ (Ge(Li)), multiparameter coin, γ -ray angular distributions (20° to 90°), excitation functions. The level scheme and data are from 1980Kr02.

1982Sc27, 1983Ma79: E(¹⁶O)=100 MeV, recoil implantation into Bi, nuclear orientation, differential perturbed angular

distributions; measured quadrupole interaction for 8⁻ level; deduced estimate for quadrupole moment (see ¹⁹²Tl Adopted Levels).

Assignment of γ -rays to ¹⁹²Tl was based on excitation functions (for strong lines) and $\gamma\gamma$ coin (for weak lines). The ¹⁹²Tl level structure and population of ¹⁹²Hg are both consistent with formation of a high-spin isomer, similar to those known in ¹⁹⁴Tl, ¹⁹⁶Tl, ¹⁹⁶Tl, ¹⁹⁸Tl.

¹⁹²Tl Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments	
0.0+x	7+		E(level): from Adopted Levels, x=138 45.	
250.6+x 2	8-	296 ns 5	%IT=100	
			$T_{1/2}$: γγ(t) (1982Da17). Other value: 272 ns <i>10</i> (γγ(t), 1980Kr02). g-factor=+0.207 5 (1982Da17).	
0.0+y?			Represents possible J=9 and/or 10 member(s) of expected $(\pi h_{9/2}) \otimes (\nu i_{13/2})$ multiplet. 1980Kr02 postulate that highly converted, $E\gamma \leq 40$ keV transition(S) analogous to a transition known In ¹⁹⁶ Tl May occur between the cascading 83 γ and the delayed 250 6 γ .	
83.0+y [@] 10	J#		J^{π} : 11 ⁻ favored by 1980Kr02; adopted value is (10 ⁻) based on the presumption that this is the level fed In ¹⁹⁶ Bi α decay: high spin.	
359.0+y [@] 11	J+1 [#]			
621.0+y [@] 11	J+2 [#]			
1017.3+y [@] 11	J+3 [#]			
1326.0+y [@] 11	J+4 [#]			
1784.2+y [@] 11	J+5 [#]			
2005.1+y? [@] 11	J+6 [#]		band assignment and deexciting γ unconfirmed In 160 Gd(37 Cl,5n γ) (1996RiZZ), so level is not ADOPTED.	

[†] Level energies are from a least-squares fit to $E\gamma$ assuming E=0.0+x for the (7⁺) isomer and E=0.0+y for the level fed by the 83 γ . this allows for the possibility that highly-converted transition(S) with unknown $E\gamma \le 40$ keV May exist In the γ cascade between the known 83 γ and the delayed 250.6 γ . From Adopted Levels, x=138 45.

[‡] From 1980Kr02, with J=9+I and I \geq 0; based on $\gamma(\theta)$ and analogy to other Tl isotopes. Two quasiparticle plus rotor model calculations predict an 8⁻ through 11⁻ multiplet based on Configuration=((π h_{9/2}) \otimes (ν i_{13/2})) and, in this mass region, the 8⁻ state is expected to have the lowest energy. The energy splitting of the multiplet is expected to decrease with decreasing N, and a Δ J=1 band (with level energy staggering similar to known bands in nearby odd-A Tl isotopes) is expected above the multiplet (1980Kr02).

[#] See comment on $\pi = -$, $\Delta J = 1$ sequence.

^(a) Band(A): $\pi = -$, $\Delta J = 1$ sequence. An unknown J=9+I with I ≥ 0 was proposed by 1980Kr02 to accommodate the possible existence of unobserved level(s) between those deexcited by the 83 γ and the 250.6 γ . sequence supported by γ -ray multipolarities and systematics. In Adopted Levels, J^{π} values correspond to I=1, but 1980Kr02 favored I=2.

