$^{192}_{79}$ Pt₁₁₄-1

¹⁹²Au ε decay 2008Mc04,1972Fi12,1966Ny01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012

Parent: ¹⁹²Au: E=0.0; $J^{\pi}=1^-$; $T_{1/2}=4.94$ h 9; $Q(\varepsilon)=3516$ 16; $\%\varepsilon+\%\beta^+$ decay=100.0 Others: 1949Wi08, 1953Ew01, 1954Gi04, 1957Br53, 1957Hu89, 1962Ma18, 1970Er09, 1970Pl09, 1975ViZK, 1979Ka28. 2008Mc04: ¹⁹²Au from the reaction ¹⁸⁶W(¹¹B,5n) at E=60 MeV; YRAST ball array (9 Compton-suppressed segmented HPGe

detectors); recorded γ spectra using (beam on)-(beam off) cycles of 4 h; measured E γ (40-2800 keV), I γ , $\gamma\gamma$ -coin; IBA-1 calculations including configuration mixing.

1972Fi12: sources from ¹⁹²Hg decay, chemistry; measured $E\gamma$, $I\gamma$ (Ge(Li)), E(ce), Ice (Si(Li), unenumerated), $ce\gamma$ coin, $\gamma\gamma$ coin. 1970P109: sources from ¹⁹²Hg decay, chemistry; measured E γ , I γ (Ge(Li), FWHM=2.3 keV at 661 keV).

1966Ny01: sources from Pt(p,xn), E(p)=60 MeV; measured E(ce), Ice (mag spect, resolution=0.10-0.15%), $E\beta$ +, $I\beta$ +

(double-focusing mag spect); supersedes 1965Ny01. See 1966Ny01 for additional ce peaks which probably belong to ¹⁹²Pt, but for which a definite nuclidic assignment was not possible.

The decay scheme is based on that proposed by 2008Mc04; additional data from 1966Ny01, 1970Pl09 and 1972Fi12 are included. More than 95% of the γ -ray intensity has been placed.

¹⁹²Pt Levels

The following levels for ¹⁹²Pt proposed earlier were not confirmed by 2008Mc04: 1133, 1182, 1189, 1278, 1308, 1353, 1514, 1823, 1883, 2200, 2464, 2757, 2909, 3146, 3360.

E(Q),J(Q) Data from ¹⁹²Au and ¹⁹²Ir decays uniquely determine J^{π} to be 3⁻. However, the following suggest a 2⁺ level also at about the same energy: $\alpha(K)\exp=0.0031$ 8 for 1378 γ is more consistent with E2 than E3, and log ft=8.2 for the ε branch to 1378 level is far too low for a second-forbidden transition (log ft>11 expected); in addition, systematics, which show energies for third 2⁺ levels smoothly increasing in ¹⁹⁰Pt, ¹⁹⁴Pt, and ¹⁹⁶Pt, predict a third 2⁺ level in ¹⁹²Pt at 1360 40 keV.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	E(level) [†]	J ^{π‡}
0.0	0^{+}	stable	2149.385 23	1+
316.50645 15	2+	43.7 ps 9	2161.64 4	
612.46318 18	2^{+}	26.5 ps 15	2171.37 4	2+
784.5759 <i>4</i>	4+	4.2 ps 2	2191.30 4	$(2^+, 3^-)$
920.91852 22	3+	21.3 ps 21	2217.12 6	$(2)^{+}$
1195.170 18	0^{+}	-	2236.82 <i>3</i>	$(1,2)^+$
1201.0452 5	4+		2237.52 4	$(2)^{+}$
1378.054 17	3-	41 ps 9	2257.26 3	$(2)^{-}$
1383.88 10	(5)-	_	2296.06 4	$(1,2)^+$
1406.35 4	3+		2319.11 3	1^{+}
1439.263 20	2+		2335.465 19	1^{+}
1546.93 4	(0^{+})		2375.392 25	$(1,2)^+$
1576.368 17	2^{+}		2399.270 24	$(1,2)^+$
1629.30 6	0^{+}		2408.34 <i>3</i>	$(2)^{+}$
1666.63 5	(2,3,4)		2422.78 4	$(1,2)^+$
1739.432 15	$(1)^{-}$		2435.37 6	3+
1766.09 4	$(2,3)^+$		2453.43 8	2^{+}
1793.503 24	$(2)^{+}$		2472.27 5	2^{+}
1880.02 4	3+		2483.64 5	≤3
1894.479 20	$(2,3)^{-}$		2486.29 4	$(2)^{-}$
1976.25 4	$(2)^{+}$		2508.84 6	$(2,3)^+$
2041.81 3	$(2^{-}, 3^{-})$		2532.46 5	1^{+}
2047.89 4	$(2)^{+}$		2549.42 7	$(2)^{+}$
2073.95 4	2^{+}		2560.15 5	$(1^+, 2)$
2120.21 5	(2^{+})		2562.96 5	$(2)^{+}$
2129.52 3	(1^{-})		2585.23 5	$(2)^{+}$
2142.96 4	(3)-		2602.97 4	$(2)^{+}$

Continued on next page (footnotes at end of table)

192 Au ε decay 2008Mc04,1972Fi12,1966Ny01 (continued)

¹⁹²Pt Levels (continued)

E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	$J^{\pi \ddagger}$
2604.76 4	$(1,2)^{-}$	2730.73 5	$(2)^{-}$	2857.07 5	(2 ⁻)	3031.00 7	(≤3)
2614.29 9	(2^{+})	2775.21 6		2890.93 4	$(2)^{-}$	3127.19 4	$(1^{-}, 2^{-})$
2629.24 4	2+	2794.26 7	(≤2)	2947.001 5	(2^{-})	3155.74 <i>4</i>	$(2,3)^{-}$
2635.23 6	1^{+}	2832.89 7	$(1,2)^+$	2950.43 9	$(1,2^+)$	3189.52 7	$(2,3^{-})$
2647.32 6	$(2)^{-}$	2834.60 6	(2^{+})	2958.75 4	$(2,3)^{-}$		
2658.46 9	$(1,2)^+$	2856.13 5	$(2)^{-}$	3027.39 5	$(2,3)^{-}$		

[†] From least-squares fit to $E\gamma$. [‡] Adopted values.

ε, β^+ radiations

 $\varepsilon + \beta^+$ feedings to excited states are from intensity imbalance at each level; g.s. feeding was determined from absolute intensity of 316.5 γ (see comment with I γ normalization).

E(decay)	E(level)	Ιε	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(326 16)	3189.52	0.116 16	7.44 9	0.116 16	εK=0.740 6; εL=0.195 4; εM+=0.0657 16
(360 16)	3155.74	0.89 12	6.66 8	0.89 12	εK=0.750 5; εL=0.188 4; εM+=0.0629 13
(389 16)	3127.19	0.24 4	7.31 9	0.24 4	εK=0.756 4; εL=0.183 3; εM+=0.0610 10
(485 16)	3031.00	0.129 17	7.81 7	0.129 17	εK=0.7717 21; εL=0.1716 15; εM+=0.0567 6
(489 16)	3027.39	0.47 6	7.25 7	0.47 6	εK=0.7722 20; εL=0.1713 15; εM+=0.0565 6
(557 16)	2958.75	0.72 9	7.20 7	0.72 9	εK=0.7793 15; εL=0.1662 11; εM+=0.0545 4
(566 16)	2950.43	0.099 22	8.07 10	0.099 22	εK=0.7800 15; εL=0.1657 11; εM+=0.0543 4
(569 16)	2947.001	0.35 5	7.53 7	0.35 5	εK=0.7803 14; εL=0.1655 10; εM+=0.0543 4
(625 16)	2890.93	0.55 8	7.43 7	0.55 8	εK=0.7845 12; εL=0.1624 8; εM+=0.0531 4
(659 16)	2857.07	0.40 5	7.61 6	0.40 5	εK=0.7867 10; εL=0.1609 8; εM+=0.0525 3
(660 16)	2856.13	0.35 5	7.67 7	0.35 5	εK=0.7867 10; εL=0.1608 7; εM+=0.0525 3
(681 16)	2834.60	0.25 5	7.85 9	0.25 5	εK=0.7880 10; εL=0.1599 7; εM+=0.0521 3
(683 16)	2832.89	0.35 5	7.71 7	0.35 5	εK=0.7880 9; εL=0.1599 7; εM+=0.0521 3
(722 16)	2794.26	0.071 11	8.45 8	0.071 11	εK=0.7900 8; εL=0.1584 6; εM+=0.05154 23
(741 16)	2775.21	0.108 15	8.30 7	0.108 15	εK=0.7909 8; εL=0.1578 6; εM+=0.05129 21
(785 16)	2730.73	0.23 3	8.02 6	0.23 3	εK=0.7929 7; εL=0.1564 5; εM+=0.05075 19
(858 16)	2658.46	0.128 18	8.36 7	0.128 18	εK=0.7955 6; εL=0.1545 4; εM+=0.05002 15
(869 16)	2647.32	0.86 16	7.55 9	0.86 16	εK=0.7959 6; εL=0.1542 4; εM+=0.04992 15
(881 16)	2635.23	0.58 10	7.73 8	0.58 10	εK=0.7962 5; εL=0.1539 4; εM+=0.04981 15
(887 16)	2629.24	0.83 12	7.58 7	0.83 12	εK=0.7964 5; εL=0.1538 4; εM+=0.04976 14
(902 16)	2614.29	0.90 13	7.56 7	0.90 13	εK=0.7969 5; εL=0.1535 4; εM+=0.04963 14
(911 16)	2604.76	0.36 5	7.97 7	0.36 5	εK=0.7972 5; εL=0.1533 4; εM+=0.04956 14
(913 16)	2602.97	0.24 4	8.15 8	0.24 4	εK=0.7972 5; εL=0.1532 4; εM+=0.04954 13
(931 16)	2585.23	0.54 8	7.81 7	0.54 8	εK=0.7977 5; εL=0.1529 4; εM+=0.04940 13
(953 16)	2562.96	0.87 11	7.63 6	0.87 11	εK=0.7983 5; εL=0.1524 3; εM+=0.04924 12
(956 16)	2560.15	0.23 4	8.21 8	0.23 4	εK=0.7984 5; εL=0.1524 3; εM+=0.04922 12
(967 16)	2549.42	0.144 19	8.42 6	0.144 19	εK=0.7987 5; εL=0.1522 3; εM+=0.04914 12
(984 16)	2532.46	0.70 9	7.75 6	0.70 9	εK=0.7991 4; εL=0.1519 3; εM+=0.04902 11
(1007 16)	2508.84	0.29 4	8.16 7	0.29 4	εK=0.7997 4; εL=0.1515 3; εM+=0.04887 11
(1030 16)	2486.29	0.93 12	7.67 6	0.93 12	εK=0.8002 4; εL=0.1511 3; εM+=0.04872 10
(1032 16)	2483.64	0.18 3	8.39 8	0.18 3	εK=0.8002 4; εL=0.1511 3; εM+=0.04871 10
(1044 16)	2472.27	0.21 4	8.33 9	0.21 4	εK=0.8005 4; εL=0.1509 3; εM+=0.04864 10
(1063 16)	2453.43	0.23 4	8.31 8	0.23 4	εK=0.8009 4; εL=0.15060 25; εM+=0.04853 10
(1081 16)	2435.37	0.26 4	8.87 ¹ <i>u</i> 8	0.26 4	εK=0.7763 9; εL=0.1682 6; εM+=0.05550 24
(1093 16)	2422.78	1.9 <i>3</i>	7.42 7	1.9 <i>3</i>	εK=0.8015 4; εL=0.15016 23; εM+=0.04836 9

Continued on next page (footnotes at end of table)

¹⁹²Au ε decay 2008Mc04,1972Fi12,1966Ny01 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ †	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(1108 16)	2408.34		0.59 8	7.94 6	0.59 8	εK=0.8018 3; εL=0.14996 23; εM+=0.04828 9
(1117 16)	2399.270		2.7 4	7.28 7	2.7 4	εK=0.8019 3; εL=0.14983 22; εM+=0.04823 9
(1141 16)	2375.392		1.8 <i>3</i>	7.48 8	1.8 <i>3</i>	εK=0.8024 3; εL=0.14952 21; εM+=0.04811 8
(1181 16)	2335.465		11.4 14	6.71 6	11.4 14	εK=0.8030 3; εL=0.14903 20; εM+=0.04793 8
(1197 16)	2319.11		4.0 5	7.18 6	4.0 5	εK=0.8033 3; εL=0.14883 19; εM+=0.04785 8
(1220 16)	2296.06		0.96 17	7.81 8	0.96 17	εK=0.8037 3; εL=0.14857 18; εM+=0.04775 7
(1259 16)	2257.26		2.6 4	7.41 7	2.6 4	εK=0.8042 3; εL=0.14815 17; εM+=0.04759 7
(1278 16)	2237.52		8.0 10	6.93 6	8.0 10	εK=0.8045 3; εL=0.14795 17; εM+=0.04751 7
(1279 16)	2236.82		2.2 3	7.50 6	2.2 3	εK=0.8045 3; εL=0.14794 17; εM+=0.04751 7
(1299 16)	2217.12		0.138 19	8.71 7	0.138 19	εK=0.8048 2; εL=0.14775 16; εM+=0.04743 7
(1325 16)	2191.30		0.20 3	8.57 7	0.20 3	εK=0.8051 2; εL=0.14750 16; εM+=0.04734 6
(1345 16)	2171.37		2.4 4	7.50 8	2.4 4	εK=0.8053 2; εL=0.14731 15; εM+=0.04727 6
(1354 16)	2161.64		0.17 3	8.66 8	0.17 3	εK=0.8054 2; εL=0.14722 15; εM+=0.04723 6
(1367 16)	2149.385		2.7 4	7.47 7	2.7 4	εK=0.8055 2; εL=0.1471 2; εM+=0.04719 6
(1373 16)	2142.96		0.069 17	9.06 11	0.069 17	εK=0.8056 2; εL=0.1470 2; εM+=0.04717 6
(1386 16)	2129.52		1.09 14	7.87 6	1.09 14	εK=0.8057 2; εL=0.1469 2; εM+=0.04712 6
(1396 16)	2120.21		0.110 18	8.88 8	0.110 18	εK=0.8058 2; εL=0.1468 2; εM+=0.04709 6
(1442 16)	2073.95		0.19 3	8.67 7	0.19 3	εK=0.8062 2; εL=0.1464 2; εM+=0.04694 6
(1468 16)	2047.89		1.11 14	7.92 6	1.11 14	εK=0.8063 1; εL=0.1462 2; εM+=0.04686 5
(1474 16)	2041.81		0.075 18	9.09 11	0.075 18	εK=0.8064 1; εL=0.1462 2; εM+=0.04684 5
(1540 16)	1976.25	0.00031 6	0.30 4	8.53 6	0.30 4	av E β =253.2 72; ε K=0.8067; ε L=0.1457 2; ε M+=0.04664 5
(1622 16)	1894.479	0.00090 16	0.48 7	8.37 7	0.48 7	av $E\beta$ =289.6 71; ε K=0.8067; ε L=0.1450 2; ε M+=0.04640 5
(1636 16)	1880.02	0.00062 18	0.30 8	8.59 12	0.30 8	av $E_{\beta}=296.0$ 7 <i>1</i> ; ε K=0.8067; ε L=0.1449 2; ε M+=0.04636 5
(1722 16)	1793.503	0.00082 16	0.24 4	8.73 8	0.24 4	av $E\beta$ =334.3 74; ε K=0.8063 2; ε L=0.1442 2; ε M=-0.06611 5
(1750 16)	1766.09	0.00049 11	0.124 25	9.03 9	0.124 25	av $E\beta$ =346.4 <i>69</i> ; ε K=0.8060 <i>2</i> ; ε L=0.1440 <i>2</i> ;
(1777 16)	1739.432	0.018 3	4.0 5	7.54 6	4.0 5	av $E\beta$ =358.0 71; ε K=0.8057 2; ε L=0.1438 2;
(1849 16)	1666.63	0.00038 6	0.060 9	9.40 7	0.060 9	av $E\beta$ =390.1 71; ε K=0.8047 3; ε L=0.1432 2; ε M+=-0.04574 5
(1887 16)	1629.30	0.0025 5	0.34 6	8.66 8	0.34 6	av $E\beta$ =406.5 71; ε K=0.8041 4; ε L=0.14284 15; ε M+=-0.04562 5
(1940 16)	1576.368	0.0052 11	0.55 11	8.47 9	0.56 11	av $E\beta$ =429.7 71; ε K=0.8029 4; ε L=0.14236 15; ε M+=0.04546 6
(1969 16)	1546.93	0.0033 6	0.32 5	8.73 7	0.32 5	av $E\beta$ =442.6 7 <i>I</i> ; ε K=0.8022 5; ε L=0.14208 <i>I</i> 6; ε M+=0.04536 6
(2077 [‡] 16)	1439.263	0.0057 12	0.37 8	8.70 10	0.38 8	av $E\beta$ =489.8 70; ε K=0.7989 6; ε L=0.14099 18; ε M = 0.04090 6
(2110 16)	1406.35	0.00086 19	0.050 11	9.59 10	0.051 11	av $E\beta$ =504.2 70; ε K=0.7977 7; ε L=0.14064 18; ε M+=-0.04487 6
(2132 16)	1383.88	0.0010 2	0.057 10	9.55 8	0.058 10	av $E\beta$ =514.1 70; ε K=0.7968 7; ε L=0.14039 19; ε M+=0.04478 7
(2138 [‡] 16)	1378.054	0.0081 15	0.43 8	8.67 8	0.44 8	av $E\beta$ =516.6 70; ε K=0.7966 7; ε L=0.14032 19; ε M+=0.04476 7
						Log ft: value is unreasonably small for a second-forbidden transition
(2315 16)	1201.0452	0.0042 9	0.14 3	9.24 10	0.14 3	av E β =594.2 71; ε K=0.7879 10; ε L=0.13813 22; ε M+=0.04403 8
(2321 [‡] 16)	1195.170	0.014 3	0.45 10	8.73 10	0.46 10	av E β =596.8 71; ε K=0.7876 10; ε L=0.13805 22; ε M+=0.04400 8
(2595 16)	920.91852	0.0093 19	0.58 12	10.10 ¹ <i>u</i> 9	0.59 12	av E β =720.3 68; ε K=0.7919 4; ε L=0.14561 17; ε M+=0.04678 6

Continued on next page (footnotes at end of table)

192 Au ε decay 2008Mc04,1972Fi12,1966Ny01 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(2731 16)	784.5759	0.011 6	0.15 7	9.35 22	0.16 8	av Eβ=777.4 71; εK=0.7555 16; εL=0.1313 4; εM+=0.04179 11
(2904 16)	612.46318	0.37 7	3.5 6	8.03 8	3.9 7	av E β =853.3 71; ε K=0.7372 19; ε L=0.1277 4; ε M+=0.04064 12
3214 10	316.50645	1.59 23	9.7 14	7.68 7	11.3 16	av Eβ=984.7 72; εK=0.6998 23; εL=0.1207 4; εM+=0.03839 13
3514 20	0.0	3.6 20	14 8	7.59 25	18 <i>10</i>	E(decay): deduced from Eβ+=2192 keV 10 (1966Ny01). Iβ ⁺ : smaller value (0.53) can be deduced from Iβ/Ice(K peak for 316.5γ)=0.17 3 (1966Ny01, allowed shape assumed), Iγ(316.5γ) (1979Ka28), and α (K)(316.5γ) (E2 theory). av Eβ=1125.9 72; εK=0.6531 25; εL=0.1123 5; εM+=0.03567 15 E(decay): deduced from Eβ+=2492 keV 20 (1966Ny01). Other value: 2498 keV 25 (1975ViZK). Iβ ⁺ : smaller value (0.63) can be deduced from Iβ/Ice(K peak for 316.5γ)=0.20 2 (1966Ny01, allowed shape assumed), %Iγ(316.5γ) (1979Ka28), and α (K)(316.5γ) (E2 theory).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

¹⁹²Au ε decay **2008Mc04,1972Fi12,1966Ny01** (continued)

 $\gamma(^{192}\text{Pt})$

I γ normalization: From %I(316.5 γ)=0.48 *6* if I(274.8 γ , ¹⁹²Au)=0.42% (1979Ka28), adjusted by evaluator for adopted %I(274.8 γ , ¹⁹²Hg ε decay)=0.518 (this evaluation). 1979Ka28 measured cross sections in pion spallation of gold, and determined the growth and decay of 316.5 γ relative to 274.8 γ . α (K)exp: from I γ listed here and Ice in 1966Ny01. The I γ and Ice scales were normalized assuming α (K)(316.5 γ)=0.0535 8 (E2 theory), α (K)(468.1 γ)=0.0212

3 (E2 theory) and $\alpha(K)(612.5\gamma)=0.01179$ 17 (E2 theory). This leads to normalization factors of 0.0482 22, 0.044 4 and 0.040 3, respectively; the value used was

0.042 6, the weighted average with its uncertainty expanded to include the highest precision datum.

I γ (ghik) From 1970Pl09.

