Adopted Levels, Gammas

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	Coral M. Baglin	NDS 113,1871 (2012)	15-Jun-2012					

 $Q(\beta^-)=4.30\times 10^3 \ 8; \ S(n)=5.31\times 10^3 \ 8; \ S(p)=7.70\times 10^3 \ 9; \ Q(\alpha)=-4.0\times 10^2 \ 11$ 2012Wa38

Note: Current evaluation has used the following Q record 4.11E3 SY5.49E3 SY7950 syst -5.3E2 syst 2003Au03,2011AuZZ. $\Delta Q(\beta)$ =200, $\Delta S(n)$ =200, $\Delta S(p)$ =280, $\Delta Q(\alpha)$ =280 (2003Au03).

Identification: excitation functions for neutrons on ¹⁹²Os, observation of known ¹⁹²Os transitions in (n,p) product (1979KaYT).

Also produced in fragmentation of 1 GeV/nucleon ²⁰⁸Pb by a ⁹Be target (2012Al05, 2011St21, 2008StZY, 2005Ca02, 2001Ca13) and fragmentation of 950 MeV/nucleon ¹⁹⁷Au by a Be target (1999Be63).

¹⁹²Re Levels

The presence of a long-lived, low-energy isomer could arise from a spin trap resulting from the proximity of states formed from parallel and antiparallel coupling of high Ω orbitals. Calculations indicate a possible $K^{\pi}=8^{+} \ \nu 11/2[615]+\pi 5/2[402]$ g.s. with a $K^{\pi}=3^{+} \ \nu 11/2[615]-\pi 5/2[402]$ state near 250 keV; alternatively, the g.s. could be $K^{\pi}=2^{-} \ \nu 9/2[505]-\pi 5/2[402]$ with various high-J states nearby arising from coupling a 9/2[505], 3/2[512] or 11/2[615] proton with a 5/2[402] or 9/2[514] neutron (2012ReZZ). Another possibility is the coexistence of oblate and prolate shapes; total Routhian surface calculations predict a γ -soft prolate-centered g.s. with a possible oblate state nearby created by the addition of a small amount of collective angular momentum (2012ReZZ).

For cranked Woods-Saxon-Stutinsky calculation of shape of Re, see 2006Wa31; oblate rotation predicted to coexist with high-K prolate rotation in ¹⁹²Re.

Cross Reference (XREF) Flags

- A 192 Re IT decay (85 μ s)
- B 192 Re IT decay (61 s)
- 9 Be(208 Pb,X)

E(level) [†]	$T_{1/2}$	XREF	Comments	
0.0	16 s <i>I</i>	ABC	%β ⁻ =100	
			$T_{1/2}$: from 1979KaYT. Other: 16 s 2 from ion- β correlations (2012Al05) in ${}^{9}\text{Be}({}^{208}\text{Pb},X)$.	
160.1? 2		Α		
160.1+x?	$85 \ \mu s \ 10$	Α	%IT=100	
	•		E(level): x ≤50 keV; upper limit based on energy threshold for experimental arrangement used by 2005Ca02 in IT decay.	
			$T_{1/2}$: from K x ray(t) and 160γ (t) (2008StZY) in IT decay (85 μ s). Others: 120 μ s +210-50 (2005Ca02) and 93 μ s 15 (2009Al30) from decay-time spectra of delayed (3-350	
			μ s) events in ¹⁹² Re IT decay (85 μ s). The weighted average of data from 2008StZY and 2009Al30 is 87 μ s 8.	
267 10	61 s +40-20	В	%IT=100 E(level),T _{1/2} : from 2012ReZZ in IT decay (61 s).	

[†] From Eγ, except as noted.

Adopted Levels, Gammas (continued)

 $\gamma(^{192}\text{Re})$

$E_i(level)$	E_{γ}^{\dagger}	I_{γ}	E_f	Mult.†	α^{\ddagger}	Comments
160.1?	160.1 2	100	0.0	(M1)	1.353	
160.1+x?	(x)	100	160.1?			E_{γ} : x \leq 50 keV; see comment on level energy.
						Mult.: possibly E1 (2005Ca02). I(x, ¹⁹² Re) too low for transition to be M2 (2011St21).
267	267 10	100	0.0			E_{γ} : from level-energy difference; γ to g.s. reported in ¹⁹² Re IT decay (61 s), but E_{γ} unstated by authors.

[†] From IT decay (85 μ s), except as noted.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

--- → γ Decay (Uncertain)

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.