			18	181 Ta(18 O,7n γ), (16 O,5),5n γ)	1980Kr02	(continued)
						γ ⁽¹⁹² Tl)		
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
83 1	22 7	83.0+y	J	0.0+y?		(M1)	2.71 11	 I_γ: deduced from coincidence data; corrected for unresolved Kβ x ray peaks using observed Kα x ray and theoretical (Kβ x ray)/(Kα x ray) (1980Kr02). Mult.: not E1 based on α(exp)≥1.0 7 (from intensity balance at 83+y level) cf. α(E1)=0.146, α(M1)=2.71 and α(E2)=12.87. M1 assignment also supported by comparison with similar
								structures In heavier Tl isotopes (1980Kr02). Existence of transition is evident from $\gamma\gamma$ coin and greatly enhanced (K β x ray)/(K α x ray) intensity ratio.
x128.6 2 x145.2 2 x161.4 2	8.3 <i>12</i> 12.8 <i>19</i> 1.7 <i>3</i>					D+Q		A ₂ =-0.09 10, A ₄ =-0.12 16 (1980Kr02). A ₂ =-0.30 4, A ₄ =-0.04 7 (1980Kr02). coincident with 260 γ .
220.9 [@] 2 250.6 2	5.1 8 100.0	2005.1+y? 250.6+x	J+6 8 ⁻	1784.2+y 0.0+x	J+5 7 ⁺	D+Q (E1)	0.0439	A ₂ =-0.73 24, A ₄ =+0.28 35 (1980Kr02). A ₂ =-0.12 3, A ₄ =+0.01 6 (using target thick enough to stop all recoils) (1980Kr02). Mult.: D from $\gamma(\theta)$; E1 hindrance (B(E1)(W.u.)=4×10 ⁻⁸ cf. B(M1)(W.u.)=3×10 ⁻⁶) consistent with systematics. Additionally, Ti(422.8γ, ¹⁹² Hg daughter)/Iγ(251)=2.6 4 is incompatible with M2 or higher
^x 260.1 2	7.7 12					D+Q		$A_2 = -0.59 \ 8, \ A_4 = +0.12 \ 12 \ (1980 \text{Kr}02).$
261.8 2	19 <i>3</i>	621.0+y	J+2	359.0+y	J+1	D+Q		$A_2 = -0.73 8$, $A_4 = -0.11 12$ (1980Kr02).
275.8 2	27 4	359.0+y	J+1	83.0+y	J	D+Q		$A_2 = -0.66 4$, $A_4 = -0.06 5 (1980 \text{Kr} 02)$.
308.7 2	8.9 13	1326.0+y	J+4	1017.3+y	J+3	D+Q		Includes contribution from 308.5γ in ¹⁹² Pt. A ₂ =-0.52 9, A ₄ =-0.09 14 (1980Kr02).
359.0 [@] 2	5.5 8	359.0+y	J+1	0.0+y?				
396.4 2 ^x 444.9 2	11.0 <i>17</i> 14.9 <i>22</i>	1017.3+y	J+3	621.0+y	J+2	D(+Q)		$A_2 = -0.41$ 7, $A_4 = +0.18$ 14 (1980Kr02).
458.2 2 538.2 2	5.2 8 8.7 <i>13</i>	1784.2+y 621.0+y	J+5 J+2	1326.0+y 83.0+y	J+4 J	D+Q		$A_2 = -0.89 \ I9, \ A_4 = -0.10 \ 27 \ (1980 \text{Kr} 02).$
658.3 2	7.8 11	1017.3+y	J+3	359.0+y	J+1	0		
/05.0 2	24 4	1326.0+y	J+4	621.0+y	J+2	Q		$A_2 = +0.52$ 5, $A_4 = -0.07$ / (1980Kr02).
767.6 ^w		1784.2+y	J+5	1017.3+y	J+3			E_{γ} : from figs. 1 and 4 of 1980Kr02.

[†] Relative to $I\gamma(250.6\gamma)=100$ in ¹⁸¹Ta(¹⁶O,5n γ), E(¹⁶O)=100 MeV. Uncertainties for weak lines are reported to range from 5% to 15% (evaluator assigns 15% throughout).

[‡] From $\gamma(\theta)$. 1980Kr02 assumed mult=M1+E2 for D+Q transitions and mult=E2 for stretched Q transitions, except as noted.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{192}_{81}{\rm Tl}_{111}{\rm -3}$

¹⁸¹Ta(¹⁸O,7nγ), (¹⁶O,5nγ) 1980Kr02

 $^{192}_{81}{\rm Tl}_{111}$