E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
108 <i>fh</i>	< 0.003	1546.93	(0^+)	1439.263	2+				
136.3 <i>1</i>	0.031 8	920.91852	3+	784.5759	4+	M1+E2 ^b	+3.5 ^b +39–16	1.53 <i>19</i>	α (K)=0.6 3; α (L)=0.73 6; α (M)=0.187 16; α (N+)=0.053 5 α (N)=0.046 4; α (O)=0.0072 6; α (P)=6.E-5 3
137 <i>fh</i>	< 0.002	1576.368	2+	1439.263	2^{+}				
163 <i>fh</i>	< 0.005	1739.432	$(1)^{-}$	1576.368	2^{+}				
170 <i>fh</i>	< 0.004	1576.368	2+	1406.35	3+				
176.84 8	0.21 2	1378.054	3-	1201.0452	4+	[E1]		0.0956	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0783 \ 11; \ \alpha(\mathbf{L}) = 0.01332 \ 19; \ \alpha(\mathbf{M}) = 0.00308 \ 5; \\ &\alpha(\mathbf{N}+) = 0.000888 \ 13 \\ &\alpha(\mathbf{N}) = 0.000752 \ 11; \ \alpha(\mathbf{O}) = 0.0001294 \ 19; \\ &\alpha(\mathbf{P}) = 6.71 \times 10^{-6} \ 10 \end{aligned}$
^x 185.70 20	0.10 1								
186.1 1	0.026 5	2335.465	1^{+}	2149.385	1^{+}				
190 <i>^f</i> ^h	< 0.005	1629.30	0^{+}	1439.263	2+				
192.50 9	0.03 1	1739.432	$(1)^{-}$	1546.93	(0^{+})				
198 ^{<i>f n</i>}	< 0.002	1576.368	2+	1378.054	3-				
205 ^{<i>f</i> h}	< 0.002	1406.35	3+	1201.0452	4+				
225.97 8	0.29 1	2375.392	(1,2)+	2149.385	1+	M1		0.665	$\begin{aligned} &\alpha(\mathbf{K}) = 0.548 \ 8; \ \alpha(\mathbf{L}) = 0.0900 \ 13; \ \alpha(\mathbf{M}) = 0.0208 \ 3; \\ &\alpha(\mathbf{N}+) = 0.00613 \ 9 \\ &\alpha(\mathbf{N}) = 0.00514 \ 8; \ \alpha(\mathbf{O}) = 0.000925 \ 13; \ \alpha(\mathbf{P}) = 6.25 \times 10^{-5} \ 9 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 1.44 \ 24; \ \mathbf{K}/\mathbf{L}1 = 10 \ 2, \ \mathbf{L}1/\mathbf{L}2 > 5 \\ &(1966 \mathrm{Ny}01). \end{aligned}$
235.09 10	0.033 8	2129.52	(1^{-})	1894.479	$(2,3)^{-}$				
238^{fh}	< 0.005	1439.263	2+	1201.0452	4+				
244.05 8	0.055 6	1439.263	2+	1195.170	0^+				other Iγ: 0.070 7 (1972Fi12).
249.83 7	0.40 2	2399.270	(1,2)+	2149.385	1+	Ml		0.504	$\begin{aligned} &\alpha(\mathbf{K}) = 0.416 \ 6; \ \alpha(\mathbf{L}) = 0.0681 \ 10; \ \alpha(\mathbf{M}) = 0.01572 \ 22; \\ &\alpha(\mathbf{N}+) = 0.00464 \ 7 \\ &\alpha(\mathbf{N}) = 0.00389 \ 6; \ \alpha(\mathbf{O}) = 0.000700 \ 10; \ \alpha(\mathbf{P}) = 4.73 \times 10^{-5} \ 7 \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.51 \ 11. \\ &\text{other I} \gamma: \ 0.48 \ 3 \ (1972 \text{Fi}12). \end{aligned}$

				192 Au ε deca	y 200)8Mc04,1972	Fi12,1966Ny	01 (contin	ued)
						$\gamma(^{192}\text{Pt})$ (con	tinued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
261.50 5 *275.00 15	$0.040\ 7$ $0.22\ 2$	2335.465	1^{+}	2073.95	2+				placement from 2890 level rejected by 2008Mc04
288.59 <i>5</i> 295.95650 ^b 15	0.082 7 38.7 4	1666.63 612.46318	(2,3,4) 2 ⁺	1378.054 316.50645	3 ⁻ 2 ⁺	M1+E2 ^b	+10.0 ^b 4	0.1047	placement from a 3146 level rejected by 2008Mc04. $\alpha(K)=0.0651 \ 10; \ \alpha(L)=0.0299 \ 5; \ \alpha(M)=0.00749 \ 11; \ \alpha(N+)=0.00214 \ 3$ $\alpha(N)=0.00183 \ 3; \ \alpha(O)=0.000299 \ 5; \ \alpha(P)=6.58\times10^{-6} \ 10$
									Mult.: K/L=2.4 6, L1/L2=0.7 1, (L1+L2)/L3=3.6 9 (1966Ny01); α(K)exp=0.066 11. E _γ : 295.94 3 (2008Mc04) from Au ε decay. I _γ : weighted average of 38.5 5 (1972Fi12), 38.8 5 (2008Mc04). δ: 2.5 +6-4 from ce data in ¹⁹² Au ε decay.
308.45507 ^b 17	5.97 8	920.91852	3+	612.46318	2+	M1+E2 ^b	+7.20 ^b 3	0.0943	$\alpha(K)=0.0603 \ 9; \ \alpha(L)=0.0257 \ 4; \ \alpha(M)=0.00642 \ 9; \ \alpha(N+)=0.00184 \ 3 \ \alpha(N)=0.001574 \ 22; \ \alpha(O)=0.000258 \ 4; \ \alpha(P)=6.15\times10^{-6} \ 9 \ Mult.: \ K/L=2.1 \ 7, \ (L1+L2)/L3=5.1 \ 7 \ (1966Ny01); \ \alpha(K)exp=0.055 \ 9. \ E_{\gamma}: \ 308.45 \ 2 \ (2008Mc04) \ from \ Au \ \varepsilon \ decay. \ L_{\gamma}: \ weighted \ average \ of \ 5.94 \ 10 \ (1972Fi12), \ 6.05 \ 15 \ 15 \ 10^{-6} \$
									(2008Mc04). other $\delta > 4.0$ from $\alpha(K)$ over in $\frac{192}{2}$ Au α decay
316.50618 ^b 17	100.0 <i>10</i>	316.50645	2+	0.0	0+	E2 ^b		0.0841	
333 <i>fh</i>	< 0.001	1739.432	(1)-	1406.35	3+				
335.97 9 347 45 15	0.035 8	2129.52 2604 76	(1^{-}) $(1^{-}2)^{-}$	1793.503 2257.26	$(2)^+$ $(2)^-$				
355.93 10	0.012 5	2149.385	(1,2) 1 ⁺	1793.503	$(2)^+$				
356.77 15	0.013 4	2236.82	$(1,2)^+$	1880.02	3^+				
361.33 5	0.037 0	2335.465 1739.432	$(1)^{-}$	1976.25	$(2)^{-1}$				
375.26 8	0.014 3	1576.368	2+	1201.0452	4^+				
381.25 8 382.9 <i>3</i>	0.031 <i>3</i> 0.016 <i>7</i>	1576.368 2532.46	$\frac{2}{1^+}$	1195.170 2149.385	1^{+}				
x393.4 9	0.05 2	000000	(1 C) ±	1004 170	(2.0) -				placement from 2217 level rejected by 2008Mc04.
401.60 16	0.015 5	2296.06	$(1,2)^{+}$	1894.479	$(2,3)^{-}$				

 $^{192}_{78} Pt_{114}\text{-}6$

				192 Au ε d	lecay	2008Mc04,1	1972Fi12,196	66Ny01 (con	tinued)
						$\gamma(^{192}\text{Pt})$	(continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
415 <i>fh</i>	< 0.004	1793.503	$(2)^{+}$	1378.054	3-				
416.4688 ^b 7	0.098 9	1201.0452	4+	784.5759	4+	M1+E2 ^b	+2.9 ^b 10	0.049 10	α (K)=0.036 9; α (L)=0.0097 9; α (M)=0.00236 20; α (N+)=0.00068 6 α (N)=0.00058 5; α (O)=9.8×10 ⁻⁵ 10; α (P)=3.8×10 ⁻⁶ 10 E _{γ} : 416.53 8 (2008Mc04) from Au ε decay.
x421.3 10	0.02 1								placements from 2658 and 2757 levels rejected by 2008Mc04.
x433.18 18	0.10 1	2225 165	1+	1904 470	$(2 \ 2)^{-}$				placement from 2857 level rejected by 2008Mc04.
443.19 10	0.032 5	2604.76	$(1,2)^{-}$	2161.64	(2,3)				other E γ : 442.2 9 (1970Pl09). placement from 2658 level rejected by 2008Mc04.
443.33 8 451.89 <i>12</i> ^x 455.7 ^a	$0.020 \ 3$ $0.015 \ 5$ $0.05 \ 2$	2236.82 2191.30	$(1,2)^+$ $(2^+,3^-)$	1793.503 1739.432	$(2)^+$ $(1)^-$				placement from 2335 level rejected by 2008Mc04.
468.0688 ^b 3	3.5 1	784.5759	4+	316.50645	2+	E2 ^b		0.0291	$\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00606 \ 9; \ \alpha(M)=0.001479 \ 21; \ \alpha(N+)=0.000427 \ 6$
477.69 10	0.017 4	2217.12	(2) ⁺	1739.432	(1)-				$\alpha(N)=0.000363 5; \alpha(O)=6.11\times10^{-5} 9; \alpha(P)=2.22\times10^{-6} 4$ $E_{\gamma}: 468.08 3 (2008Mc04) \text{ from Au } \varepsilon \text{ decay.}$ other $I_{\gamma}: 3.01 5 \text{ from } 1972Fi12.$ other data: $E_{\gamma}=476.95 20 (1966Ny01), 477.16 20$ (1972Fi12); $I_{\gamma}=1.86 19 (1972Fi12)$, are presumably for a different or contaminated G. $\alpha(K)$ exp=0.035 8
479.84 8	0.019 5	2629.24	2+	2149.385	1+				implies M1+E2 for that line. E_{γ} : placement from 2614 level shown in table I of 2008Mc04 is incorrect according to an e-mail reply
484.53 9	0.036 5	2604.76	$(1.2)^{-}$	2120.21	(2^{+})				from Dr. McCutchan on July 28, 2008.
485.45 6	0.13 1	1406.35	3+	920.91852	3+				other Ey: 485.07 15 (1972Fi12).
495.36 9	0.053 6	2375.392	$(1,2)^+$	1880.02	3+				placement from 2319 rejected by 2008Mc04.
502 ^{<i>f n</i>}	< 0.007	1880.02	3+	1378.054	3-				
*504.25 14	0.12 I	1804 470	$(2 \ 2)^{-}$	1278 054	2-				placement from 26/6 level rejected by 2008Mc04.
518.28 <i>10</i>	0.44 2 0.53 7	1439.263	(2,3) 2 ⁺	920.91852	3 3 ⁺				other Eγ (Iγ): 517.80 20 (0.70 10) (1972Fi12) for doubly-placed G.
									placement from 2257 rejected by 2008Mc04.
519.25 9	0.12 1	2399.270	$(1,2)^+$	1880.02	3+				placement from 2409 level rejected by 2009 Mc04
x541.7 10	0.06 5								placements from 3156 and 1895 levels rejected by 2008Nic04.
544.19 8	0.085 8	1739.432	$(1)^{-}$	1195.170	0^{+}				
547.32 8	0.035 5	3031.00	(≤3)	2483.64	<u>≤</u> 3				
556.59 8	0.063 8	2296.06	$(1,2)^+$	1739.432	$(1)^{-}$				placement from 2757 rejected by 2008Mc04.

					•	$\gamma(^{192}\text{Pt})$ (cor	ntinued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^π	Mult. [@]	$\delta^{@}$	$lpha^\dagger$	Comments
560.5 ^a	0.07 ^d 4								placements from 2857 and a 3146 level rejected by 2008Mc04.
565.13 <i>10</i> 569.30 <i>20</i>	0.022 <i>3</i> 0.40 <i>8</i>	1766.09	(2,3)+	1201.0452	4+				placements from 1182 and 2464 levels rejected by
571 <i>fh</i> 573.05 <i>10</i> 581.89 8	<0.003 0.059 5 0.045 5	1766.09 2149.385 2375.392	$(2,3)^+$ 1 ⁺ $(1,2)^+$	1195.170 1576.368 1793.503	0^+ 2 ⁺ (2) ⁺				2008MC04.
582.70 3	4.62 7	1195.170	0+	612.46318	2+	E2		0.01722	$\alpha(K)=0.01310 \ 19; \ \alpha(L)=0.00314 \ 5; \ \alpha(M)=0.000756 \ 11; \ \alpha(N+)=0.000219 \ 3 \ \alpha(N)=0.000186 \ 3; \ \alpha(O)=3.18\times10^{-5} \ 5; \ \alpha(P)=1.385\times10^{-6} \ 20 \ Mult.: \ \alpha(K)exp=0.0154 \ 24. \ L_{2}: \ from \ 1972Fi12: \ 5.2 \ 1 \ from \ 2008Mc04.$
588.5810 ^b 7	0.70 2	1201.0452	4+	612.46318	2+	E2 ^b		0.01682	$\alpha(K)=0.01282 \ 18; \ \alpha(L)=0.00305 \ 5; \ \alpha(M)=0.000734 \ 11; \ \alpha(N+)=0.000213 \ 3 \ \alpha(N)=0.000181 \ 3; \ \alpha(O)=3.09\times10^{-5} \ 5; \ \alpha(P)=1.356\times10^{-6} \ 19 \ Mult.: \ \alpha(K)exp=0.015 \ 3. \ E_{\gamma}: \ 588.66 \ 5 \ (2008Mc04) \ from \ Au \ \varepsilon \ decay. \ other \ I\gamma: \ 0.51 \ 3 \ (1972Fi12).$
591.75 9	0.25 2	2486.29	$(2)^{-}$	1894.479	(2,3)-				
593.46 4	1.52 5	1378.054	3-	784.5759	4+	E1+M2 ^b	-0.07 ^b 2	0.0064 5	$ \begin{array}{l} \alpha = 0.0064 \ 5; \ \alpha(\mathrm{K}) = 0.0054 \ 4; \ \alpha(\mathrm{L}) = 0.00084 \ 7; \\ \alpha(\mathrm{M}) = 0.000192 \ 16; \ \alpha(\mathrm{N}+) = 5.6 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 4.7 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 8.4 \times 10^{-6} \ 7; \ \alpha(\mathrm{P}) = 5.3 \times 10^{-7} \\ 5 \end{array} $
									Mult.: α (K)exp=0.0061 <i>14</i> . other I γ : 1.35 <i>4</i> (1972Fi12). other δ : 0.14 +5-6 from α (K)exp.
598. ^{fh} 599.3 1	<0.005 0.099 <i>10</i>	1793.503 1383.88	$(2)^+$ (5) ⁻	1195.170 784.5759	$0^+ 4^+$				placement from 2857 level rejected by 2008Mc04.
504.41105 ^b 25	1.83 3	920.91852	3+	316.50645	2+	M1+E2 ^b	-1.48 ^b 2	0.0258	α(K)=0.0207 4; α(L)=0.00392 6; α(M)=0.000921 14 α(N+)=0.000269 4 α(N)=0.000227 4; α(O)=3.99×10 ⁻⁵ 6; α(P)=2.26×10 ⁻⁶ 4 Mult.: K/L1=3.7 8 (1966Ny01), α(K)exp=0.021 4. E _γ : 604.43 2 (2008Mc04) from Au ε decay. δ: 1.2 +4-3 from α(K)exp: K/L1 appears to be
h	a (a c	(12 4(210	2+	0.0	0±	Бор		0.01526	incorrect.

 ∞

 $^{192}_{78}\mathrm{Pt}_{114}\text{-}8$

 $^{192}_{78}\mathrm{Pt}_{114}\mathrm{-8}$

				¹⁹² Au	ε decay	2008Mc04	4,1972Fi12,19	66Ny01 (co	ntinued)
						$\gamma(^{192}$ Pt	(continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
									10; α (N+)=0.000190 3 α (N)=0.0001612 23; α (O)=2.76×10 ⁻⁵ 4; α (P)=1.247×10 ⁻⁶ 18 K/L=3.1 5 (1966Ny01). E _γ : 612.50 4 (2008Mc04) from Au ε decay. I _γ : weighted average of 7.48 6 (1972Fi12), 7.46 10 (2008Mc04).
622 <i>fh</i> ^x 624.3 5	<0.003 0.11 <i>I</i>	1406.35	3+	784.5759	4+	E2(+M1)	≥2.1	0.017 <i>3</i>	$\alpha(K)=0.0136\ 23;\ \alpha(L)=0.0029\ 3;\ \alpha(M)=0.00069\ 7;\alpha(N+)=0.000200\ 20\alpha(N)=0.000169\ 17;\ \alpha(O)=2.9\times10^{-5}\ 3;\ \alpha(P)=1.5\times10^{-6}\ 3$ Mult.: $\alpha(K)$ exp=0.016 5.
634.69 8	0.075 9	2073.95	2+	1439.263	2+				placements from 1823 and 2835 levels rejected by 2008Mc04.
^x 638.1 5 643.56 8 ^x 647.3 ^{&} 4	0.06 2 0.028 4	3127.19	(1 ⁻ ,2 ⁻)	2483.64	≤3				placement from 2048 level rejected by 2008Mc04.
x649.08 24 653.02 8 654.68 0	0.06 <i>1</i> 0.024 <i>4</i> 0.065 8	2629.24	$2^+_{2^+}$	1976.25	$(2)^+$				Mult.: $\alpha(K) \exp = 0.10 \ 4$.
655.44 <i>3</i>	0.28 1	1576.368	2 2 ⁺	920.91852	3 ⁺	M1(+E2)	0.5 +5-6	0.033 8	$\alpha(K)=0.028$ 7; $\alpha(L)=0.0045$ 9; $\alpha(M)=0.00105$ 19; $\alpha(N+)=0.00031$ 6 $\alpha(N)=0.00026$ 5; $\alpha(O)=4.6\times10^{-5}$ 9; $\alpha(P)=3.1\times10^{-6}$ 8 Mult.: $\alpha(K)\exp=0.026$ 6.
661.0 ^a 3 663.73 19	0.049 <i>9</i> 0.010 <i>3</i>	2237.52 2041.81	$(2)^+$ $(2^-, 3^-)$	1576.368 1378.054	2^+ 3^-				
665.73 8 668.91 5 669.77 10 671.15 15 673.76 11 *678.3 9 680.06 13	0.056 8 0.18 2 0.032 3 0.015 4 0.019 4 0.05 2 0.010 5	2560.15 2408.34 2047.89 2832.89 3127.19	$(1^+,2)$ $(2)^+$ $(1,2)^+$ $(1^-,2^-)$ $(1^+,2)$	1894.479 1739.432 1378.054 2161.64 2453.43	$(2,3)^{-}$ $(1)^{-}$ 3^{-} 2^{+} 3^{+}				placement from a 1278 level rejected by 2008Mc04.
683.32 8 688.88 10	0.010 <i>J</i> 0.11 <i>I</i> 0.019 <i>4</i>	2422.78 2730.73	$(1,2)^+$ $(1,2)^-$	1739.432 2041.81	$(1)^{-}$ $(2^{-},3^{-})$				other Ιγ: 0.33 10 (1970Pl09).
689.88 6	0.34 1	2236.82	(1,2)+	1546.93	(0+)				I _γ : from 1972Fi12; I _γ =0.33 2 from 2008Mc04. Mult.: α (K)exp=0.047 14 for probable multiplet dominated by this transition exceeds α (K)(M1). however, level scheme implies pure mult.
690.20 8 692.84 9 695.8 <i>3</i> 701.47 9	0.067 8 0.021 3 0.029 8 0.020 4	2129.52 2486.29 2073.95 2958.75	(1^{-}) $(2)^{-}$ 2^{+} $(2,3)^{-}$	1439.263 1793.503 1378.054 2257.26	2^+ (2) ⁺ 3^- (2) ⁻				placement from a 1308 level rejected by 2008Mc04.

From ENSDF

 $^{192}_{78}\mathrm{Pt}_{114}\text{-}9$

				¹⁹² Au	ε decay	2008Mc	04,1972Fi12,196	6Ny01 (co	ntinued)
						$\gamma(^{192})$	Pt) (continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
704.4 <i>1</i> x705.05 ^{&} 20	0.021 5	3127.19	(1 ⁻ ,2 ⁻)	2422.78	(1,2)+				placements from 1894 and 2585 levels rejected by
710.27 6	0.14 <i>I</i>	2604.76	(1,2)-	1894.479	(2,3)-	M1		0.0313	2008Mc04. α(K)=0.0260 4; α(L)=0.00413 6; α(M)=0.000950 14; α(N+)=0.000280 4
									α (N)=0.000235 4; α (O)=4.24×10 ⁻⁵ 6; α (P)=2.89×10 ⁻⁶ 4 placement from 2149 level rejected by 2008Mc04. Mult.: α (K)exp=0.045 12.
727.60 13	0.018 5	2857.07	(2 ⁻)	2129.52	(1 ⁻)	M1		0.0294	$\alpha(\mathbf{K})=0.0244\ 4;\ \alpha(\mathbf{L})=0.00388\ 6;\ \alpha(\mathbf{M})=0.000892\ 13;\alpha(\mathbf{N}+)=0.000263\ 4$
724 67 15	0.026.4	2620.24	2+	1804 470	$(2 \ 2)^{-}$				$\alpha(N)=0.0002213; \alpha(O)=3.98\times10^{-6} 0; \alpha(P)=2.72\times10^{-6} 4$ Mult.: $\alpha(K)$ exp=0.079 3.
736.61 8	0.020 4 0.036 5	2029.24 2142.96	(3)-	1406.35	(2,3) 3 ⁺				placement from a 2952 level rejected by 2008Mc04.
742.15 <i>13</i> 745.67 <i>10</i>	0.015 5 0.019 4	2120.21 1666.63	(2^+) (2,3,4)	1378.054 920.91852	3- 3+				Mult.: $\alpha(K)exp=0.41$ 14; implies large E0 component, unless ce line is contaminated or misidentified.
746.85 6	0.48 2	2486.29	(2) ⁻	1739.432	(1)-	M1		0.0275	placement from a 3146 level rejected by 2008Mc04. $\alpha(K)=0.0228 4$; $\alpha(L)=0.00362 5$; $\alpha(M)=0.000834 12$; $\alpha(N+)=0.000246 4$
									$\alpha(N)=0.000206 \ 3; \ \alpha(O)=3.72\times10^{-5} \ 6; \ \alpha(P)=2.54\times10^{-6} \ 4$ Mult: $\alpha(K)=p=0.022 \ 5.$
									other 1γ : 0.35 2 (19/2F112) for doublet. placement from a 3146 level rejected by 2008Mc04.
749.24 7 751.50 9	0.056 5 0.071 8	2629.24 2129.52	2^+ (1 ⁻)	1880.02 1378.054	3+ 3-				placement from a 1883 level rejected by 2008Mc04.
759.10 5	2.85 5	2335.465	1+	1576.368	2+	M1		0.0264	$\alpha(K)=0.0219 \ 3; \ \alpha(L)=0.00347 \ 5; \ \alpha(M)=0.000799 \ 12; \ \alpha(N+)=0.000236 \ 4$
									α (N)=0.000198 3; α (O)=3.56×10 ⁻⁵ 5; α (P)=2.44×10 ⁻⁶ 4 I _y : from 1972Fi12. other: 3.3 2 (2008Mc04).
									Mult.: from α (K)exp=0.023 4, K/L=5.7 6 (1966Ny01). placement from a 2909 level rejected by 2008Mc04.
761.35 <i>13</i> 764.91 <i>5</i>	0.022 5 0.10 <i>1</i>	2890.93 2142.96	$(2)^{-}$ $(3)^{-}$	2129.52 1378.054	(1 ⁻) 3 ⁻	M1		0.0259	α (K)=0.0215 3; α (L)=0.00341 5; α (M)=0.000784 11;
									$\alpha(N+)=0.0002314$ $\alpha(N)=0.0001943; \alpha(O)=3.49\times10^{-5}5; \alpha(P)=2.39\times10^{-6}4$
765.6 2	0.042 5	1378.054	3-	612.46318	2^{+}	E1+M2	0.20 +10-12	0.006 3	Mult.: $\alpha(K)\exp=0.029 \ 8.$ $\alpha=0.006 \ 3; \ \alpha(K)=0.0049 \ 23; \ \alpha(L)=0.0008 \ 5;$
									$\alpha(M)=0.00019\ 10;\ \alpha(N+)=5.E-5\ 3$ $\alpha(N)=4.6\times10^{-5}\ 25;\ \alpha(O)=8.E-6\ 5;\ \alpha(P)=5.E-7\ 3$ Mult., δ : from Adopted Gammas.

From ENSDF

 $^{192}_{78}\mathrm{Pt}_{114}\text{--}10$

L

 $^{192}_{78}\text{Pt}_{114}\text{-}10$

				192 Au ε	decay	2008Mc04,19	72Fi12,1966N	y01 (continued)
						γ ⁽¹⁹² Pt) (c	ontinued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
769.45 8	0.052 7	2562.96	$(2)^{+}$	1793.503	$(2)^{+}$	M1+E2+E0		other E γ : 769.83 10 (1966Ny01).
^x 777.6 9 ^x 780.4 0	0.07 3							Mult.: $\alpha(K)\exp=0.24$ 6; much greater than $\alpha(K)(M1)$. placement from 2048 and 3146 levels rejected by 2008Mc04. placements from 2217 and 2658 level rejected by 2008Mc04.
791.6 2	0.0099 12	1576.368	2+	784.5759	4+			pracements from 5150 and a 2952 level rejected by 2000/004.
791.65 8	0.034 5	3127.19	$(1^{-},2^{-})$	2335.465	1+ 2+			placement from 2614 level rejected by 2008Mc04.
^x 795.0 6	<0.004 0.05 2	1406.35	3+	612.46318	2*			placement from a 2676 level rejected by 2008Mc04.
797.09 11	0.013 4	2958.75	$(2,3)^{-}$	2161.64	•			I
798.2 3 799.05 7	0.058 8 0.14 <i>1</i>	2237.52 2375.392	$(2)^{+}$ $(1,2)^{+}$	1439.263 1576.368	2+ 2+	M1+E2	0.016 8	$\alpha(K)=0.013$ 7; $\alpha(L)=0.0022$ 9; $\alpha(M)=0.00051$ 19; $\alpha(N+)=0.00015$ 6
								α (N)=0.00013 5; α (O)=2.2×10 ⁻⁵ 9; α (P)=1.4×10 ⁻⁶ 7 Mult.: α (K)exp=0.013 3.
809.46 7	0.023 4	2602.97 2549 42	$(2)^+$ $(2)^+$	1793.503 1739.432	$(2)^+$ $(1)^-$			
813.2 2	0.040 6	2191.30	(2) $(2^+,3^-)$	1378.054	3^{-}			
815.79 8	0.14 2	2958.75	$(2,3)^{-}$	2142.96	(3)-	M1	0.0220	$\alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00288 \ 4; \ \alpha(M)=0.000663 \ 10; \ \alpha(N+)=0.000196 \ 3$
								$\alpha(N)=0.0001641\ 23;\ \alpha(O)=2.96\times10^{-5}\ 5;\ \alpha(P)=2.02\times10^{-6}\ 3$
								Mult.: $\alpha(K)\exp=0.016$ 4.
								other I γ : 0.08 <i>I</i> (1972Fi12).
817.95 <i>10</i> 819	0.049 9 <0.002	2257.26 1739.432	$(2)^{-}$ $(1)^{-}$	1439.263 920.91852	2^+ 3^+			other I_{V} : 0, 10, 5 (1970P109)
820.71 6	0.043 6	2560.15	(1) $(1^+,2)$	1739.432	(1)-			oner 17. 0.10 5 (17/0107).
822.90 5	0.80 5	2399.270	$(1,2)^+$	1576.368	2+	E2	0.00811 12	$\alpha = 0.00811 \ 12; \ \alpha(K) = 0.00647 \ 9; \ \alpha(L) = 0.001264 \ 18; \ \alpha(M) = 0.000208 \ 5; \ \alpha(N + 1) = 8.60 \times 10^{-5} \ 13$
								$\alpha(N)=0.000278$ 5, $\alpha(N+)=0.05\times10^{-1}$ 15 $\alpha(N)=7.35\times10^{-5}$ 11; $\alpha(O)=1.281\times10^{-5}$ 18; $\alpha(P)=6.84\times10^{-7}$ 10
								other I γ : 0.66 2 (1972Fi12).
								placement from a 2201 level rejected by $2008Mc04$.
826.79 8	0.068 6	1439.263	2+	612.46318	2+	M1+E2+E0	0.046 11	$\alpha(K)=0.01760\ 25;\ \alpha(L)=0.00279\ 4;\ \alpha(M)=0.000641\ 9;$
								$\alpha(N+)=0.000189.5$ $\alpha(N)=0.0001585.23; \alpha(O)=2.86\times10^{-5}.4; \alpha(P)=1.96\times10^{-6}.3$
								Mult.: α (K)exp=0.035 8.
								α : based on α (K)exp. other E γ (I γ): 826.72 <i>17</i> (0.11 <i>I</i>) (1972Fi12).
raaa a4	0.16.4							placement from a 3360 level rejected by 2008Mc04.
*830.0 ⁴⁴ 831.18 9	0.10 <i>4</i> 0.028 <i>5</i>	3127.19	$(1^{-},2^{-})$	2296.06	$(1,2)^+$			
x833.3 ^a	0.11 4		~ / /		~ / /			

 $^{192}_{78}\text{Pt}_{114}\text{-}11$

From ENSDF

 $^{192}_{78}\mathrm{Pt}_{114}\text{--}11$

				¹⁹² Au ε d	ecay 2	008Mc04,1	972Fi12,1966	Ny01 (continued)
						$\gamma(^{192}\text{Pt})$ (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	J_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
836.88 10	0.039 6	2602.97	$(2)^{+}$	1766.09	$(2,3)^+$			other Ey: 0.12 4 (1970Pl09).
841.70 <i>10</i> ^x 843.5 7	0.015 <i>4</i> 0.11 <i>4</i>	2635.23	1+	1793.503	$(2)^{+}$			placement from 5150 level rejected by 2008/0004.
845 <i>^{fh}</i> 849.12 <i>9</i> 856.83 <i>8</i>	<0.006 0.045 8 0.033 5	1766.09 2890.93 2296.06	$(2,3)^+$ $(2)^-$ $(1,2)^+$	920.91852 2041.81 1439.263	3 ⁺ (2 ⁻ ,3 ⁻) 2 ⁺			
865.33 6	0.16 1	2604.76	(1,2)-	1739.432	(1)-	M1	0.0189	α (K)=0.01568 22; α (L)=0.00248 4; α (M)=0.000570 8; α (N+)=0.0001681 24 α (N)=0.0001409 20; α (O)=2.54×10 ⁻⁵ 4; α (P)=1.741×10 ⁻⁶ 25 Multiple (K) sum = 0.016 2
872.59 5	0.24 1	1793.503	(2)+	920.91852	3+	E2	0.00719 <i>10</i>	Mult.: $\alpha(\mathbf{K})\exp=0.016$ S. $\alpha=0.00719$ 10; $\alpha(\mathbf{K})=0.00576$ 8; $\alpha(\mathbf{L})=0.001097$ 16; $\alpha(\mathbf{M})=0.000258$ 4; $\alpha(\mathbf{N}+)=7.53\times10^{-5}$ 11 $\alpha(\mathbf{N})=6.36\times10^{-5}$ 9; $\alpha(\mathbf{O})=1.112\times10^{-5}$ 16; $\alpha(\mathbf{P})=6.09\times10^{-7}$ 9 Mult.: $\alpha(\mathbf{K})\exp=0.0063$ 14. placement from an 1189 level rejected by 2008Mc04. other by: 0.21 L (1972E12)
878.70 <i>4</i>	1.41 3	1195.170	0+	316.50645	2+	E2	0.00709 <i>10</i>	$\alpha = 0.00709 \ I0; \ \alpha(K) = 0.00569 \ 8; \ \alpha(L) = 0.001079 \ I6; \alpha(M) = 0.00254 \ 4; \ \alpha(N+) = 7.41 \times 10^{-5} \ I1 \alpha(N) = 6.25 \times 10^{-5} \ 9; \ \alpha(O) = 1.094 \times 10^{-5} \ I6; \ \alpha(P) = 6.01 \times 10^{-7} \ 9 Mult.: \ \alpha(K) exp = 0.0057 \ 20. L_{*}; \ from \ 1972Fi12; \ 1.49 \ 8 \ from \ 2008Mc04.$
879.28 6 879.96 8 880.73 12	0.13 2 0.055 <i>15</i> 0.016 <i>4</i>	2257.26 2319.11 2775.21	$(2)^{-}$ 1 ⁺	1378.054 1439.263 1894.479	3 ⁻ 2 ⁺ (2,3) ⁻			
882 ^{fh} 884 5365 ^b 7	<0.007	1666.63	(2,3,4) 4 ⁺	784.5759	4^+ 2 ⁺	E2b	0.00700.10	$\alpha = 0.00700.10; \alpha(K) = 0.00561.8; \alpha(L) = 0.001062.15;$
007.3303 7	0.055 5	1201.0452	т	510.500+5	2	L2	0.00700 10	$\alpha(M)=0.000250 4; \alpha(N+)=7.29\times10^{-5} 11$ $\alpha(N)=6.15\times10^{-5} 9; \alpha(O)=1.077\times10^{-5} 15; \alpha(P)=5.93\times10^{-7} 9$ $E_{\gamma}: 884.7 1$ (2008Mc04) from Au ε decay. $I_{\gamma}:$ deduced from I $\gamma(416.5), I_{\gamma}(588.6)$, and relative photon branching from 1201 level in Adopted Gammas
889.77 9	0.14 1	2629.24	2+	1739.432	$(1)^{-}$			branching from 1201 ever in Adoped Gammas.
896.20 <i>6</i>	0.45 3	2335.465	1+	1439.263	3 2 ⁺	M1	0.01728	$\alpha(K)=0.01434\ 20;\ \alpha(L)=0.00226\ 4;\ \alpha(M)=0.000521\ 8;\ \alpha(N+)=0.0001536\ 22$ $\alpha(N)=0.0001288\ 18;\ \alpha(O)=2.32\times10^{-5}\ 4;\ \alpha(P)=1.592\times10^{-6}\ 23$ other I γ : 0.37 1 (1972Fi12). Mult.: $\alpha(K)$ exp=0.016 3.
899.70 <i>13</i>	0.016 4	2794.26	(<2)	1894.479	$(2.3)^{-}$			placement from a 3360 level rejected by 2008Mc04.
901.5 2	0.043 5	3031.00	(≤3)	2129.52	(1 ⁻)			Mult.: α (K)exp=0.041 <i>10</i> ; exceeds α (K)(M1). placements from 1514 and 1823 levels rejected by 2008Mc04.

From ENSDF

nts
In 1970Pl09. 3360 level rejected by
3; α (M)=0.000491 7; 10 ⁻⁵ 3; tted by 2008Mc04
(L)=0.000934 <i>13</i> ; 0×10^{-5} 9 0^{-6} <i>14</i> ; α (P)=5.33×10 ⁻⁷
4.41 γ +934.35 γ doublet. 008Mc04. (L)=0.000930 <i>13</i> ; .7×10 ⁻⁵ 9 0 ⁻⁶ <i>14</i> ; α (P)=5.31×10 ⁻⁷
ted by 2008Mc04. d by 2008Mc04.
L)=0.00100 13; (10 ⁻⁵ 9) $^{-5}$ 13; α (P)=6.0×10 ⁻⁷ 10
3; $\alpha(M)=0.000434$ 6; 10^{-5} 3;
ted by 2008Mc04. M)=0.00032 <i>12</i> ; ; α(P)=9.E-7 5

From ENSDF

 $^{192}_{78}\text{Pt}_{114}\text{--}13$

				¹⁹² Au	ε decay	2008Mc()4,1972Fi12,1	966Ny01 (continued)
						γ (¹⁹² F	Pt) (continued)	<u>)</u>
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [@]	α^{\dagger}	Comments
968.93 <i>15</i>	0.057 9	2408.34	(2)+	1439.263	2+	M1	0.01418	Mult.: $\alpha(K)\exp=0.015 \ 3.$ other I γ : 0.63 3 (1972Fi12). α : estimated from $\alpha(K)\exp$. $\alpha(K)=0.01177 \ 17; \ \alpha(L)=0.00185 \ 3; \ \alpha(M)=0.000426 \ 6; \ \alpha(N+)=0.0001257 \ 18 \ \alpha(N)=0.0001054 \ 15; \ \alpha(O)=1.90\times10^{-5} \ 3; \ \alpha(P)=1.305\times10^{-6} \ 19 \ Mult.: \ \alpha(K)\exp=0.010 \ 4.$
^x 972.65 <i>19</i>	0.28 2							other E γ : 969.3 4 (1972Fi12), 969.7 3 (1966Ny01). other I γ : 0.130 25 (1972Fi12), 0.08 3 (1970Pl09). Mult.: α (K)exp=0.0032 10.
973.57 7	0.34 2	1894.479	(2,3)-	920.91852	3+			Mult.: $\alpha(K)\exp=0.0037$ 9; high for E1 but a little low for E2. other Iy: 0.27 3 (1972Fi12).
982.49 <i>11</i> 985.65 <i>15</i>	0.007 2 0.041 7	2958.75 3027.39	$(2,3)^{-}$ $(2,3)^{-}$	1976.25 2041.81	$(2)^+$ $(2^-, 3^-)$		0.01000	
991.35 8	0.12 1	2730.73	(2)-	1739.432	(1)-	M1	0.01338	$\begin{aligned} &\alpha(K) = 0.01111 \ 16; \ \alpha(L) = 0.001748 \ 25; \ \alpha(M) = 0.000402 \ 6; \\ &\alpha(N+) = 0.0001186 \ 17 \\ &\alpha(N) = 9.94 \times 10^{-5} \ 14; \ \alpha(O) = 1.79 \times 10^{-5} \ 3; \ \alpha(P) = 1.231 \times 10^{-6} \ 18 \\ &\text{Mult.:} \ \alpha(K) \exp = 0.0098 \ 24. \\ &\text{other } I\gamma: \ 0.08 \ 1 \ (1972 \text{Fi}12). \\ &\text{placement from a } 1308 \ \text{level rejected by } 2008 \text{McO4}. \end{aligned}$
994.10 <i>10</i> 996.6 2	0.025 <i>5</i> 0.12 <i>1</i>	3155.74 2890.93	(2,3) ⁻ (2) ⁻	2161.64 1894.479	(2,3) ⁻	M1	0.01320	$\alpha(K)=0.01096\ 16;\ \alpha(L)=0.001725\ 25;\ \alpha(M)=0.000396\ 6;\ \alpha(N+)=0.0001170\ 17$ $\alpha(N)=9.81\times10^{-5}\ 14;\ \alpha(O)=1.769\times10^{-5}\ 25;\ \alpha(P)=1.214\times10^{-6}\ 17$ $I_{\gamma}:\ E_{\gamma}=997.07\ 20\ (I_{\gamma}=0.33\ 2)\ in\ 1972Fi12\ may\ be\ associated\ with$
								996.3 γ or 997.7 γ in 1966Ny01, or both. Mult.: $\alpha(K)\exp=0.014$ 4.
997.68 5	0.20 2	3127.19	(1 ⁻ ,2 ⁻)	2129.52	(1 ⁻)	M1	0.01317	$\alpha(K)=0.01093$ <i>16</i> ; $\alpha(L)=0.001720$ <i>24</i> ; $\alpha(M)=0.000395$ <i>6</i> ; $\alpha(N+)=0.0001166$ <i>17</i> $\alpha(N)=9.78\times10^{-5}$ <i>14</i> ; $\alpha(O)=1.764\times10^{-5}$ <i>25</i> ; $\alpha(P)=1.211\times10^{-6}$ <i>17</i> I_{γ} : other I γ : 0.33 <i>2</i> (1972Fi12) for probable doublet. Mult: $\alpha(K)\exp(-0.012)$ <i>3</i>
1001.96 8	0.029 8	2408.34	(2)+	1406.35	3+			Mult.: $a(K)exp=0.012$ S. Mult.: $a(K)exp=0.016$ 8; imprecise, but high for E2 (required by level scheme)
1008.85 <i>15</i>	0.036 6	2585.23	(2)+	1576.368	2+	E2	0.00538 8	$\alpha = 0.00538 \ 8; \ \alpha(K) = 0.00436 \ 7; \ \alpha(L) = 0.000783 \ 11; \ \alpha(M) = 0.000183 \ 3; \ \alpha(N+) = 5.35 \times 10^{-5} \ 8 \ \alpha(N) = 4.51 \times 10^{-5} \ 7; \ \alpha(Q) = 7.94 \times 10^{-6} \ 12; \ \alpha(P) = 4.60 \times 10^{-7} \ 7$
tooofh	0.000	1502 502		704 5750	4.4			Mult.: $\alpha(K) \exp[=0.040 \ 11.$
1009 <i>5</i> " 1016.81 7	<0.008 0.047 6	1793.503 1629.30	$(2)^{+}$ 0 ⁺	/84.5759 612.46318	4 ⁺ 2 ⁺			other I γ : 0.070 8 (1972Fi12). Mult.: $\alpha(K)$ exp=0.028 8; exceeds $\alpha(K)(M1)$, implying E0 component. However, E2 is expected from Adopted Levels, Gammas. placement from 2423 rejected by 2008Mc04.

 $^{192}_{78} Pt_{114}\text{-}14$

L

 $^{192}_{78}\text{Pt}_{114}\text{-}14$

From ENSDF

				¹⁹² Au <i>e</i>	e decay	2008Mc04,	1972Fi12,1966Ny	y01 (continued)
						$\gamma(^{192}\text{Pt})$	(continued)		
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ #g	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
1035.75 <i>10</i> 1036.5 <i>1</i>	0.036 <i>5</i> 0.075 <i>9</i>	2775.21 2237.52	(2)+	1739.432 1201.0452	$(1)^{-}$ 4 ⁺				other E γ (I γ): 1036.4 6 (0.6 <i>l</i>) (1970Pl09). placement from a 1353 level rejected by 2008Mc04.
1042.2 <i>2</i> 1052.55 <i>9</i>	0.034 <i>6</i> 0.20 <i>2</i>	2237.52 2947.001	(2) ⁺ (2 ⁻)	1195.170 1894.479	0^+ (2,3) ⁻	M1		0.01150	$\begin{aligned} &\alpha(\text{K}) = 0.00955 \ 14; \ \alpha(\text{L}) = 0.001500 \ 21; \\ &\alpha(\text{M}) = 0.000345 \ 5; \ \alpha(\text{N}+) = 0.0001017 \ 15 \\ &\alpha(\text{N}) = 8.53 \times 10^{-5} \ 12; \ \alpha(\text{O}) = 1.538 \times 10^{-5} \ 22; \\ &\alpha(\text{P}) = 1.057 \times 10^{-6} \ 15 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.012 \ 3. \end{aligned}$
1054 <i>fh</i> 1054.84 7	<0.01 0.068 8	1666.63 2794.26	(2,3,4) (≤2)	612.46318 1739.432	2 ⁺ (1) ⁻				Mult.: α (K)exp=0.013 <i>3</i> for doublet. other I γ : 0.10 <i>1</i> (1972Fi12). placements from 2238 and 2408 levels rejected by 2008Mc04
1055.3 <i>2</i> 1057 3 <i>2</i>	0.035 6	1976.25 2435 37	$(2)^+$ 3 ⁺	920.91852 1378 054	3+ 3-				20001101
1061.62 4	1.86 4	1378.054	3-	316.50645	2+	E1(+M2) ^b	+0.04 ^b +5-3	0.00194 <i>17</i>	α =0.00194 <i>17</i> ; α (K)=0.00163 <i>14</i> ; α (L)=0.000240 24; α (M)=5.5×10 ⁻⁵ 6; α (N+)=1.60×10 ⁻⁵ <i>17</i> α (N)=1.35×10 ⁻⁵ <i>14</i> ; α (O)=2.41×10 ⁻⁶ 25; α (P)=1.61×10 ⁻⁷ <i>17</i> other I γ : 1.60 4 (1972Fi12).
^x 1066.0 ^C 3	0.08 3					(M1)		0.01114	with: $\alpha(K) \exp = 0.0019$ 3, inplies $\delta = 0.12 + 4 - 12$. $\alpha(K) = 0.00925$ 13; $\alpha(L) = 0.001453$ 21; $\alpha(M) = 0.000334$ 5; $\alpha(N+) = 9.85 \times 10^{-5}$ 14 $\alpha(N) = 8.26 \times 10^{-5}$ 12; $\alpha(O) = 1.489 \times 10^{-5}$ 21; $\alpha(P) = 1.024 \times 10^{-6}$ 15 Mult.: $\alpha(K) \exp = 0.012$ 5. I _γ : for probable doublet In 1970Pl09; possibly includes the 1068.4γ from 2008MC04
1068.4 2 $x1070.1^{a}$ x1084.5 7 $x1087.2^{a}$	0.023 <i>4</i> 0.12 <i>4</i> 0.05 <i>5</i>	2834.60	(2+)	1766.09	(2,3)+				placement from 2423 rejected by 2008Mc04. placement from 2217 rejected by 2008Mc04.
1087.3 9	0.075 10	2635.23	1^{+}	1546.93	(0 ⁺)				Mult.: $\alpha(K)$ exp=0.0067 20 for presumed doublet.
1089.82 8	0.032 3	1406.35	3+	316.50645	2+	M1+E2 ^b	1.8 ^b +14-6	0.0060 11	$\begin{aligned} &\alpha = 0.0060 \ 11; \ \alpha(\text{K}) = 0.0049 \ 9; \ \alpha(\text{L}) = 0.00083 \ 13; \\ &\alpha(\text{M}) = 0.00019 \ 3; \ \alpha(\text{N}+) = 5.6 \times 10^{-5} \ 9 \\ &\alpha(\text{N}) = 4.7 \times 10^{-5} \ 7; \ \alpha(\text{O}) = 8.4 \times 10^{-6} \ 13; \\ &\alpha(\text{P}) = 5.3 \times 10^{-7} \ 10 \\ &\text{other I} \gamma: \ 0.060 \ 7 \ (1972\text{Fi}12), \text{ possibly for a doublet.} \end{aligned}$

From ENSDF

				¹⁹² Au	ε decay	2008Mc04,1972	2Fi12,1966Ny01	(continued)
						$\gamma(^{192}\text{Pt})$ (con	tinued)	
E_{γ}^{\ddagger}	Ι _γ #g	E _i (level)	J_i^π	E_f	J_f^π	Mult. [@]	α^{\dagger}	Comments
1090.54 <i>15</i> 1093.1 <i>1</i> 1095.42 <i>6</i>	0.017 <i>4</i> 0.078 <i>9</i> 0.16 <i>1</i>	2856.13 2532.46 1880.02	$(2)^{-}$ 1 ⁺ 3 ⁺	1766.09 1439.263 784.5759	$(2,3)^+$ 2 ⁺ 4 ⁺	M1+E2	0.007 3	other I γ : 0.17 4 (1970P109). α =0.007 3; α (K)=0.0062 25; α (L)=0.0010 4; α (M)=0.00023 8; α (N+)=6.8×10 ⁻⁵ 24 α (N)=7 F 7 30; α (C)=10×10 ⁻⁵ 4; α (D)=7 F 7 3
1097.6 2	0.023 6	2890.93	$(2)^{-}$	1793.503	$(2)^+$			Mult.: $\alpha(K)$ exp=0.0063 <i>19</i> . other I γ : 0.16 4 (1970P109) for E γ =1097.4 7. placement from 2375 or a 3146 level rejected by 2008Mc04.
1108.26 8	0.070 7	2486.29	(1,2) (2) ⁻	1378.054	3-	M1	0.01010	accentent from a 5300 fever rejected by 20080fC04. $\alpha(K)=0.00839 \ I2; \ \alpha(L)=0.001316 \ I9; \ \alpha(M)=0.000302 \ 5; \ \alpha(N+)=8.96 \times 10^{-5} \ I3 \ \alpha(N)=7.48 \times 10^{-5} \ I1; \ \alpha(O)=1.349 \times 10^{-5} \ I9; \ \alpha(P)=9.28 \times 10^{-7} \ I3; \ \alpha(IPF)=3.93 \times 10^{-7} \ 6 \ Mult.: \ \alpha(K)exp=0.0060 \ 21. \ placement from 3156 level rejected by 2008Mc04. \ other I\gamma: \ 0.11 \ I \ (1972Fi12).$
1110 ^{fh} 1113.93 8	<0.008 0.096 <i>10</i>	1894.479 3155.74	(2,3) ⁻ (2,3) ⁻	784.5759 2041.81	4 ⁺ (2 ⁻ ,3 ⁻)	MI	0.00997 14	$\alpha = 0.00997 \ 14; \ \alpha(K) = 0.00828 \ 12; \ \alpha(L) = 0.001299 \ 19; \\ \alpha(M) = 0.000298 \ 5; \ \alpha(N+) = 8.85 \times 10^{-5} \ 13 \\ \alpha(N) = 7.38 \times 10^{-5} \ 11; \ \alpha(O) = 1.331 \times 10^{-5} \ 19; \ \alpha(P) = 9.16 \times 10^{-7} \\ 13; \ \alpha(IPF) = 4.96 \times 10^{-7} \ 8 \\ Mult.: \ \alpha(K) exp = 0.015 \ 3. \end{cases}$
1116.60 <i>6</i>	0.39 2	2856.13	(2)-	1739.432	(1) ⁻	M1	0.00991 <i>14</i>	placement from 2296 level rejected by 2008Mc04. α =0.00991 <i>14</i> ; α (K)=0.00823 <i>12</i> ; α (L)=0.001291 <i>18</i> ; α (M)=0.000297 <i>5</i> ; α (N+)=8.80×10 ⁻⁵ <i>13</i> α (N)=7.34×10 ⁻⁵ <i>11</i> ; α (O)=1.323×10 ⁻⁵ <i>19</i> ; α (P)=9.10×10 ⁻⁷ <i>13</i> ; α (IPF)=5.52×10 ⁻⁷ <i>8</i> other I γ : 0.23 <i>2</i> (1972Fi12). Mult.: α (K)exp=0.0074 <i>14</i> . placement from a 2857 level rejected by 2008Mc04.
1121.00 9 1122.80 5	0.11 <i>I</i> 1.90 <i>3</i>	2041.81 1439.263	(2 ⁻ ,3 ⁻) 2 ⁺	920.91852 316.50645	3+ 2+	M1(+E2+E0)	0.0155 25	$\alpha(K)=0.00812 \ I2; \ \alpha(L)=0.001273 \ I8; \ \alpha(M)=0.000292 \ 4; \ \alpha(N+)=8.70\times10^{-5} \ I3 \ \alpha(N)=7.23\times10^{-5} \ I1; \ \alpha(O)=1.305\times10^{-5} \ I9; \ \alpha(P)=8.98\times10^{-7} \ I3; \ \alpha(IPF)=7.03\times10^{-7} \ I0 \ Mult.: \ \alpha(K)exp=0.0119 \ I9. \ I_{\gamma}: \ from \ 1972Fi12; \ 1.98 \ 8 \ In \ 2008Mc04. \ \alpha; \ based on \ \alpha(K)exp$
1126.97 <i>3</i>	2.82 9	1739.432	(1) ⁻	612.46318	2+	E1	0.001711 24	$ \begin{array}{l} \alpha = 0.001711 \ 24; \ \alpha(\text{K}) = 0.001437 \ 21; \ \alpha(\text{L}) = 0.000210 \ 3; \\ \alpha(\text{M}) = 4.77 \times 10^{-5} \ 7; \ \alpha(\text{N}+) = 1.653 \times 10^{-5} \ 2 \\ \alpha(\text{N}) = 1.176 \times 10^{-5} \ 17; \ \alpha(\text{O}) = 2.11 \times 10^{-6} \ 3; \ \alpha(\text{P}) = 1.415 \times 10^{-7} \end{array} $

From ENSDF

 $^{192}_{78}\text{Pt}_{114}\text{--}16$

					¹⁹² Au ε	decay	2008Mc04	,1972Fi12,196	6Ny01 (con	tinued)
							$\gamma(^{192}\text{Pt})$	(continued)		
	E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	α^{\dagger}	$I_{(\gamma+ce)}^{g}$	Comments
	1127.02 8	0.12 1	2047.89	(2)+	920.91852	3+				20; α (IPF)=2.52×10 ⁻⁶ 4 Mult.: α (K)exp=0.0018 3. other I γ : 2.52 5 (1972Fi12).
	1132.93 10	0.047 8	3027.39	(2,3)-	1894.479	(2,3)-				Mult.: $\alpha(K)\exp=0.036 \ I0$; greatly exceeds $\alpha(K)(M1)$. placement from an 1133 level rejected by 2008Mc04. other E γ (I γ): 1132.55 23 (0.070 I5) (1972Fi12).
	1140.32 4	4.50 10	2335.465	1+	1195.170	0+	M1	0.00940 14		$\begin{aligned} &\alpha = 0.00940 \ 14; \ \alpha(\text{K}) = 0.00781 \ 11; \ \alpha(\text{L}) = 0.001224 \ 18; \\ &\alpha(\text{M}) = 0.000281 \ 4; \ \alpha(\text{N}+) = 8.43 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 6.95 \times 10^{-5} \ 10; \ \alpha(\text{O}) = 1.254 \times 10^{-5} \ 18; \\ &\alpha(\text{P}) = 8.63 \times 10^{-7} \ 12; \ \alpha(\text{IPF}) = 1.321 \times 10^{-6} \ 19 \\ &\text{other I}_{\gamma}: \ 4.50 \ 10 \ (1972\text{Fi}12). \end{aligned}$ Mult.: $\alpha(\text{K}) \exp = 0.0093 \ 14. \end{aligned}$
	1147.65 <i>17</i> 1151 51 8	0.016 4	3189.52	$(2,3^{-})$	2041.81	$(2^{-},3^{-})$				
	1153.02 7	0.030 9	2073.95	$\binom{2}{2^+}$	920.91852	(1) 3 ⁺				
	1153.42 16	0.015 4	2947.001	(2 ⁻)	1793.503	$(2)^{+}$				
ì	1154 ^{<i>fh</i>} 1171.44 <i>12</i>	<0.004 0.024 5	1766.09 2549.42	$(2,3)^+$ $(2)^+$	612.46318 1378.054	2+ 3-				
	1173.5 5 1180.96 <i>10</i>	0.026 4	2947.001	(2 ⁻)	1766.09	(2,3)+				whith: α (K)exp=0.022 5; greatly exceeds α (K)(M1), other Eγ: 1180.3 3 (1966Ny01). Mult.: α (K)exp=0.10 4; possibly ce line is complex (Eγ seems a little low).
	1181.05 7	0.13 1	1793.503	(2)+	612.46318	2+	M1,E2	0.0063 24		placement from 2375 level rejected by 2008Mc04. α =0.0063 24; α (K)=0.0052 20; α (L)=0.0008 3; α (M)=0.00019 7; α (N+)=6.0×10 ⁻⁵ 20 α (N)=4.8×10 ⁻⁵ 16; α (O)=9.E-6 3; α (P)=5.7×10 ⁻⁷ 23; α (IPF)=3.5×10 ⁻⁶ 8 Mult.: α (K)exp=0.006 3. placement from an 1182 level rejected by 2008Mc04
	1184.9 <i>3</i> ^x 1189.2 ^a	0.057 <i>8</i> 0.08 <i>4</i>	2562.96	$(2)^{+}$	1378.054	3-				placement from all 1102 level rejected by 2000/fe01.
	1192 ^{<i>fh</i>}	< 0.007	1976.25	$(2)^{+}$	784.5759	4+				
	1192.49 <i>15</i> 1195.26 <i>13</i>	0.018 4	2958.75 1195.170	$(2,3)^{-}$ 0 ⁺	1766.09 0.0	$(2,3)^+$ 0 ⁺	E0		0.024 4	Mult.: $\alpha(K)\exp\geq 0.20 \ 3 \ \text{from I}\gamma<0.10 \ \text{in 1972Fi12.}$ I _($\gamma+ce$) : approximate value deduced from Ice(K) and
	1199.29 8	0.070 10	2120.21	(2+)	920.91852	3+				theoretical K/L ratios for E0 transitions (1969Ha61). other E γ (I γ): 1198.0 7 (0.17 4) (1970Pl09). placement from a 1514 level rejected by 2008Mc04.
	1204.8 ^{&h} 5		2399.270	$(1,2)^+$	1195.170	0^+				placement not confirmed by 2008Mc04, but γ May be highly converted
	1207.22 <i>10</i> 1207.28 <i>9</i>	0.012 <i>4</i> 0.18 <i>2</i>	2585.23 2408.34	$(2)^+$ $(2)^+$	1378.054 1201.0452	3 ⁻ 4 ⁺				other I γ : 0.24 2 (1972Fi12), 0.15 5 (1970Pl09). Mult.: α (K)exp=0.0068 <i>18</i> for doublet; unresolved from

From ENSDF

 $^{192}_{78} Pt_{114}$ -17

				¹⁹² Au	ε decay	2008Mc04,	1972Fi12,196	66Ny01 (contin	nued)
						γ ⁽¹⁹² Pt)	(continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
1207.50 <i>10</i> 1219.4 <i>1</i> 1222.10 7 1224.9 2	0.018 <i>4</i> 0.051 <i>8</i> 0.045 <i>6</i> 0.038 <i>8</i>	2947.001 2958.75 2142.96 2602.97	(2^{-}) $(2,3)^{-}$ $(3)^{-}$ $(2)^{+}$	1739.432 1739.432 920.91852 1378.054	$(1)^{-}$ $(1)^{-}$ 3^{+} 3^{-}				1207.22 γ In ce spectrum. α (K)exp favors M1, but level scheme suggests E2.
1226.8 2	0.025 4	2604.76	$(1,2)^{-}$	1378.054	3-				placement from 2408 level rejected by 2008Mc04. Mult.: α (K)exp=0.024 7; greatly exceeds α (K)(M1). 1966Ny01 do not report the 1224.9 γ ; possibly it contributes to their E=1226.4 5 ce line.
1227.6 <i>T</i> ×1228.8& 5	0.030 7	2422.78	(1,2) ⁺	216 50645	0+				possibly includes a contribution from the E=1227.6 <i>I</i> line. placement from 2149 level rejected by 2008Mc04.
1230.45 6 1233.95 <i>15</i> <i>x</i> 1238.5 ^{<i>a</i>} 1240.67 8	0.075 7 0.030 6 0.05 3 0.11 1	1546.93 3027.39 2161.64	(0^{+}) $(2,3)^{-}$	316.50645 1793.503 920.91852	2 ⁺ (2) ⁺ 3 ⁺				other E γ (I γ): 1241.8 (0.05 3) (1970Pl09); poorly
1250.47 6	0.33 2	2171.37	2+	920.91852	3+	M1(+E2)	0.6 +5-6	0.0064 11	resolved G. placement from 2423 rejected by 2008Mc04. α =0.0064 11; α (K)=0.0053 10; α (L)=0.00084 14; α (M)=0.00019 3; α (N+)=7.1×10 ⁻⁵ 11 α (N)=4.8×10 ⁻⁵ 8; α (O)=8.6×10 ⁻⁶ 14; α (P)=5.8×10 ⁻⁷ 11; α (IPF)=1.36×10 ⁻⁵ 16 Mult.: α (K)exp=0.0054 10.
1256.7 <i>3</i> 1257.22 <i>6</i>	0.10 2 0.14 <i>1</i>	2832.89 2041.81	$(1,2)^+$ $(2^-,3^-)$	1576.368 784.5759	2+ 4+				other I γ : 0.17 <i>I</i> (1972Fi12). Mult.: α (K)exp=0.0039 <i>I4</i> suggests E2 assignment, inconsistent with adopted J ^{π} (2041 level). placement from 2835 level rejected by 2008Mc04.
1260.0 2	0.023 5	1576.368	2+	316.50645	2+	M1+E2+E0		0.00733 11	
1261.1 2 1261.3 2 1263.31 6	0.021 <i>4</i> 0.015 <i>4</i> 0.076 <i>8</i>	3155.74 3027.39 2047.89	$(2,3)^{-}$ $(2,3)^{-}$ $(2)^{+}$	1894.479 1766.09 784.5759	$(2,3)^-$ $(2,3)^+$ 4^+				other data: Eγ=1263.8 2 (1972Fi12), 1264.2 4 (1966Ny01); Iγ=0.046 9 (1972Fi12). Mult.: α(K)exp=0.0072 21 implies M1. However, E(ce)

 $^{192}_{78}\text{Pt}_{114}\text{--}18$

From ENSDF

 $^{192}_{78}\mathrm{Pt}_{114}\text{--}18$

				¹⁹² Au	ε decay	2008M	c04,1972Fi12,19	066Ny01 (continued)
						$\gamma(^{192}$	² Pt) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [@]	a^{\dagger}	Comments
1267.52 10	0.19 2	1880.02	3+	612.46318	2+	M1	0.00722 11	is high, suggesting ce line May be contaminated; if so, α (K)exp will be an overestimate. The level scheme implies E2. placement from 2453 level rejected by 2008Mc04. α =0.00722 <i>11</i> ; α (K)=0.00599 <i>9</i> ; α (L)=0.000936 <i>14</i> ; α (M)=0.000215 <i>3</i> ; α (N+)=8.19×10 ⁻⁵ <i>12</i> α (N)=5.31×10 ⁻⁵ <i>8</i> ; α (O)=9.59×10 ⁻⁶ <i>14</i> ; α (P)=6.61×10 ⁻⁷ <i>10</i> ; α (IPF)=1.85×10 ⁻⁵ <i>3</i>
1270.33 6	0.23 2	2191.30	(2+,3-)	920.91852	3+			Mult.: α (K)exp=0.0040 <i>11</i> . other I γ : 0.12 <i>1</i> (1972Fi12). other I γ : 0.19 <i>2</i> (1972Fi12). placement from a 1883 level rejected by 2008Mc04.
^x 1277.5 ^d 1281.99 4	0.12 ^d 6 0.72 3	1894.479	(2,3)-	612.46318	2+	E1	0.001410 20	placement from a 1277 level rejected by 2008Mc04. α =0.001410 20; α (K)=0.001146 16; α (L)=0.0001663 24; α (M)=3.78×10 ⁻⁵ 6; α (N+)=5.97×10 ⁻⁵
1287.7 2	0.15 <i>1</i>	3027.39	(2,3)-	1739.432	(1)-	M1	0.00695 10	$\begin{aligned} &\alpha(N)=9.32\times10^{-6}\ 13;\ \alpha(O)=1.673\times10^{-6}\ 24;\ \alpha(P)=1.132\times10^{-7}\ 16;\\ &\alpha(IPF)=4.86\times10^{-5}\ 7\\ &\text{Mult.:}\ \alpha(K)\exp=0.0015\ 3.\\ &\alpha=0.00695\ 10;\ \alpha(K)=0.00576\ 8;\ \alpha(L)=0.000899\ 13;\ \alpha(M)=0.000206\\ &3;\ \alpha(N+)=8.38\times10^{-5}\ 12\\ &\alpha(N)=5.11\times10^{-5}\ 8;\ \alpha(O)=9.21\times10^{-6}\ 13;\ \alpha(P)=6.35\times10^{-7}\ 9;\\ &\alpha(IPF)=2.29\times10^{-5}\ 4\end{aligned}$
^x 1289.7 ^{&} 8 1291.60 9	0.14 <i>1</i>	3031.00	(≤3)	1739.432	(1)-			Mult.: $\alpha(K)\exp=0.0056$ 19. E_{γ},I_{γ} : see comment with 1291.6 γ . other data: $E_{\gamma}=1291.20$ 25, $I_{\gamma}=0.15$ 1 (1972Fi12). however, it is unclear how this line is related to $E_{\gamma}=1289.7$ 8 and 1292.6 5 in ce data from 1966Ny01. if it corresponds to the latter,
1295.00 <i>10</i> 1296.0 <i>3</i>	0.033 <i>6</i> 0.051 8	3189.52 2217.12	$(2,3^{-})$ $(2)^{+}$	1894.479 920.91852	$(2,3)^{-}$ 3^{+}			α (K)exp(1292)=0.014 3. Mult.: α (K)exp=0060 19 for doublet.
x1302.4 3 1307.8 2	0.07 <i>3</i> 0.026 <i>4</i>	2508.84	(2,3)+	1201.0452	4+			Mult.: α (K)exp=0.011 5. other E γ (I γ): 1308.1 7 (0.15 5) (1970Pl09). placement from a 1308 level rejected by 2008Mc04.
1312.85 10	0.53 6	1629.30	0+	316.50645	2+	E2	0.00326 5	$\begin{aligned} \alpha = 0.00326 \ 5; \ \alpha(K) = 0.00266 \ 4; \ \alpha(L) = 0.000442 \ 7; \ \alpha(M) = 0.0001023 \\ I5; \ \alpha(N+) = 4.87 \times 10^{-5} \ 7 \\ \alpha(N) = 2.52 \times 10^{-5} \ 4; \ \alpha(O) = 4.49 \times 10^{-6} \ 7; \ \alpha(P) = 2.79 \times 10^{-7} \ 4; \\ \alpha(IPF) = 1.87 \times 10^{-5} \ 3 \\ \text{Mult.:} \ \alpha(K) \text{exp} = 0.0033 \ 7; \ \alpha(K) \text{exp consistent with some M1} \\ \text{admixture but level scheme is not} \end{aligned}$
1316.56 7	0.57 3	2237.52	(2)+	920.91852	3+	M1+E2	0.0049 17	other data: $E\gamma = 1313.14\ 20\ (1966Ny01);\ I\gamma = 0.74\ 2\ (1972Fi12).$ placement from 2891 level rejected by 2008Mc04. $\alpha = 0.0049\ 17;\ \alpha(K) = 0.0040\ 14;\ \alpha(L) = 0.00064\ 21;\ \alpha(M) = 0.00015\ 5;$ $\alpha(N+) = 6.8 \times 10^{-5}\ 20$ $\alpha(N) = 3.7 \times 10^{-5}\ 12;\ \alpha(O) = 6.6 \times 10^{-6}\ 22;\ \alpha(P) = 4.4 \times 10^{-7}\ 17;$

				¹⁹² Au	ε deca	y 20081	Mc04,1972Fi12,	1966Ny01 (continued)
						$\gamma(1)$	¹⁹² Pt) (continued	<u>1)</u>
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$lpha^\dagger$	Comments
1321.5 8	0.26 10							α (IPF)=2.5×10 ⁻⁵ 6 other I γ : 0.38 4 (1972Fi12). Mult.: α (K)exp=0.0043 8.
1325.5 ^a 1330.0 7	0.16 <i>6</i> 0.15 <i>5</i>							
1336.31 4	0.90 4	2257.26	(2)-	920.91852	3+	E1	0.001342 19	$ \begin{array}{l} \alpha = 0.001342 \ 19; \ \alpha(\mathrm{K}) = 0.001067 \ 15; \ \alpha(\mathrm{L}) = 0.0001545 \ 22; \\ \alpha(\mathrm{M}) = 3.51 \times 10^{-5} \ 5; \ \alpha(\mathrm{N}+) = 8.49 \times 10^{-5} \\ \alpha(\mathrm{N}) = 8.65 \times 10^{-6} \ 13; \ \alpha(\mathrm{O}) = 1.554 \times 10^{-6} \ 22; \ \alpha(\mathrm{P}) = 1.055 \times 10^{-7} \ 15; \\ \alpha(\mathrm{IPF}) = 7.46 \times 10^{-5} \ 11 \\ \mathrm{Model} = 0.0015 \ 20; \ \alpha(\mathrm{P}) = 1.055 \times 10^{-7} \ 1$
1337.35 8	0.050 5	2532.46	1+	1195.170	0^{+}			Mult.: $\alpha(K) \exp[=0.0015 \ 3.$
1350 <i>fh</i>	< 0.003	1666.63	(2,3,4)	316.50645	2+		0.00/1/	
1352.60 9	0.098 9	2730.73	(2)-	1378.054	3-	M1	0.00616 9	$ \begin{array}{l} \alpha = 0.00616 \; 9; \; \alpha(\mathrm{K}) = 0.00509 \; 8; \; \alpha(\mathrm{L}) = 0.000794 \; 12; \; \alpha(\mathrm{M}) = 0.000182 \; 3; \\ \alpha(\mathrm{N}+) = 9.48 \times 10^{-5} \; 14 \\ \alpha(\mathrm{N}) = 4.51 \times 10^{-5} \; 7; \; \alpha(\mathrm{O}) = 8.13 \times 10^{-6} \; 12; \; \alpha(\mathrm{P}) = 5.61 \times 10^{-7} \; 8; \\ \alpha(\mathrm{IPF}) = 4.10 \times 10^{-5} \; 6 \\ \mathrm{Mult.:} \; \alpha(\mathrm{K}) \exp = 0.0051 \; 16. \\ \mathrm{other} \; \mathrm{E}\gamma \; (\mathrm{I}\gamma): \; 1352.9 \; 3, \; 1353.16 \; 20 \; (0.10 \; 1) \; (1972\mathrm{Fi}12); \; 1353.4 \; 9 \\ (0.13 \; 5) \; (1970\mathrm{Pl}09). \end{array} $
1358.33 10	0.027 3	2142.96	$(3)^{-}$	784.5759	4+			placement from a 1353 level rejected by 2008Mc04.
1362.22 <i>10</i> 1363.79 <i>9</i>	0.035 5 0.28 2	3155.74 1976.25	$(2,3)^{-}$ $(2)^{+}$	1793.503 612.46318	$(2)^+$ 2 ⁺	M1	0.00604 <i>9</i>	α =0.00604 9; α (K)=0.00499 7; α (L)=0.000777 11; α (M)=0.0001785 25; α (N+)=9.75×10 ⁻⁵ 14 α (N)=4.41×10 ⁻⁵ 7; α (O)=7.97×10 ⁻⁶ 12; α (P)=5.50×10 ⁻⁷ 8; α (IPF)=4.48×10 ⁻⁵ 7 Mult.: α (K)exp=0.0054 11. other Ey: 1364 26 15 (1966Ny01)
0 -								other I_{γ} : 0.22 1 (1972Fi12).
1376.6 ^{&} 7 1378.0 2	0.028 5	1378.054	3-	0.0	0+	(E3)	0.00613 9	$\alpha = 0.00613 \ 9; \ \alpha(K) = 0.00487 \ 7; \ \alpha(L) = 0.000958 \ 14; \ \alpha(M) = 0.000226 \ 4; \alpha(N+) = 7.90 \times 10^{-5} \ 11 \alpha(N) = 5.59 \times 10^{-5} \ 8; \ \alpha(O) = 9.83 \times 10^{-6} \ 14; \ \alpha(P) = 5.54 \times 10^{-7} \ 8; \alpha(IPF) = 1.266 \times 10^{-5} \ 18 E : 1378 \ 20 \ 15 \ (1972E12) \ 1376 \ 6 \ 7 \ (1966Ny01) $
								Mult.: from Adopted Gammas.
1383.8 <i>8</i> 1384.00 <i>15</i>	0.22 <i>6</i> 0.047 <i>7</i>	2585.23	$(2)^{+}$	1201.0452	4+			
1386.75 5	0.71 3	2171.37	2+	784.5759	4+	E2	0.00295 5	$ \begin{array}{l} \alpha = 0.00295 \ 5; \ \alpha(\mathrm{K}) = 0.00241 \ 4; \ \alpha(\mathrm{L}) = 0.000395 \ 6; \ \alpha(\mathrm{M}) = 9.12 \times 10^{-5} \ 13; \\ \alpha(\mathrm{N}+) = 6.11 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 2.25 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 4.00 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 2.52 \times 10^{-7} \ 4; \end{array} $

I

				¹⁹² Au	ε decay	2008M	c04,1972Fi12,19	966Ny01 (continued)
						$\gamma(^{192}$	² Pt) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
1387.78 9 1389.68 9 1393.67 14	0.078 9 0.044 5 0.034 6	3127.19 3155.74 2832.89	$(1^{-},2^{-}) (2,3)^{-} (1,2)^{+}$	1739.432 1766.09 1439.263	$(1)^{-}$ $(2,3)^{+}$ 2^{+}			α (IPF)=3.43×10 ⁻⁵ 5 Mult.: α (K)exp=0.0031 6. other E γ (I γ):≈1395.2 (0.15 6) (1970Pl09).
1398.16 9	0.073 8	2319.11	1+	920.91852	3+	(E2)	0.00291 4	placement from 2835 level rejected by 2008Mc04. α =0.00291 4; α (K)=0.00237 4; α (L)=0.000388 6; α (M)=8.96×10 ⁻⁵ 13; α (N+)=6.35×10 ⁻⁵ 9 α (N)=2.21×10 ⁻⁵ 3; α (O)=3.94×10 ⁻⁶ 6; α (P)=2.48×10 ⁻⁷ 4; α (IPF)=3.72×10 ⁻⁵ 6 Mult.: α (K)exp=0.0034 11; a little high for, but not inconsistent with, the pure F2 multipolarity required by the level scheme
1406.75 5 ^x 1409.8 ^a	0.054 6 0.13 6	2191.30	(2+,3-)	784.5759	4+			
1414.49 5	0.51 4	2335.465	1+	920.91852	3+	E2	0.00285 4	$\alpha = 0.00285 \ 4; \ \alpha(K) = 0.00232 \ 4; \ \alpha(L) = 0.000379 \ 6; \ \alpha(M) = 8.75 \times 10^{-5} \ 13; \ \alpha(N+) = 6.71 \times 10^{-5} \ 10 \ \alpha(N) = 2.16 \times 10^{-5} \ 3; \ \alpha(O) = 3.85 \times 10^{-6} \ 6; \ \alpha(P) = 2.43 \times 10^{-7} \ 4; \ \alpha(IPF) = 4.14 \times 10^{-5} \ 6 \ Mult: \ \alpha(K) = 9.0023 \ 5 \ Mult: \ \alpha(K) = 9.0023 \ Mult: \ \alpha(K) = 9.0023 \ K \ Mult: \ \alpha(K) = 9.0023 \ M$
1416.29 ^c 8	0.19 2	3155.74	(2,3) ⁻	1739.432	(1)-	M1,E2	0.0042 14	$\alpha = 0.0042 \ 14; \ \alpha(K) = 0.0034 \ 12; \ \alpha(L) = 0.00054 \ 17; \ \alpha(M) = 0.00012 \ 4; \alpha(N+) = 9.0 \times 10^{-5} \ 23 \alpha(N) = 3.1 \times 10^{-5} \ 10; \ \alpha(O) = 5.5 \times 10^{-6} \ 17; \ \alpha(P) = 3.7 \times 10^{-7} \ 13; \alpha(IPF) = 5.3 \times 10^{-5} \ 12 Mult.: \ \alpha(K) exp = 0.0051 \ 11.$
1419.2 2 1422.91 <i>3</i>	0.057 <i>8</i> 5.8 <i>1</i>	2614.29 1739.432	(2 ⁺) (1) ⁻	1195.170 316.50645	0+ 2+	E1	0.001264 18	α =0.001264 <i>18</i> ; α (K)=0.000958 <i>14</i> ; α (L)=0.0001384 <i>20</i> ; α (M)=3.14×10 ⁻⁵ <i>5</i> ; α (N+)=0.000135 α (N)=7.75×10 ⁻⁶ <i>11</i> ; α (O)=1.393×10 ⁻⁶ <i>20</i> ; α (P)=9.48×10 ⁻⁸ <i>14</i> ; α (IPF)=0.0001267 <i>18</i> Mult.: α (K)exp=0.00101 <i>16</i> . other I γ : 5.13 <i>8</i> (1972Fi12).
1428.32 <i>14</i> 1429.34 7	0.010 2 0.19 <i>I</i>	2834.60 2041.81	(2^+) $(2^-,3^-)$	1406.35 612.46318	3 ⁺ 2 ⁺			Mult.: α (K)exp=0.0018 7; favors E2, but E1 cannot be ruled out. Level scheme implies $\Delta \pi$ =(yes). placement from 2629 level rejected by 2008Mc04.
1432.55 8 1435.39 6	0.066 7 0.44 2	2217.12 2047.89	$(2)^+$ $(2)^+$	784.5759 612.46318	4 ⁺ 2 ⁺	M1	0.00535 8	$\begin{aligned} &\alpha = 0.00535 \ 8; \ \alpha(\text{K}) = 0.00439 \ 7; \ \alpha(\text{L}) = 0.000683 \ 10; \ \alpha(\text{M}) = 0.0001568 \\ &22; \ \alpha(\text{N}+) = 0.0001188 \\ &\alpha(\text{N}) = 3.88 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 7.00 \times 10^{-6} \ 10; \ \alpha(\text{P}) = 4.84 \times 10^{-7} \ 7; \\ &\alpha(\text{IPF}) = 7.25 \times 10^{-5} \ 11 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0051 \ 7. \\ &\text{other } I\gamma: \ 0.37 \ 2 \ (1972\text{Fi}12). \end{aligned}$

From ENSDF

 $^{192}_{78}\text{Pt}_{114}\text{--}21$

				¹⁹² A	u e de	cay 2008Mc	04,1972Fi12,	1966Ny01 (continued)
						$\gamma(^{192})$	Pt) (continued	<u>D</u>
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
1439.22 <i>12</i> 1440.03 <i>17</i>	0.092 9 0.028 4	1439.263 2635.23	$2^+_{1^+}$	0.0 1195.170	$0^+ 0^+$			Mult.: $\alpha(K)\exp=0.0035 \ I2$ for $1439\gamma+1440\gamma$ doublet.
1449.68 8	0.37 <i>3</i>	1766.09	(2,3)+	316.50645	2+	E2(+M1)	0.0040 <i>13</i>	
1450.0 2 ^x 1461.61 <i>19</i>	0.067 <i>9</i> 0.16 <i>8</i>	3189.52	(2,3 ⁻)	1739.432	(1)-	(M1)	0.00513 8	$\alpha = 0.00513 \ 8; \ \alpha(K) = 0.00420 \ 6; \ \alpha(L) = 0.000653 \ 10; \ \alpha(M) = 0.0001499$ 21; \ \alpha(N+) = 0.0001280 \(\alpha(N) = 3.71 \times 10^{-5} \ 6; \ \alpha(O) = 6.69 \times 10^{-6} \ 10; \ \alpha(P) = 4.62 \times 10^{-7} \ 7; \ \alpha(IPF) = 8.37 \times 10^{-5} \ 12 Mult.: \(\alpha(K) exp = 0.008 \ 4.) placement from 2074 level rejected by 2008Mc04
^x 1467.1 ^c 5 ^x 1469.1 8 ^x 1474.2 8	0.12 7 0.15 7 0.18 8							Mult.: $\alpha(K)$ exp=0.0021 <i>14</i> . placements from 2658 and a 2909 level rejected by 2008Mc04.
1477.00 <i>10</i>	0.36 2	1793.503	(2)+	316.50645	2+	M1+E2+E0	0.00501 7	$\alpha = 0.00501 \ 7; \ \alpha(K) = 0.00409 \ 6; \ \alpha(L) = 0.000636 \ 9; \ \alpha(M) = 0.0001460 \ 21; \ \alpha(N+) = 0.0001337 \ 1 \ \alpha(N) = 3.61 \times 10^{-5} \ 5; \ \alpha(O) = 6.52 \times 10^{-6} \ 10; \ \alpha(P) = 4.50 \times 10^{-7} \ 7; \ \alpha(IPF) = 9.06 \times 10^{-5} \ 13 \ Mult.; \ \alpha(K) exp = 0.0079 \ 15.$
1479.03 5 1487.38 8	0.24 2 0.13 2 0.15 5	2857.07 2408.34	(2 ⁻) (2) ⁺	1378.054 920.91852	3- 3+	M1	0.00493 7	$\begin{aligned} &\alpha = 0.00493 \ 7; \ \alpha(\text{K}) = 0.00402 \ 6; \ \alpha(\text{L}) = 0.000625 \ 9; \ \alpha(\text{M}) = 0.0001434 \\ &20; \ \alpha(\text{N}+) = 0.0001377 \ 2 \\ &\alpha(\text{N}) = 3.55 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 6.40 \times 10^{-6} \ 9; \ \alpha(\text{P}) = 4.43 \times 10^{-7} \ 7; \\ &\alpha(\text{IPF}) = 9.54 \times 10^{-5} \ 14 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0042 \ 16. \end{aligned}$
x1504.84 <i>16</i>	0.28 2					M1	0.00480 7	$\alpha = 0.00480 \ 7; \ \alpha(K) = 0.00391 \ 6; \ \alpha(L) = 0.000607 \ 9; \ \alpha(M) = 0.0001393 \ 20; \ \alpha(N+) = 0.0001447 \ 2 \ \alpha(N) = 3.45 \times 10^{-5} \ 5; \ \alpha(O) = 6.22 \times 10^{-6} \ 9; \ \alpha(P) = 4.30 \times 10^{-7} \ 6; \ \alpha(IPF) = 0.0001036 \ 15 \ Mult : \ \alpha(K) exp = 0.0039 \ 8 \ Mult : \ \alpha(K) exp = 0.0039 \ Mult : \ \alpha(K) exp = 0.003$
1507.75 9	0.04 1	2120.21	(2 ⁺)	612.46318	2+			other I γ : 0.18 6 (1970P109). placement from an 1823 level rejected by 2008Mc04
1511.11 20	0.028 5	2950.43	(1,2+)	1439.263	2+	E2	0.00256 4	$\begin{aligned} &\alpha = 0.00256 \ 4; \ \alpha(\text{K}) = 0.00206 \ 3; \ \alpha(\text{L}) = 0.000331 \ 5; \ \alpha(\text{M}) = 7.64 \times 10^{-5} \\ &II \ \alpha(\text{N}+) = 9.21 \times 10^{-5} \ I3 \\ &\alpha(\text{N}) = 1.88 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.36 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 2.15 \times 10^{-7} \ 3; \\ &\alpha(\text{IPF}) = 6.97 \times 10^{-5} \ I0 \end{aligned}$

From ENSDF

 $^{192}_{78}Pt_{114}$ -22

I

				¹⁹² Au	εde	cay 2008Mo	:04,1972	2Fi12,1966Ny	01 (continu	ued)
						$\gamma(^{192}$	Pt) (cor	ntinued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α^{\dagger}	$I_{(\gamma+ce)}^{g}$	Comments
1512.75 <i>13</i> 1514.44 <i>11</i>	0.090 <i>15</i> 0.029 <i>8</i>	2890.93 2435.37	$(2)^{-}$ 3 ⁺	1378.054 920.91852	3- 3+	M1+E2+E0		0.0036 11		Mult.: $\alpha(K)\exp=0.020$ 6. placement from 2296 level rejected by 2008Mc04. $\alpha=0.0036$ 11; $\alpha(K)=0.0029$ 9; $\alpha(L)=0.00046$ 14; $\alpha(M)=0.00011$ 3; $\alpha(N+)=0.00012$ 3 $\alpha(N)=2.6\times10^{-5}$ 8; $\alpha(O)=4.7\times10^{-6}$ 14;
1517.05 9	0.33 <i>3</i>	2129.52	(1 ⁻)	612.46318	2+					$\alpha(P)=3.2\times10^{-7} \ 11; \ \alpha(IPF)=9.0\times10^{-5} \ 19$ Mult.: $\alpha(K)exp=0.014 \ 6.$ placement from a 1514 level rejected by 2008Mc04. Mult.: $\alpha(K)exp=0.0015 \ 5.$ Possibly overestimated; E(ce) is high suggesting ce line May include 1519 γ . E1 and E2 assignments possible. Additional information 1. other data: E γ =1517.8 3 (1966Ny01); I γ =0.22 2 (1972Fi12).
1519.43 <i>12</i> x1521 8 7	0.043 7 0.27 8	2958.75	(2,3)-	1439.263	2+					
1530.4 <i>I</i> 1536.91 <i>4</i>	0.049 6 0.83 3	2142.96 2149.385	(3) ⁻ 1 ⁺	612.46318 612.46318	2+ 2+	M1		0.00457 7		other I γ : 0.12 5 (1970Pl09). α =0.00457 7; α (K)=0.00371 6; α (L)=0.000576 8; α (M)=0.0001321 19; α (N+)=0.0001586 2 α (N)=3.27×10 ⁻⁵ 5; α (O)=5.90×10 ⁻⁶ 9; α (P)=4.08×10 ⁻⁷ 6; α (IPF)=0.0001196 17 Mult.: α (K)exp=0.0042 7.
1546.96 15	0.25.2	1546.93	(0+)	0.0	0+ 2+	(E0)			0.009 1	other I γ : 0.73 <i>3</i> (1972Fi12). Mult.: α (K)exp \geq 0.060 <i>10</i> from I $\gamma \leq$ 0.12 (1972Fi12). E $_{\gamma}$: from 1966Ny01. I _($\gamma+ce$) : deduced from Ice(K) and theoretical K/L ratios for E0 transitions (1969Ha61).
1549.24 8 1551.39 8	0.25 5	2472.27	2+	920.91852	3^{+}					
1559.0 2	1.6 <i>1</i>	2171.37	2+	612.46318	2+	E2(+M1)	≤1.6	0.0037 8		$\begin{aligned} &\alpha = 0.0037 \ 8; \ \alpha(\text{K}) = 0.0030 \ 6; \ \alpha(\text{L}) = 0.00047 \ 9; \\ &\alpha(\text{M}) = 0.000107 \ 21; \ \alpha(\text{N}+) = 0.000146 \ 23 \\ &\alpha(\text{N}) = 2.7 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 4.8 \times 10^{-6} \ 10; \\ &\alpha(\text{P}) = 3.3 \times 10^{-7} \ 7; \ \alpha(\text{IPF}) = 0.000115 \ 17 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0020 \ 4. \end{aligned}$
1563.74 <i>19</i>	0.40 12	1880.02	3+	316.50645	2+	M1		0.00440 7		other I γ : 1.10 ⁻³ (1972Fi12). α =0.00440 7; α (K)=0.00355 5; α (L)=0.000551 8; α (M)=0.0001265 18; α (N+)=0.0001710 2 α (N)=3.13×10 ⁻⁵ 5; α (O)=5.65×10 ⁻⁶ 8; α (P)=3.91×10 ⁻⁷ 6; α (IPF)=0.0001336 19
1565.39 7 ×1566.76 <i>19</i>	0.45 2 0.94 <i>15</i>	2486.29	(2)-	920.91852	3+	E2		0.00241 4		Mult.: $\alpha(K) \exp = 0.0046$ 16. $\alpha = 0.00241$ 4; $\alpha(K) = 0.00193$ 3; $\alpha(L) = 0.000308$ 5;

From ENSDF

 $^{192}_{78}\text{Pt}_{114}\text{--}23$

I

				¹⁹² Au	ε de	cay 200	8Mc04,1972Fi1	2,1966Ny01 (continued)
						<u> </u>	v(¹⁹² Pt) (continu	ed)
E_{γ}^{\ddagger}	Ι _γ #g	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
1576.38 4	4.10 10	1576.368	2+	0.0	0+	E2	0.00239 4	$\begin{aligned} \alpha(M) = 7.10 \times 10^{-5} \ 10; \ \alpha(N+) = 0.0001092 \ 16 \\ \alpha(N) = 1.751 \times 10^{-5} \ 25; \ \alpha(O) = 3.13 \times 10^{-6} \ 5; \ \alpha(P) = 2.01 \times 10^{-7} \ 3; \\ \alpha(IPF) = 8.84 \times 10^{-5} \ 13 \\ \text{Mult.:} \ \alpha(K) = 0.0018 \ 4. \\ \text{placement from a 1883 level rejected by 2008Mc04.} \\ \alpha = 0.00239 \ 4; \ \alpha(K) = 0.00191 \ 3; \ \alpha(L) = 0.000304 \ 5; \ \alpha(M) = 7.01 \times 10^{-5} \ 10; \\ \alpha(N+) = 0.0001124 \ 16 \\ \alpha(N) = 1.730 \times 10^{-5} \ 25; \ \alpha(O) = 3.09 \times 10^{-6} \ 5; \ \alpha(P) = 1.99 \times 10^{-7} \ 3; \\ \alpha(IPF) = 9.18 \times 10^{-5} \ 13 \\ \text{Mult.:} \ \alpha(K) = 0.0018 \ 4. \end{aligned}$
1577.95 5 1579.2 <i>3</i>	0.44 <i>3</i> 0.25 <i>2</i>	1894.479 3155.74	$(2,3)^{-}$ $(2,3)^{-}$	316.50645 1576.368	$2^+ 2^+$			Mult.: $\alpha(K)\exp=0.0040$ 11 for doublet ce spectrum.
1580.64 8	0.64 3	2958.75	(2,3)-	1378.054	3-	M1	0.00430 6	other Ey (Iy): 1580.0 3 (0.90 5) for doublet (1972F112). $\alpha = 0.00430 6$; $\alpha(K) = 0.00346 5$; $\alpha(L) = 0.000537 8$; $\alpha(M) = 0.0001231 18$; $\alpha(N+) = 0.000179 3$
1587.86 9	0.35 2	2508.84	(2,3) ⁺	920.91852	3+	M1	0.00425 6	$\begin{aligned} \alpha(N) &= 3.05 \times 10^{-5} \ \ 5; \ \alpha(O) &= 5.50 \times 10^{-6} \ \ 8; \ \alpha(P) &= 3.80 \times 10^{-6} \ \ 6; \\ \alpha(IPF) &= 0.0001427 \ \ 20 \end{aligned}$ Mult.: $\alpha(K) \exp = 0.0053 \ \ 10. \\ \alpha &= 0.00425 \ \ 6; \ \alpha(K) &= 0.00342 \ \ 5; \ \alpha(L) &= 0.000531 \ \ 8; \ \alpha(M) &= 0.0001217 \ \ 17; \\ \alpha(N+) &= 0.000183 \ \ 3 \end{aligned}$ $\begin{aligned} \alpha(N) &= 3.01 \times 10^{-5} \ \ 5; \ \alpha(O) &= 5.43 \times 10^{-6} \ \ 8; \ \alpha(P) &= 3.76 \times 10^{-7} \ \ 6; \\ \alpha(IPF) &= 0.0001467 \ \ 21 \end{aligned}$
1604.67 <i>13</i>	0.10 1	2217.12	(2)+	612.46318	2+	M1	0.00416 6	Mult.: $\alpha(K)\exp=0.0040 \ 8.$ placement from a 2201 level rejected by 2008Mc04. $\alpha=0.00416 \ 6; \ \alpha(K)=0.00333 \ 5; \ \alpha(L)=0.000517 \ 8; \ \alpha(M)=0.0001185 \ 17;$ $\alpha(N+)=0.000191 \ 3$ $\alpha(N)=2.93\times10^{-5} \ 5; \ \alpha(O)=5.29\times10^{-6} \ 8; \ \alpha(P)=3.66\times10^{-7} \ 6;$ $\alpha(IPF)=0.0001559 \ 22$ Mult.: $\alpha(K)\exp=0.0055 \ 16.$
^x 1608.2 ^a 1624.35 3	0.06 <i>3</i> 3.3 <i>1</i>	2236.82	(1,2)+	612.46318	2+	M1	0.00405 6	$\alpha = 0.00405 \ 6; \ \alpha(K) = 0.00323 \ 5; \ \alpha(L) = 0.000501 \ 7; \ \alpha(M) = 0.0001150 \ 16; \alpha(N+) = 0.000201 \ 3 \alpha(N) = 2.84 \times 10^{-5} \ 4; \ \alpha(O) = 5.13 \times 10^{-6} \ 8; \ \alpha(P) = 3.55 \times 10^{-7} \ 5; \alpha(IPF) = 0.0001668 \ 24 Mult.: \ \alpha(K) exp = 0.0034 \ 6. other Iy: 2.88 \ 5 \ (1972Fi12).$
^x 1629.5 ^{&} 4 1633.56 8 ^x 1636.1 ^a 1639.2 2 1639.43 9 1641.91 <i>16</i> 1644.77 6	0.038 6 0.12 5 0.058 8 0.027 4 0.098 10 1.00 10	2834.60 2560.15 2834.60 2562.96 2257.26	(2^+) $(1^+,2)$ (2^+) $(2)^+$ $(2)^-$	1201.0452 920.91852 1195.170 920.91852 612.46318	4 ⁺ 3 ⁺ 0 ⁺ 3 ⁺ 2 ⁺	E1	0.001172 <i>17</i>	α=0.001172 <i>17</i> ; α(K)=0.000752 <i>11</i> ; α(L)=0.0001079 <i>16</i> ;

From ENSDF

				¹⁹² Au	ı ɛ de	cay 200	8Mc04,1972F	i12,1966Ny01 (continued)
						2	v(¹⁹² Pt) (conti	nued)
${\rm E}_{\gamma}$ ‡	Ι _γ ^{#g}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [@]	α^{\dagger}	Comments
1640.22.8	0.25.2	2027.20	(2.2)-	1279 054	2-			$\begin{aligned} &\alpha(M) = 2.45 \times 10^{-5} \ 4; \ \alpha(N+) = 0.000288 \\ &\alpha(N) = 6.04 \times 10^{-6} \ 9; \ \alpha(O) = 1.086 \times 10^{-6} \ 16; \ \alpha(P) = 7.45 \times 10^{-8} \ 11; \\ &\alpha(IPF) = 0.000281 \ 4 \\ &Mult.: \ \alpha(K) exp = 0.00076 \ 21. \\ &other \ I\gamma: \ 0.84 \ 3 \ (1972Fi12), \ 1.25 \ 25 \ (1970Pl09). \end{aligned}$
x1655.1 ^a	0.25 5 0.09 4	3027.39	(2,3)	1378.034	3			
1659.78 7	0.26 2	1976.25	(2)+	316.50645	2+	M1	0.00387 6	α =0.00387 6; α (K)=0.00306 5; α (L)=0.000475 7; α (M)=0.0001089 16; α (N+)=0.000219 3 α (N)=2.69×10 ⁻⁵ 4; α (O)=4.86×10 ⁻⁶ 7; α (P)=3.37×10 ⁻⁷ 5; α (IPF)=0.000187 3 Mult: α (K)exp=0.0052 11
1664.2 <i>1</i>	0.088 <i>9</i>	2585.23	(2) ⁺	920.91852	3+	M1	0.00384 6	$\alpha = 0.00384 \ 6; \ \alpha(K) = 0.00304 \ 5; \ \alpha(L) = 0.000472 \ 7; \ \alpha(M) = 0.0001082 \ 16; \\ \alpha(N+) = 0.000221 \ 3 \\ \alpha(N) = 2.68 \times 10^{-5} \ 4; \ \alpha(O) = 4.83 \times 10^{-6} \ 7; \ \alpha(P) = 3.34 \times 10^{-7} \ 5; \\ \alpha(IPF) = 0.000189 \ 3 \\ Mult.; \ \alpha(K) \exp = 0.0057 \ 14.$
^x 1671.8 8 ^x 1675.1 ^a ^x 1678.3 ^a 1682.09.9	0.16 6 0.10 5 0.11 5 0.090 10	2602 97	$(2)^{+}$	920 91852	3+			placement from 2857 level rejected by 2008Mc04.
1683.34 <i>25</i>	0.22 2	2296.06	$(1,2)^+$	612.46318	2+	M1	0.00375 6	α =0.00375 6; α (K)=0.00296 5; α (L)=0.000458 7; α (M)=0.0001051 15; α (N+)=0.000231 4 α (N)=2.60×10 ⁻⁵ 4; α (O)=4.69×10 ⁻⁶ 7; α (P)=3.25×10 ⁻⁷ 5; α (IPF)=0.000200 3 Mult.: α (K)exp=0.0042 9; suggests possible E0 component. E _{γ} : from 1966Ny01; 1683.5 3 from 2008Mc04. other Ly: 0.22 2 (1972Ei12)
^x 1685.8 ^a	0.15 8							oner 17. 0.22 2 (17721112).
1687.61 9 ×1689.6 ^a	0.022 5	2472.27	2+	784.5759	4+			placement from 2891 level rejected by 2008Mc04
1693.29 24	0.19 2	2614.29	(2 ⁺)	920.91852	3+	M1	0.00371 6	α =0.00371 6; α (K)=0.00292 4; α (L)=0.000452 7; α (M)=0.0001036 15; α (N+)=0.000237 4
1706.63 3	3.3 1	2319.11	1+	612.46318	2+	M1	0.00365 6	$\alpha(N)=2.56\times10^{-5} 4; \ \alpha(O)=4.62\times10^{-6} 7; \ \alpha(P)=3.20\times10^{-7} 5; \ \alpha(IPF)=0.000206 3$ Mult.: $\alpha(K)\exp=0.0040 6. \ \alpha=0.00365 6; \ \alpha(K)=0.00286 4; \ \alpha(L)=0.000443 7; \ \alpha(M)=0.0001015 15; \ \alpha(M)=0.000105 15; \ \alpha$
1,00.03 5	5.5 1		ī	512.10510	-		0.00000 0	$\alpha(N+)=0.000244 4$ $\alpha(N)=2.51\times10^{-5} 4; \alpha(O)=4.53\times10^{-6} 7; \alpha(P)=3.14\times10^{-7} 5;$ $\alpha(IPF)=0.000214 3$ Mult: $\alpha(K)\exp=0.0035 5$
1723.00 4	6.0 <i>3</i>	2335.465	1^{+}	612.46318	2+	M1	0.00358 5	$\alpha = 0.00358 5; \ \alpha(\text{K}) = 0.00279 4; \ \alpha(\text{L}) = 0.000432 6; \ \alpha(\text{M}) = 9.91 \times 10^{-5} 14; \ \alpha(\text{N}+) = 0.000253 4$

 $^{192}_{78}\text{Pt}_{114}\text{-}25$

I

 $^{192}_{78}\text{Pt}_{114}\text{--}25$

From ENSDF

				¹⁹² Αu ε	deca	y 2008M	c04,1972Fi12,19	066Ny01 (continued)
						$\gamma(^{192}$	Pt) (continued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.@	$lpha^{\dagger}$	Comments
					_			α (N)=2.45×10 ⁻⁵ 4; α (O)=4.43×10 ⁻⁶ 7; α (P)=3.07×10 ⁻⁷ 5; α (IPF)=0.000224 4 other I γ : 5.36 15 (1972Fi12). Mult.: α (K)exp=0.0028 5.
1724.95 <i>21</i> 1726.35 <i>10</i>	0.012 <i>3</i> 0.26 <i>3</i>	2041.81 2647.32	$(2^{-},3^{-})$ $(2)^{-}$	316.50645 920.91852	2+ 3+			
1731.4 <i>I</i>	1.21 5	2047.89	(2)+	316.50645	2+	M1	0.00354 5	$\alpha = 0.00354 \ 5; \ \alpha(K) = 0.00276 \ 4; \ \alpha(L) = 0.000427 \ 6; \ \alpha(M) = 9.79 \times 10^{-5} \ 14; \ \alpha(N+) = 0.000258 \ 4 \ \alpha(N) = 2.42 \times 10^{-5} \ 4; \ \alpha(O) = 4.37 \times 10^{-6} \ 7; \ \alpha(P) = 3.03 \times 10^{-7} \ 5; \ \alpha(IPF) = 0.000229 \ 4 \ M \ and a = 0.000229 \ 4 \ m \ and a = 0.000229 \ 4 \ m \ and a = 0.000229 \ 4 \ m \ and a = 0.000229 \ 4 \ and a = 0.00029 \ an$
1739.49 10	0.39 3	1739.432	(1)-	0.0	0+	(E1)	0.001162 17	Mult.: $\alpha(K)\exp=0.0040$ /. $\alpha=0.001162$ 17; $\alpha(K)=0.000685$ 10; $\alpha(L)=9.81\times10^{-5}$ 14; $\alpha(M)=2.23\times10^{-5}$ 4; $\alpha(N+)=0.000357$ 5 $\alpha(N)=5.49\times10^{-6}$ 8; $\alpha(O)=9.88\times10^{-7}$ 14; $\alpha(P)=6.80\times10^{-8}$ 10; $\alpha(IPF)=0.000351$ 5 Mult.: $\alpha(K)\exp=0.00099$ 27.
^x 1742.0 9 1755.4 3	0.11 5 0.0096 <i>15</i>	2950.43	(1,2+)	1195.170	0^{+}			
1757.7 <i>4</i> 1762.90 <i>4</i>	0.025 <i>10</i> 1.3 2	2073.95 2375.392	2^+ (1,2) ⁺	316.50645 612.46318	2+ 2+	E2(+M1)	0.0027 7	Mult.: α (K)exp=0.025 <i>12</i> . placement from 2891 level rejected by 2008Mc04. α =0.0027 7; α (K)=0.0021 6; α (L)=0.00033 9; α (M)=7.5×10 ⁻⁵ <i>19</i> ; α (N+)=0.00023 5
								$\alpha(N)=1.8\times10^{-5} 5; \alpha(O)=3.3\times10^{-6} 9; \alpha(P)=2.3\times10^{-7} 7; \alpha(IPF)=0.00021 5$ Mult.: $\alpha(K)\exp=0.0019 4.$
x1769.4 9	0.15 8	3155 74	$(2 3)^{-}$	1378 054	3-			
1778.39 6	0.16 1	2562.96	(2,3) $(2)^+$	784.5759	4 ⁺			Mult.: $\alpha(K)\exp=0.026 \ 6$ for probable doublet, $>>\alpha(K)(M1)$; however, level scheme implies E2 for this placement.
^x 1781.7 9 1786.79 4	0.17 7 1.45 <i>12</i>	2399.270	$(1,2)^+$	612.46318	2+	(E2)	0.00200 3	α =0.00200 3; α (K)=0.001517 22; α (L)=0.000237 4; α (M)=5.45×10 ⁻⁵ 8; α (N+)=0.000191 3
								$\alpha(N)=1.346\times10^{-5} \ 19; \ \alpha(O)=2.41\times10^{-6} \ 4; \ \alpha(P)=1.582\times10^{-7} \ 23; \\ \alpha(IPF)=0.0001747 \ 25 \\ Mult.: \ \alpha(K)exp=0.0021 \ 7. $
1795.75 20	0.060 9	2408.34	(2)+	612.46318	2+	M1(+E2)	0.0026 7	$\alpha = 0.0026 \ 7; \ \alpha(K) = 0.0020 \ 5; \ \alpha(L) = 0.00031 \ 8; \ \alpha(M) = 7.2 \times 10^{-5} \ 18; \alpha(N+) = 0.00024 \ 5 \alpha(N) = 1.8 \times 10^{-5} \ 5; \ \alpha(O) = 3.2 \times 10^{-6} \ 8; \ \alpha(P) = 2.2 \times 10^{-7} \ 6; \alpha(IPF) = 0.00022 \ 5 $ Mult : $\alpha(K) \approx n_{P} = 0.025 \ 8$
1800.68 7 1810.39 9 1811.57 <i>15</i>	0.035 <i>5</i> 0.075 <i>8</i> 0.037 <i>5</i>	2585.23 2422.78 3189.52	$(2)^+$ $(1,2)^+$ $(2,3^-)$	784.5759 612.46318 1378.054	4 ⁺ 2 ⁺ 3 ⁻			$u(\mathbf{x}) = 0.023$ o.

From ENSDF

 $^{192}_{78} Pt_{114}$ -26

I

				¹⁹² Au	ε dec	ay 2008Mc()4,1972Fi12,1	966Ny01 (continued)
						γ ⁽¹⁹² F	Pt) (continued	<u>)</u>
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
1813.00 7	0.72 3	2129.52	(1 ⁻)	316.50645	2+			Mult.: $\alpha(K)\exp=0.0013$ 4; it is unclear whether the 1812γ contributes to the reported I(ce). E2 appears most likely, but is inconsistent with adopted level scheme.
1822.90 8	0.32 2	2435.37	3+	612.46318	2+	M1	0.00320 5	α =0.00320 5; α (K)=0.00243 4; α (L)=0.000375 6; α (M)=8.60×10 ⁻⁵ 12; α (N+)=0.000312 5 α (N)=2.13×10 ⁻⁵ 3; α (O)=3.84×10 ⁻⁶ 6; α (P)=2.66×10 ⁻⁷ 4; α (IPF)=0.000287 4 Mult.: α (K)exp=0.0033 9.
1832.83 4	4.7 3	2149.385	1+	316.50645	2+	M1	0.00317 5	practile in from an 182.5 reven rejected by 20080004. $\alpha = 0.00317 5; \ \alpha(K) = 0.00240 4; \ \alpha(L) = 0.000370 6; \ \alpha(M) = 8.49 \times 10^{-5}$ $12; \ \alpha(N+) = 0.000318 5$ $\alpha(N) = 2.10 \times 10^{-5} 3; \ \alpha(O) = 3.79 \times 10^{-6} 6; \ \alpha(P) = 2.63 \times 10^{-7} 4;$ $\alpha(IPF) = 0.000293 5$ Mult.: $\alpha(K) \exp = 0.0027 4.$ other Ly: 5.5.6 (1970P109)
1840.94 <i>10</i>	0.11 2	2453.43	2+	612.46318	2+	M1+E2+E0	0.0025 6	$\alpha = 0.0025 \ 6; \ \alpha(\text{K}) = 0.0019 \ 5; \ \alpha(\text{L}) = 0.00030 \ 8; \ \alpha(\text{M}) = 6.8 \times 10^{-5} \ 17; \\ \alpha(\text{N}+) = 0.00027 \ 6 \\ \alpha(\text{N}) = 1.7 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.0 \times 10^{-6} \ 8; \ \alpha(\text{P}) = 2.0 \times 10^{-7} \ 6; \\ \alpha(\text{IPF}) = 0.00025 \ 5 \\ \text{Mult} : \ \alpha(\text{K}) = \text{n} = 0.0069 \ 20 $
1855.0 <i>3</i>	0.20 2	2171.37	2+	316.50645	2+	M1+E2+E0	0.0025 6	α=0.0025 6; α(K)=0.0019 5; α(L)=0.00029 7; α(M)=6.6×10 ⁻⁵ 16; α(N+)=0.00028 6 α(N)=1.6×10 ⁻⁵ 4; α(O)=3.0×10 ⁻⁶ 8; α(P)=2.0×10 ⁻⁷ 6; α(IPF)=0.00026 6 Mult.: α(K)exp=0.030 6. α: estimated from α(K)exp.
1859.82 9	0.084 9	2472.27	2+	612.46318	2+	M1+E2+E0	0.0025 6	$\begin{aligned} &\alpha = 0.0025 \ 6; \ \alpha(\text{K}) = 0.0019 \ 5; \ \alpha(\text{L}) = 0.00029 \ 7; \ \alpha(\text{M}) = 6.6 \times 10^{-5} \ 16; \\ &\alpha(\text{N}_{+}) = 0.00028 \ 6 \\ &\alpha(\text{N}) = 1.6 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 2.9 \times 10^{-6} \ 8; \ \alpha(\text{P}) = 2.0 \times 10^{-7} \ 6; \\ &\alpha(\text{IPF}) = 0.00026 \ 6 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.0050 \ 13. \end{aligned}$
x1868.2 9 1871.10 10 x1872.4 5 x1874.8 8	0.13 6 0.14 2 0.45 20 0.45 20	2483.64	≤3	612.46318	2+	(E1,E2)		Mult.: $\alpha(K) \exp = 0.0010 \ 6.$
1880 <i>fh</i>	< 0.007	1880.02	3+	0.0	0^+	[M3]		other E γ (I γ): 1880.2 7 (0.19 7) (1970Pl09).
^x 1883.78 ^{&} 25						(E0) ^{<i>e</i>}		placement from a 1883 level rejected by 2008Mc04.
1896.40 8	0.12 1	2508.84	$(2,3)^+$	612.46318	2+			other $E_{\gamma} \approx 1894.9$ (1970Pl09).
^x 1900.5 ^C 7	0.15 7					M1	0.00297 5	$\alpha = 0.00297 5; \ \alpha(\text{K}) = 0.00219 \ 3; \ \alpha(\text{L}) = 0.000338 \ 5; \ \alpha(\text{M}) = 7.75 \times 10^{-5} \ 11; \ \alpha(\text{N}+) = 0.000360 \ 5 \ \alpha(\text{N}) = 1.92 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.46 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 2.40 \times 10^{-7} \ 4;$

 $^{192}_{78} Pt_{114}$ -27

I

 $^{192}_{78}\text{Pt}_{114}\text{--}27$

From ENSDF

							$\gamma(^{192}\text{Pt})$ (contin	nued)
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
								α (IPF)=0.000337 5
								Mult.: $\alpha(K)\exp=0.0045$ 23.
1913.6 2 $x_{1915.4}^{a}$	0.054 7 0.11 5	2834.60	(2 ⁺)	920.91852	3+			pracement from 2217 rejected by 2006/0004.
1919.95 8	0.17 2	2532.46	1^{+}	612.46318	2+			other data: Eγ: 1921.1 <i>3</i> (1966Ny01), 1921.3 <i>3</i> (1970Pl09). Ιγ: 5.6 7 (1970Pl09).
1921.05 6	4.7 2	2237.52	(2) ⁺	316.50645	2+	M1	0.00291 4	α =0.00291 4; α (K)=0.00213 3; α (L)=0.000329 5; α (M)=7.55×10 ⁻⁵ 11; α (N+)=0.000372 6
								$\alpha(N)=1.87 \times 10^{-5} 3; \alpha(O)=3.37 \times 10^{-6} 5; \alpha(P)=2.34 \times 10^{-7} 4; \alpha(IPF)=0.000350 5$ Mult: $\alpha(K)=0.0026 4$
x1934 9 d	0.18^{d} 9							Mut. u(R)exp=0.0020 7.
1936.07 8	0.031 4	2857.07	(2^{-})	920.91852	3+			
1936.9 <i>1</i>	0.19 1	2549.42	(2)+	612.46318	2+	M1,E2	0.0023 6	α =0.0023 6; α (K)=0.0017 4; α (L)=0.00026 6; α (M)=6.0×10 ⁻⁵ 14; α (N+)=0.00032 7
								α (N)=1.5×10 ⁻⁵ 4; α (O)=2.7×10 ⁻⁶ 7; α (P)=1.8×10 ⁻⁷ 5; α (IPF)=0.00030 6 Mult.: α (K)exp=0.0018 5.
1940.80 <i>10</i>	2.4 2	2257.26	(2) ⁻	316.50645	2+	E1	0.001175 17	α =0.001175 <i>17</i> ; α (K)=0.000572 <i>8</i> ; α (L)=8.16×10 ⁻⁵ <i>12</i> ; α (M)=1.85×10 ⁻⁵ <i>3</i> ; α (N+)=0.000503 <i>7</i>
								α (N)=4.57×10 ⁻⁶ 7; α (O)=8.22×10 ⁻⁷ 12; α (P)=5.68×10 ⁻⁸ 8; α (IPF)=0.000498 7
x1046 00	0146							Mult.: $\alpha(K) \exp = 0.00066 \ 14.$
1940.9 ⁴ 1950.46 <i>13</i>	0.14 0	2562.96	$(2)^{+}$	612.46318	2+	M1	0.00283 4	$\alpha = 0.00283 \ 4; \ \alpha(K) = 0.00205 \ 3; \ \alpha(L) = 0.000317 \ 5; \ \alpha(M) = 7.26 \times 10^{-5} \ 11;$ $\alpha(N+) = 0.000391 \ 6$
								$\alpha(N)=1.80\times10^{-5} 3; \alpha(O)=3.24\times10^{-6} 5; \alpha(P)=2.25\times10^{-7} 4; \alpha(IPF)=0.000369 6$
								Mult.: α (K)exp=0.0026 5.
X10(1 0 0	0.11							placement from a 3146 level rejected by 2008Mc04.
~1961.8 9 1060.00 8	0.115	2800.02	$(2)^{-}$	020 01852	2+			
1909.99 8	0.57 7	2585.23	$(2)^{+}$	612.46318	2 ⁺	M1	0.00278 4	α =0.00278 4; α (K)=0.00200 3; α (L)=0.000308 5; α (M)=7.06×10 ⁻⁵ 10; α (N+)=0.000405 6
								$\alpha(N)=1.746\times10^{-5}\ 25;\ \alpha(O)=3.15\times10^{-6}\ 5;\ \alpha(P)=2.19\times10^{-7}\ 3;$ $\alpha(IPF)=0.000384\ 6$
								Mult.: $\alpha(K) \exp = 0.0023 5$.
								other I γ : 0.72 <i>15</i> (1970Pl09) for possible doublet.
torefh	0.001	1056.05		0.0	0±			placement from 2757 level rejected by $2008Mc04$.
1976 ⁷	< 0.001	1976.25	$(2)^+$	0.0	0^+ 2+	M1	0.00276 4	$a=0.00076$ 4; $a(K)=0.00108$ 2; $a(L)=0.000205$ 5; $a(M)=7.00, 10^{-5}$ 10;
19/9.38 8	1.5 2	2290.06	$(1,2)^{+}$	510.50045	Ζ.	1111	0.00270 4	$\alpha = 0.002764; \alpha(\mathbf{K}) = 0.001983; \alpha(\mathbf{L}) = 0.0003053; \alpha(\mathbf{M}) = 7.00\times10^{\circ} 10; \alpha(\mathbf{M} + 1) = 0.0004096$

From ENSDF

 $^{192}_{78}\text{Pt}_{114}\text{--}28$

 $^{192}_{78} Pt_{114}\text{--}28$

					¹⁹² Au	εde	cay 2008Mc	04,1972Fi12,19	66Ny01 (continued)
							$\gamma(^{192}$	Pt) (continued)	
	E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [@]	α^{\dagger}	Comments
						<u> </u>			α (N)=1.731×10 ⁻⁵ 25; α (O)=3.13×10 ⁻⁶ 5; α (P)=2.17×10 ⁻⁷ 3; α (IPF)=0.000389 6 Mult.: α (K)exp=0.0024 6.
	x1989.3 8 1992.25 9 x1993.5 8 x1000 3 ⁴	0.16 5 0.16 <i>1</i> 0.27 8 0.25 <i>1</i> 5	2604.76	(1,2)-	612.46318	2+			
	2001 75 15	0.23 13	2614 29	(2^{+})	612 46318	2^{+}			
	2002.54 8	1.20 15	2319.11	1^{+}	316.50645	2 ⁺			Complex, with at least 2 unresolved peaks in ce spectrum; 1966Ny01 suggested second placement from 2614.6 level. α (K)exp=0.0023 7 for doublet.
	2016.81 15	0.11 1	2629.24	2+	612.46318	2^{+}	M1+E2+E0		Mult.: α (K)exp=0.0061 15.
	2018.8 2	2.4 3	2335.465	1+	316.50645	2+	M1	0.00268 4	$\alpha = 0.00268 \ 4; \ \alpha(K) = 0.00189 \ 3; \ \alpha(L) = 0.000291 \ 4; \ \alpha(M) = 6.66 \times 10^{-5} \ 10; \ \alpha(N+) = 0.000434 \ 6 \ \alpha(N) = 1.649 \times 10^{-5} \ 23; \ \alpha(O) = 2.98 \times 10^{-6} \ 5; \ \alpha(P) = 2.07 \times 10^{-7} \ 3; \ \alpha(IPF) = 0.000415 \ 6 \ Mult: \ \alpha(K) = 0.0017 \ 4$
	x2024 5 ^a	0.09.5							Mult.: $u(\mathbf{K}) \exp[-0.0017 4]$.
	2026.2 2	0.029 6	2947.001	(2^{-})	920.91852	3+			
, ,	2034.87 7	1.2 2	2647.32	(2)-	612.46318	2+	E1	0.001192 17	$\alpha = 0.001192 \ 17; \ \alpha(K) = 0.000530 \ 8; \ \alpha(L) = 7.55 \times 10^{-5} \ 11; \\ \alpha(M) = 1.712 \times 10^{-5} \ 24; \ \alpha(N+) = 0.000570 \\ \alpha(N) = 4.22 \times 10^{-6} \ 6; \ \alpha(O) = 7.61 \times 10^{-7} \ 11; \ \alpha(P) = 5.27 \times 10^{-8} \ 8; \\ \alpha(IPF) = 0.000565 \ 8 \\ Mult.: \ \alpha(K) exp = 0.00059 \ 17.$
	2037.86 12	0.028 5	2958.75	$(2,3)^{-}$	920.91852	3+			
	2042 ^{<i>fh</i>}	< 0.001	2041.81	(2-,3-)	0.0	0^{+}			M2,E3 multipolarity implied by placement so No significant branch is expected.
	2047.8 <i>3</i> <i>x</i> 2051.3 ^{<i>a</i>} <i>x</i> 2055.3 ^{<i>c</i>} 7	0.015 <i>4</i> 0.09 <i>5</i> 0.07 <i>4</i>	2047.89	$(2)^{+}$	0.0	0^{+}			placement from a 3360 level rejected by 2008Mc04. Mult : $\alpha(K)$ evp=0.0025.15
	2058.9 1	0.38 8	2375.392	(1,2)+	316.50645	2+	M1	0.00260 4	$\alpha = 0.00260 \ 4; \ \alpha(K) = 0.00180 \ 3; \ \alpha(L) = 0.000277 \ 4; \ \alpha(M) = 6.35 \times 10^{-5} \ 9; \ \alpha(N+) = 0.000460 \ 7 \ \alpha(N) = 1.569 \times 10^{-5} \ 22; \ \alpha(O) = 2.83 \times 10^{-6} \ 4; \ \alpha(P) = 1.97 \times 10^{-7} \ 3; \ \alpha(IPF) = 0.000441 \ 7 \ Mult.: \ \alpha(K) exp = 0.0018 \ 5.$
	^x 2068.1 9 2073.7 3	0.09 5 0.20 2	2073.95	2+	0.0	0+	E2	0.001694 24	$ \begin{array}{l} \alpha = 0.001694 \ 24; \ \alpha(\mathrm{K}) = 0.001159 \ 17; \ \alpha(\mathrm{L}) = 0.0001778 \ 25; \\ \alpha(\mathrm{M}) = 4.07 \times 10^{-5} \ 6; \ \alpha(\mathrm{N}+) = 0.000316 \\ \alpha(\mathrm{N}) = 1.005 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 1.80 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 1.207 \times 10^{-7} \ 17; \\ \alpha(\mathrm{IPF}) = 0.000304 \ 5 \end{array} $
	2082.79 6	1.2 1	2399.270	(1,2)+	316.50645	2+	M1	0.00255 4	Mult.: α (K)exp=0.00097 20. α =0.00255 4; α (K)=0.001747 25; α (L)=0.000269 4; α (M)=6.16×10 ⁻⁵ 9; α (N+)=0.000476 7

 $^{192}_{78}\mathrm{Pt}_{114}\text{--}29$

I

From ENSDF

 $^{192}_{78}\mathrm{Pt}_{114}\text{--}29$

						$\underline{\gamma}$	(¹⁹² Pt) (continue	ed)
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{\dagger}	Comments
2091.90 7	0.18 2	2408.34	(2)+	316.50645	2+	M1	0.00254 4	$\begin{split} \alpha(\mathrm{N}) &= 1.525 \times 10^{-5} \ 22; \ \alpha(\mathrm{O}) = 2.75 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.91 \times 10^{-7} \ 3; \\ \alpha(\mathrm{IPF}) &= 0.000457 \ 7 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) &= 0.0019 \ 4. \\ \alpha &= 0.00254 \ 4; \ \alpha(\mathrm{K}) = 0.001728 \ 25; \ \alpha(\mathrm{L}) = 0.000266 \ 4; \ \alpha(\mathrm{M}) = 6.10 \times 10^{-5} \\ 9; \ \alpha(\mathrm{N}+) = 0.000481 \ 7 \\ \alpha(\mathrm{N}) &= 1.508 \times 10^{-5} \ 22; \ \alpha(\mathrm{O}) = 2.72 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.89 \times 10^{-7} \ 3; \\ \alpha(\mathrm{IPF}) &= 0.000463 \ 7 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) &= 0.0035 \ 9. \end{split}$
^x 2097.1 ^{&} 9 2106.25 5	1.3 2	2422.78	(1,2)+	316.50645	2+	M1	0.00251 4	α =0.00251 4; α (K)=0.001699 24; α (L)=0.000262 4; α (M)=5.99×10 ⁻⁵ 9; α (N+)=0.000491 7 α (N)=1.483×10 ⁻⁵ 21; α (O)=2.68×10 ⁻⁶ 4; α (P)=1.86×10 ⁻⁷ 3; α (IPF)=0.000473 7 Mult.: α (K)exp=0.0019 4. other Ev: 2106 56 19 (1966Nv01)
2106.42 9	0.13 1	3027.39	(2,3)-	920.91852	3+			onici 19. 2100.30 17 (17001.901).
^x 2117.67 ^c 25 2118.9.2	0.07 4 0.084 10	2435 37	3+	316 50645	2+			Mult.: $\alpha(K) \exp = 0.017 \ 10.$
2120.1 2	0.098 10	2120.21	(2^+)	0.0	0^{+}			
2129.57 10	0.45 4	2129.52	(1 ⁻)	0.0	0+	E1	0.001213 17	α =0.001213 <i>17</i> ; α (K)=0.000492 <i>7</i> ; α (L)=7.00×10 ⁻⁵ <i>10</i> ; α (M)=1.588×10 ⁻⁵ <i>23</i> ; α (N+)=0.000635 α (N)=3.92×10 ⁻⁶ <i>6</i> ; α (O)=7.06×10 ⁻⁷ <i>10</i> ; α (P)=4.90×10 ⁻⁸ <i>7</i> ; α (IPF)=0.000630 <i>9</i> Mult.: α (K)exp=0.00047 <i>16</i> ; α (K)exp implies mult=E1, inconsistent with mult(1518 γ) which deexcites the same level as this G. Additional information 3. other I γ : 0.61 <i>15</i> (1970P109).
x2134.0 6	0.19 8					(M1,E2)	0.0021 4	$\alpha = 0.0021 \ 4; \ \alpha(\mathbf{K}) = 0.0014 \ 3; \ \alpha(\mathbf{L}) = 0.00021 \ 5; \ \alpha(\mathbf{M}) = 4.8 \times 10^{-5} \ 10; \\ \alpha(\mathbf{N}+) = 0.00043 \ 9 \\ \alpha(\mathbf{N}) = 1.19 \times 10^{-5} \ 25; \ \alpha(\mathbf{O}) = 2.1 \times 10^{-6} \ 5; \ \alpha(\mathbf{P}) = 1.5 \times 10^{-7} \ 4; \\ \alpha(\mathbf{IPF}) = 0.00041 \ 8 \\ \text{Mult} : \ \alpha(\mathbf{K}) \approx n = 0.0017 \ 8 \\ \end{cases}$
2137.0 <i>3</i>	0.30 3	2453.43	2+	316.50645	2+	M1	0.00246 4	α=0.00246 4; α(K)=0.001640 23; α(L)=0.000252 4; α(M)=5.78×10 ⁻⁵ 8; α(N+)=0.000511 8 α(N)=1.430×10 ⁻⁵ 20; α(O)=2.58×10 ⁻⁶ 4; α(P)=1.80×10 ⁻⁷ 3; α(IPF)=0.000494 7 Mult.: α(K)exp=0.0020 5. other Iγ: 0.45 8 (1970P109). placement from a 2464 level rejected by 2008Mc04. May be the same
2149.4 2	0.072 8	2149.385	1+	0.0	0^{+}	M1	0.00244 4	As the E γ =2149.4 2, I γ =0.072 8 from 2008Mc04. α =0.00244 4; α (K)=0.001616 23; α (L)=0.000249 4; α (M)=5.70×10 ⁻⁵ 8; α (N+)=0.000519 8

From ENSDF

 $^{192}_{78} Pt_{114} - 30$

					192	² Au ε	decay	2008Mc04,1972	Fi12,1966Ny01 (continued)
								$\gamma(^{192}\text{Pt})$ (cont	inued)
	E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$lpha^\dagger$	Comments
	2155.74 10	0.23 3	2472.27	2+	316.50645	2+	M1	0.00243 4	$\alpha(N)=1.410\times10^{-5} \ 20; \ \alpha(O)=2.55\times10^{-6} \ 4; \ \alpha(P)=1.770\times10^{-7} \ 25; \\ \alpha(IPF)=0.000502 \ 7 \\ \text{Mult.: } \ \alpha(K)\exp=0.0035 \ 11. \\ \text{other } I\gamma: \ 0.21 \ 5 \ (1970P109) \ \text{for } E\gamma=2151.7 \ 9. \\ \alpha=0.00243 \ 4; \ \alpha(K)=0.001605 \ 23; \ \alpha(L)=0.000247 \ 4; \ \alpha(M)=5.66\times10^{-5} \ 8; \\ \alpha(N+)=0.000523 \ 8 \\ \alpha(N)=1.399\times10^{-5} \ 20; \ \alpha(O)=2.53\times10^{-6} \ 4; \ \alpha(P)=1.757\times10^{-7} \ 25; \\ \alpha(IPF)=0.000506 \ 7 \\ \text{Mult.: } \ \alpha(K)\exp=0.0025 \ 6 \\ \end{array}$
	2167.15 11	0.23 2	2483.64	≤3	316.50645	2+			placement from a 2952 level rejected by 2008Mc04.
	2169.6 2 2171.5 <i>3</i>	0.20 <i>3</i> 1.2 <i>2</i>	2486.29 2171.37	(2) ⁻ 2 ⁺	0.0	2+ 0+	[E2]	0.001628 23	α =0.001628 23; α (K)=0.001067 15; α (L)=0.0001627 23; α (M)=3.73×10 ⁻⁵ 6; α (N+)=0.000361 α (N)=9.20×10 ⁻⁶ 13; α (O)=1.652×10 ⁻⁶ 24; α (P)=1.110×10 ⁻⁷ 16; α (IPF)=0.000350 5 Mult.: α (K)exp=0.0019 7 for 2171.5y+2169.6y doublet.
21	^x 2173.4 ^{&} 5 ^x 2176.1 ^a 2181.8 3 ^x 2192.7 ^{&} 7	0.17 <i>9</i> 0.036 <i>5</i>	2794.26	(≤2)	612.46318	2+			
	^x 2199.8 ^{&} 8 x2206.6 ^a	0.09.4							placement from a 2201 level rejected by 2008Mc04.
	2216.05 <i>15</i>	0.70 4	2532.46	1+	316.50645	2+	M1	0.00234 4	$\alpha = 0.00234 \ 4; \ \alpha(K) = 0.001499 \ 21; \ \alpha(L) = 0.000230 \ 4; \ \alpha(M) = 5.28 \times 10^{-5} \ 8; \\ \alpha(N+) = 0.000562 \ 8 \\ \alpha(N) = 1.306 \times 10^{-5} \ 19; \ \alpha(O) = 2.36 \times 10^{-6} \ 4; \ \alpha(P) = 1.641 \times 10^{-7} \ 23; \\ \alpha(IPF) = 0.000546 \ 8 \\ \alpha(IPF) = $
	2220.41 10	0.12 <i>1</i>	2832.89	(1,2)+	612.46318	2+	M1	0.00234 4	Mult.: α (K)exp=0.0019 3. α =0.00234 4; α (K)=0.001492 21; α (L)=0.000229 4; α (M)=5.26×10 ⁻⁵ 8; α (N+)=0.000565 8 α (N)=1.300×10 ⁻⁵ 19; α (O)=2.35×10 ⁻⁶ 4; α (P)=1.633×10 ⁻⁷ 23; α (IPF)=0.000549 8
	2234.84 7 2237.3 2	0.53 <i>3</i> 8.0 <i>5</i>	3155.74 2237.52	$(2,3)^{-}$ $(2)^{+}$	920.91852 0.0	3+ 0+			Mult.: $\alpha(K)exp=0.0027$ 7. placement from 2835 level rejected by 2008Mc04. other I γ : 1.3 5 (1970Pl09). Mult.: $\alpha(K)exp=0.00148$ 26 for doublet, assuming 1966Ny01 failed to resolve the 2234.8 γ . this exceeds $\alpha(K)(E2)$. other E γ : 2236.89 20 (1966Ny01). other I γ : 9.6 10 (1970Pl09).
	2243.5 2 2243.74 20	0.23 <i>4</i> 0.076 <i>8</i>	2560.15 2856.13	$(1^+,2)$ $(2)^-$	316.50645 612.46318	2+ 2+			Mult.: $\alpha(K)\exp=0.00069$ 17 for multiplet. other I γ : 0.80 22 for poorly resolved 2243.3 γ +2246.6 γ , each with I γ =0.40
	2246.55 15	0.24 4	2562.96	(2)+	316.50645	2+			15 in 1970P109.

From ENSDF

 $^{192}_{78}\text{Pt}_{114}\text{--}31$

 $^{192}_{78} Pt_{114}$ -31

I

¹⁹²Au ε decay **2008Mc04,1972Fi12,1966Ny01** (continued)

$\gamma(^{192}\text{Pt})$ (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	α^{\dagger}	Comments
2257^{a} $x2260^{a}$	0.06 0.06	2257.26	(2)-	0.0	0+			
2268.7 2 2268.8 3	0.043 <i>5</i> 0.057 <i>9</i>	3189.52 2585.23	$(2,3^{-})$ $(2)^{+}$	920.91852 316.50645	3+ 2+			Mult.: $\alpha(K)\exp=0.0031$ 7 for doublet. Mult.: $\alpha(K)\exp=0.0031$ 7 for doublet. other by: 0.216 (1970P109)
x2271.9 ^a x2275.2 ^a	$0.08 \ 4$ $0.05 \ 4$	2800.02	(2)-	(12 4(219	2+			Malta (K) and 0.0028 9, include M1, but this is incardidated with placement
2278.4 2	0.066 8	2890.93	(2)	612.46318	Ζ'			Mult.: $\alpha(\text{K})\exp=0.0028 \ \text{s}$; implies M1, but this is inconsistent with placement of 997 γ and 2575 γ from same level As this G. other I γ : 0.15 7 (1970Pl09).
×2284.0 8 2286.43 7	0.13 5 0.14 2	2602.97	(2)+	316.50645	2+	M1	0.00226 4	α =0.00226 4; α (K)=0.001388 20; α (L)=0.000213 3; α (M)=4.89×10 ⁻⁵ 7; α (N+)=0.000607 9
								α (N)=1.208×10 ⁻⁵ <i>17</i> ; α (O)=2.18×10 ⁻⁶ <i>3</i> ; α (P)=1.519×10 ⁻⁷ <i>22</i> ; α (IPF)=0.000593 <i>9</i> Mult.: α (K)exp=0.0018 <i>5</i> .
2297.8 2	0.33 1	2614.29	(2+)	316.50645	2+	M1	0.00224 4	$\alpha = 0.00224 4$; $\alpha(K) = 0.001371 20$; $\alpha(L) = 0.000211 3$; $\alpha(M) = 4.83 \times 10^{-5} 7$; $\alpha(N+) = 0.000615 9$ (N) = 1.102 (10 ⁻⁵ 17 , (0)) = 2.16 (10 ⁻⁶ 2) , (D) = 1.500 (10 ⁻⁷ 2))
								$\alpha(N)=1.195\times10^{-17}$; $\alpha(O)=2.16\times10^{-5}$; $\alpha(P)=1.500\times10^{-127}$; $\alpha(IPF)=0.000601~9$ Mult.: $\alpha(K)\exp=0.0020~6$.
2312.8.3	0.64.3	2629 24	2+	316 50645	2+	M1 F2	0 0019 4	other E γ : 2296.5 8 (1970P109). placement from a 2909 level rejected by 2008Mc04. $\alpha = 0.0019.4$: $\alpha(K) = 0.00115.20$: $\alpha(L) = 0.00018.4$: $\alpha(M) = 4.0 \times 10^{-5}.8$:
2312.0 5	0.04 5	2027.24	2	510.500+5	2	W11,L2	0.0017 4	$\alpha(N+)=0.00053 \ 10$ $\alpha(N)=9.9\times10^{-6} \ 18; \ \alpha(O)=1.8\times10^{-6} \ 4; \ \alpha(P)=1.23\times10^{-7} \ 25; \ \alpha(IPF)=0.00051$
2318 67 11	0 16 2	2635 23	1+	316 50645	2+			10 Mult.: $\alpha(K) \exp = 0.0014 \ 3.$
2319.35 25	2.1 2	2319.11	1+	0.0	0^{+}	M1	0.00222 4	α =0.00222 4; α (K)=0.001340 19; α (L)=0.000206 3; α (M)=4.71×10 ⁻⁵ 7; α (N+)=0.000629 9
								$\alpha(N)=1.166 \times 10^{-5} \ 17; \ \alpha(O)=2.11 \times 10^{-6} \ 3; \ \alpha(P)=1.466 \times 10^{-7} \ 21; \ \alpha(IPF)=0.000615 \ 9 \ Mult.: \ \alpha(K)exp=0.0018 \ 3; \ exceeds \ \alpha(K)(M1).$
2335.5 2	2.5 3	2335.465	1+	0.0	0^{+}	M1	0.00221 3	E _γ : from 1966Ny01. α =0.00221 3; α (K)=0.001317 19; α (L)=0.000202 3; α (M)=4.63×10 ⁻⁵ 7; α (N+)=0.000639 9
								$\alpha(N)=1.146\times10^{-5}$ 16; $\alpha(O)=2.07\times10^{-6}$ 3; $\alpha(P)=1.441\times10^{-7}$ 21; $\alpha(IPF)=0.000625$ 9
0041.04.0	0.14.1	0650 46	$(1,0)^{\pm}$	216 50645	a +			Mult.: α (K)exp=0.0014 3.
2341.94 9 2346.4 2	0.14 <i>1</i> 0.18 <i>2</i>	2658.46 2958.75	$(1,2)^{r}$ $(2,3)^{-}$	316.50645 612.46318	2+ 2+			

32

 $^{192}_{78}\text{Pt}_{114}\text{-}32$

				¹⁹² Au ε	deca	ny 2008N	Mc04,1972Fi12,	1966Ny01 (continued)
						$\gamma(1)$	¹⁹² Pt) (continued	<u>1)</u>
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.@	$lpha^\dagger$	Comments
^x 2359.4 ^a	0.08 5							placement from a 2676 level rejected by 2008Mc04.
2375.71 ^{&} 25 ^x 2378.2 ^a	0.11 6	2375.392	$(1,2)^+$	0.0	0^+			observed only In ce spectrum.
2399.74 ^{&} <i>h</i> 25 2408.4 2	0.18 3	2399.270 2408.34	$(1,2)^+$ $(2)^+$	0.0 0.0	$0^+ \\ 0^+$	(E2)	0.001520 22	placement not confirmed by 2008Mc04; γ May be highly converted. α =0.001520 22; α (K)=0.000886 13; α (L)=0.0001337 19; α (M)=3.06×10 ⁻⁵ 5; α (N+)=0.000469 α (N)=7.54×10 ⁻⁶ 11; α (O)=1.357×10 ⁻⁶ 19; α (P)=9.20×10 ⁻⁸ 13; α (IPF)=0.000460 7 Mult.: α (K)exp=0.0008 3; probably E2, but E1 and M1 cannot be ruled
2414.4 2 2415.1 <i>3</i> 2422.9 <i>3</i>	0.15 2 0.14 <i>I</i> 1.8 2	2730.73 3027.39 2422.78	$(2)^{-}$ $(2,3)^{-}$ $(1,2)^{+}$	316.50645 612.46318 0.0	2+ 2+ 0+	M1,E2	0.0018 <i>3</i>	out. other I γ : 0.27 7 (1970P109). other I γ : 0.41 9 (1970P109). other E γ (I γ): 2414.2 5 (0.41 9) for doublet (1970P109). α =0.0018 3; α (K)=0.00104 17; α (L)=0.00016 3; α (M)=3.6×10 ⁻⁵ 6; α (N+)=0.00059 11 α (N)=9.0×10 ⁻⁶ 15; α (O)=1.6×10 ⁻⁶ 3; α (P)=1.11×10 ⁻⁷ 21; α (IPF)=0.00057 11
^x 2431.7 7 ^x 2440.7 7 ^x 2446.2 9 ^x 2453 2 4	0.08 <i>3</i> 0.16 <i>5</i> 0.04 <i>2</i> 0.12 <i>3</i>							Mult.: α (K)exp=0.00112 23. Consistent with M1 and/or E2 for γ to 0 ⁺ . placement from a 2757 level rejected by 2008Mc04.
2458.75 <i>15</i> <i>x</i> 2464.0 <i>9</i> <i>x</i> 2467.5 <i>9</i>	0.12 3 0.11 1 0.09 3 0.04 2	2775.21		316.50645	2+			placements from 2464 and 2781 levels rejected by 2008Mc04.
*2483.6 8 2486.4 3 *2497.8 9 *2503.3 7 *2508.6 7	0.07 3 0.088 10 0.05 2 0.08 3 0.10 3	2486.29	(2)-	0.0	0+			other Εγ: 2487.6 8 (1970Pl09).
2516.4 <i>3</i> 2518.0 <i>3</i>	0.10 5 0.32 2 0.28 5	2832.89 2834.60	$(1,2)^+$ (2^+)	316.50645 316.50645	$2^+ 2^+$			Mult.: $\alpha(K)\exp=0.0014 \ 3$ for doublet. Mult.: $\alpha(K)\exp=0.0014 \ 3$ for doublet.
2532.8 5	0.18 3	2532.46	1+	0.0	0+	M1	0.00205 3	other $I\gamma$: 0.75 20 (1970P109). α =0.00205 3; α (K)=0.001080 16; α (L)=0.0001654 24; α (M)=3.79×10 ⁻⁵ 6; α (N+)=0.000764 1 α (N)=9.37×10 ⁻⁶ 14; α (O)=1.693×10 ⁻⁶ 24; α (P)=1.180×10 ⁻⁷ 17; α (IPF)=0.000753 11 other I γ : 0.35 10 for broad peak (1970P109). Mult.: α (K)exp=0.0017 4 (mult=(E2,M1)). placement from a 3146 level rejected by 2008Mc04
2541.0 <i>10</i>	0.39 2	2857.07	(2 ⁻)	316.50645	2+	E1	0.001336 19	$\alpha = 0.001336 \ I9; \ \alpha(K) = 0.000371 \ 6; \ \alpha(L) = 5.26 \times 10^{-5} \ 8; \\ \alpha(M) = 1.192 \times 10^{-5} \ I7; \ \alpha(N+) = 0.000900 \ I$

				192	² Au ε	decay 2	008Mc04,1972F	Fi12,1966Ny01 (continued)
							γ (¹⁹² Pt) (conti	inued)
E_{γ}^{\ddagger}	$I_{\gamma}^{\#g}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [@]	$lpha^{\dagger}$	Comments
2543.1 2	0.30 8	3155.74	(2,3)-	612.46318	3 2+	E1	0.001337 19	$\begin{aligned} \alpha(N) &= 2.94 \times 10^{-6} \ 5; \ \alpha(O) &= 5.30 \times 10^{-7} \ 8; \ \alpha(P) &= 3.70 \times 10^{-8} \ 6; \\ \alpha(IPF) &= 0.000897 \ 13 \end{aligned}$ Mult.: $\alpha(K) \exp = 0.00058 \ 13.$ $\alpha &= 0.001337 \ 19; \ \alpha(K) &= 0.000371 \ 6; \ \alpha(L) &= 5.25 \times 10^{-5} \ 8; \ \alpha(M) &= 1.190 \times 10^{-5} \\ 17; \ \alpha(N+.) &= 0.000902 \ 1 \end{aligned}$ $\alpha(N) &= 2.94 \times 10^{-6} \ 5; \ \alpha(O) &= 5.29 \times 10^{-7} \ 8; \ \alpha(P) &= 3.69 \times 10^{-8} \ 6; \\ \alpha(IPF) &= 0.000898 \ 13 \end{aligned}$ Mult: $\alpha(K) \exp = 0.00048 \ 17 \end{aligned}$
x2551.1 12	0.09 4							
2574.8 <i>4</i>	0.05 2 0.38 6	2890.93	(2)-	316.50645	5 2+	E1	0.001348 19	Mult.: $\alpha(\mathbf{K})\exp=0.0015 \ 8.$ $\alpha=0.001348 \ I9; \ \alpha(\mathbf{K})=0.000364 \ 5; \ \alpha(\mathbf{L})=5.15\times10^{-5} \ 8; \ \alpha(\mathbf{M})=1.167\times10^{-5} \ I7; \ \alpha(\mathbf{N}+)=0.000921 \ I$
								$\alpha(N)=2.88\times10^{-6} 4; \ \alpha(O)=5.19\times10^{-7} 8; \ \alpha(P)=3.62\times10^{-8} 5; \ \alpha(IPF)=0.000917 \ 13$
2585 3 2	0.065.9	2585 23	$(2)^{+}$	0.0	0^{+}			Mult.: $\alpha(K)\exp=0.00042$ 11; mult=(E1), inconsistent with placement.
x2592.4 11	0.08 5	2505.25	(2)	0.0	0			placement from a 2909 level rejected by 2008Mc04.
2602.8 <i>3</i>	0.05 3 0.085 10	2602.97	$(2)^{+}$	0.0	0^+			other Iγ: 0.15 5 (1970P109).
x2610.3 8 2614.3 2	0.24 <i>10</i> 0.75 <i>10</i>	2614.29	(2^{+})	0.0	0^{+}	E2	0.001468 21	Mult.: α (K)exp=0.0006 3. α =0.001468 21; α (K)=0.000765 11; α (L)=0.0001145 16; α (M)=2.62×10 ⁻⁵
^x 2624.5 6 2629 4 4	0.15 <i>5</i> 0.40 <i>10</i>	2629 24	2+	0.0	0^{+}			4; $\alpha(N+)=0.000563$ $\alpha(N)=6.46\times10^{-6}$ 9; $\alpha(O)=1.162\times10^{-6}$ 17; $\alpha(P)=7.94\times10^{-8}$ 12; $\alpha(IPF)=0.000555$ 8 Mult.: $\alpha(K)\exp=0.00058$ 14. Mult.: $\alpha(K)\exp=0.0006$ 3. Mult.: $\alpha(K)\exp=0.0017$ 4 for doublet
2630.4 2	0.26 4	2947.001	(2^{-})	316.50645	$5 2^+$			Mult.: $\alpha(K) \exp = 0.0017 4$ for doublet.
2634.0 3 2635.1 3	0.12 3 0.71 <i>12</i>	2950.43 2635.23	(1,2 ⁺) 1 ⁺	0.0	0+	M1	0.00199 <i>3</i>	
^x 2640.7 ^a	0.065 30							
2658.4 <i>3</i>	0.077 9	2658.46	(1,2)+	0.0	0+	M1,E2	0.0017 3	

				192 Au ε de	2008Mc04,1972Fi12,1966Ny01 (continued)
					γ ⁽¹⁹² Pt) (continued)
E_{γ} ‡	Ι _γ #g	E _i (level)	Mult. [@]	α^{\dagger}	Comments
^x 2665.7 ^d 15	0.12 ^d 5				
^x 2675.4 ^{&} 6					placement from a 2676 level rejected by 2008Mc04.
x2692.4 20	0.12 5				F
^x 2709.6 10	0.13 4				
^x 2718.4 5	0.54 10				
^x 2746.8 6	0.13 4				Mult.: α (K)exp=0.00065 25; mult=(E1,E2). placement from a 3360 level rejected by 2008Mc04.
^x 2758.0 20	0.055 30				placement from a 2757 level rejected by 2008Mc04.
^x 2780.6 8	0.09 4				placement from a 2781 level rejected by 2008Mc04.
^x 2795.0 5	0.18 6				
^x 2829.7 5	0.24 5		(E1)	0.001433 20	α =0.001433 20; α (K)=0.000314 5; α (L)=4.43×10 ⁻⁵ 7; α (M)=1.004×10 ⁻⁵ 14; α (N+)=0.001065 1 α (N)=2.48×10 ⁻⁶ 4; α (O)=4.47×10 ⁻⁷ 7; α (P)=3.13×10 ⁻⁸ 5; α (IPF)=0.001062 15 Mult.: α (K)exp=0.00033 11. placement from a 3146 level rejected by 2008Mc04.
^x 2839.5 4	0.98 20		(E1)	0.001436 21	α =0.001436 21; α (K)=0.000312 5; α (L)=4.41×10 ⁻⁵ 7; α (M)=9.98×10 ⁻⁶ 14; α (N+)=0.001070 15 α (N)=2.46×10 ⁻⁶ 4; α (O)=4.44×10 ⁻⁷ 7; α (P)=3.11×10 ⁻⁸ 5; α (IPF)=0.001067 15 Mult.: α (K)exp=0.00030 8.
^x 2870.1.9	0.11.3				placement from 5156 level rejected by 2000/re04.
x2872.6 9	0.11 3				
^x 2878.4 9	0.025 10				
^x 2889.0 9	0.042 15				placement from 2891 level rejected by 2008Mc04.
x2903.0 10	0.055 20				1 5 5
x2908.7 20	0.034 15				placement from a 2909 level rejected by 2008Mc04.
^x 2926.3 20	0.030 15				
x2950.8 8	0.15 3				placement from a 2952 level rejected by 2008Mc04.
^x 2964.8 20	0.052 25				
*2969.2 20	0.026 15				
x2985.0 20	0.031 15				
^x 2998.8 20	0.11.3				
$x_{3022} = 0.20$	0.06 2				
x3043.7 7	0.00 2 0.12 3				Mult.: $\alpha(K)\exp=0.0008 \ 3.$
reacted -	a and -				pracement from a 5500 rever rejected by 2008/MC04.
^3064 ^u 2	$0.030^{\prime\prime}$ 15				
x3127 2	0.049 20		F 1	0.001550.00	$0.001552.00$ (II) $0.0000(7.4)$ (I) $0.75.10^{-5}$ (III) $0.50.10^{-6}$ (III) $0.001000.10$
*3145.4 10	0.25 6		EI	0.001552 22	$\alpha = 0.001552 22; \ \alpha(K) = 0.000267 4; \ \alpha(L) = 3.75 \times 10^{-5} 6; \ \alpha(M) = 8.50 \times 10^{-6} 72; \ \alpha(N+) = 0.001239 78$ $\alpha(N) = 2.10 \times 10^{-6} 3; \ \alpha(O) = 3.79 \times 10^{-7} 6; \ \alpha(P) = 2.66 \times 10^{-8} 4; \ \alpha(IPF) = 0.001237 78$ Mult.: $\alpha(K) \exp = 0.00015 8.$ placement from a 3146 level rejected by 2008Mc04.
^x 3158 2	0.025 15				placement from 3156 level rejected by 2008Mc04.

 $^{192}_{78}\text{Pt}_{114}\text{-}35$

¹⁹²Au ε decay 2008Mc04,1972Fi12,1966Ny01 (continued)

 $\gamma(^{192}\text{Pt})$ (continued)

- [†] Additional information 4. [‡] From 2008Mc04, except As noted; data from 1966Ny01, 1970Pl09 and 1972Fi12 are typically In good agreement but less precise.
- [#] From 2008Mc04, except where noted; values are relative to $I\gamma=100 I$ for 316.5 γ .
- [@] From $\alpha(K)$ exp, except where noted.
- [&] From 1966Ny01 (seen in ce spectrum only).
- ^{*a*} Uncertainty>1 keV because of resolution problems.
- ^b From Adopted Gammas.
- ^c From 1966Ny01.
- ^d From 1970Pl09; peak is very broad.
- ^e From intense ce line (assumed to be K line) and absence of corresponding photon peak.
- $f \gamma$ is not observed by 2008Mc04; only an intensity limit is given and γ is not included in Adopted Levels, Gammas.
- ^g For absolute intensity per 100 decays, multiply by 0.59 7.
- ^h Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

192 Au ε decay 2008Mc04,1972Fi12,1966Ny01 Decay Scheme Intensities: $I_{(\gamma+ce)}$ per 100 parent decays Legend $\begin{array}{c|c} \bullet & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ 0.0 4.94 h 9 Qε=3516 16 $\%\epsilon + \%\beta^+ = 100.0$ ¹⁹²₇₉Au₁₁₃ 8 8 8 9 8 4 8 9 8 4 8 9 $I\beta^+$ Log ft <u>I</u>£ 9.0 0.00 2000 2000 2000 (2,3-) 27.57 8.7.9 8.7.9 3189.52 0.116 1. S. S. 88 7.44 -<u>``</u>```` (2,3) 88 3155.74 0.89 6.66 (1-,2-) న ని 3127.19 0.24 7.31 2415-215-21,233 21,233 21,233 22,233 23,233 24,2333 24,2333 24,2333 24,2333 24,2333 24,2333 24,2333 24,2333 24,2333 24,2333 24,2333 2 $\frac{(\leq 3)}{(2,3)}$ 3031.00 0.129 7.81 3027.39 0.47 7.25 $\frac{\leq 3}{\frac{2^+}{(1,2)^+}}$ 2483.64 8.39 0.18 2453.43 0.23 8.31 2422.78 1.9 7.42 $\frac{1^+}{(1,2)^+}$ 2335.465 11.4 6.71 2296.06 0.96 7.81 2161.64 0.17 8.66 (1⁻) 2129.52 1.09 7.87 (2⁻,3⁻) 2041.81 0.075 9.09 (2,3) 1894.479 0.00090 0.48 8.37 $(2)^+$ 1793.503 0.00082 0.24 8.73 1766.09 1739.432 (2,3) t 0.00049 0.124 9.03 (1)-0.018 4.0 7.54 2+ 1576.368 0.0052 0.55 8.47 41 ps 9 1378.054 3-0.0081 0.43 8.67 920.91852 21.3 ps 21 3+ 0.0093 0.58 10.10^{1u} 612.46318 26.5 ps 15 2^{+} 0.37 8.03 3.5 0^{+} 0.0 stable $^{192}_{78}$ Pt $_{114}$

37

Decay Scheme (continued)

$ \begin{array}{c} 1_{y} < 25\% \times 10\% \times 10$		Intensit	$(\gamma + ce)$ per 100 parent decays				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < & 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > & 10\% \times I_{\gamma}^{max} \end{array}$	2 2 2		$\%\varepsilon + \%\beta^+ = 100.0$	$\frac{1^{-}}{Q_{\varepsilon}=3516} \frac{0.0}{16}$ $\frac{192}{79} Au_{113}$	4.94 h 9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} (2,3)^- & ^{(1,2^+)} \\ (2^-) & ^{(2^-)} \\ (2^-) & \hline \\ \end{array}$			2958.75 2950.43 2947.001 2890.93 2857.07	$\underline{I\beta^+}$	<u>Ιε</u> 0.72 0.099 0.35 0.55 0.40	Lo 7.2 8.0 7.5 7.4 7.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (2)^{-} \\ \hline \hline (3)^{-} \\ \hline (1^{-}) \\ \hline (2^{+}) \\ \hline (2^{-}, 3^{-}) \\ \hline (2, 3^{-}) \\ \hline (2, 3)^{-} \\ \hline (2, 3)^{+} \\ \hline (2, 3)^{+} \\ \hline (1)^{-} \end{array}$			2257.26 2161.64 2142.96 2129.52 2047.89 2041.81 1976.25 1894.479 1793.503 1766.09 1739.432	0.00031 0.00090 0.00082 0.00049 0.018	2.6 0.17 0.069 1.09 1.11 0.075 0.30 0.48 0.24 0.124 4.0	7.4 8.6 9.0 7.8 7.9 9.0 8.5 8.3 8.7 9.0 7.5
<u>3+</u> <u>920.91852</u> <u>21.3 ps 21</u> 0.0093 0.58 10 <u>2+</u> <u>612.46318</u> <u>26.5 ps 15</u> 0.37 3.5 8.0	<u>2+</u> <u>3-</u> <u>0+</u>	, , , , , , , , , , , , , , , , , , ,		<u>1439.263</u> <u>1378.054</u> <u>41 ps</u> <u>1195.170</u>	0.0057 9 0.0081 0.014	0.37 0.43 0.45	8.7 8.6 8.7
<u>2+</u> <u>612.46318</u> 26.5 ps 15 0.37 3.5 8.0	3+			920.91852	ps 21 0.0093	0.58	10
	<u>2</u> +			612.46318 26.5 1	os 15 0.37	3.5	8.(

 $^{192}_{78}\mathrm{Pt}_{114}$

¹⁹²Au ε decay 2008Mc04,1972Fi12,1966Ny01

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

$^{192}\mathrm{Au}~\varepsilon$ decay 2008Mc04,1972Fi12,1966Ny01

$^{192}\mathrm{Au}~\varepsilon$ decay 2008Mc04,1972Fi12,1966Ny01

 $^{192}_{78}$ Pt $_{114}$