¹⁹⁰Os(α ,2n γ), ¹⁹²Os(α ,4n γ) 2006Le06,1976Cu02,1976Hj01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012

Others: 1965La02, 1974Ya03, 1975Fu04, 1975Pi02, 1978Ti02, 1979FuZN, 1981Hj01, 2001Ko41 (26.8 MeV; g-factor).

2006Le06: ¹⁹⁰Os(α ,2n γ), E α =27 MeV; 99% enriched ¹⁹⁰Os target; measured E γ , I γ , g-factors from IPAD using external magnetic field of 2.90 *I* Tesla. see also 2006Le44.

1976Cu02: $E(\alpha)=28-50$ MeV; osmium targets enriched to 95% in ¹⁹⁰Os (for $(\alpha,2n\gamma)$), to 98% in ¹⁹²Os (for $(\alpha,4n\gamma)$); measured E γ , I γ (Ge(Li), FWHM=2.1 keV at 1332 keV; low-energy photon spectrometer, FWHM=650 eV at 122 keV), prompt and delayed $\gamma\gamma$ coin, three-parameter $\gamma\gamma$ (t) coin, $\gamma(\theta)$ (90° to 140° (5 angles)). See also 1975Pi02.

1976Hj01: $E(\alpha)=23-27$ MeV, osmium targets enriched to 79% in ¹⁹⁰Os (for $(\alpha,2n\gamma)$); $E(\alpha)=43-51$ MeV, osmium targets enriched to 98% in ¹⁹²Os (for $(\alpha,4n\gamma)$); measured $E\gamma$, $I\gamma$ (Ge(Li), including system with FWHM=550 eV at 100 keV), E(ce), Ice (magnet with Si(Li)), prompt and delayed $\gamma\gamma$ coin, $\gamma(\theta)$, relative γ -ray yields for $(\alpha,2n\gamma)$ at 27 MeV and $(\alpha,4n\gamma)$ at 48 MeV (see also 1975Fu04).

¹⁹²Pt Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}	stable	
316.50 [#] 5	2+		
612.45 [@] 11	2^{+}		
784.57 [#] 7	4+		
920.88 [@] 14	3+		
1201.06 [@] 16	4+		
1365.46 [#] <i>13</i>	6+		
1377.97 16	3-		J^{π} : from 1974Ya03.
1384.00 ^{<i>d</i>} 12 1406.2 4	5-		
1481.9 [@] 4	5+		
1518.45 ^{<i>a</i>} 13	7-	1.85 ns <i>17</i>	 T_{1/2}: γγ(t); weighted average of 2.1 ns 4 (1976Cu02), 2.0 ns 3 (1976Hj01), and 1.65 ns 25 (1978Ti02, beam-Ce(t)). g-factor=+0.48 12 (2006Le06, 2006Le44) from IPAD, using 134γ, 153γ, 183γ, 599γ (corrected for feeding from 10⁻ isomer) and 581γ, 468γ, 317γ (corrected for feeding
			from 10^- and 12^+ isomers).
1666.51 19	$\langle () \rangle^{-}$		
1740.54° 19 1964 54 ^{<i>a</i>} 16	(0) 8 ⁻		
$2018\ 52^{\#}\ 19$	8+		
2103.34^{a} 17	9-		
2113.4 [@] 6	7+		
2172.46 ^b 17	10-	280 ns <i>30</i>	$T_{1/2}$: $\gamma\gamma(t)$; average of 250 ns 30 (1976Cu02) and 310 ns 30 (1976Hj01). g-factor=-0.0012 10 (2006Le06, 2006Le44) from IPAD, using 208 γ , 446 γ , 585 γ . other: 0.010 6 (2001Ko41); discrepant but possibly superseded by datum from 2006Le06 (one author common to both 2006Le06 and 2001Ko41).
2313.6 5 2511.9 ^b 3 2519.14 ^{&} 21 2530.3 ^a 6 2583.48 24	11 ⁻ 10 ⁺ (10 ⁻) 10 ⁺		

The level scheme and all data are from 1976Cu02 and 1976Hj01, except where noted. Additional data are available from 1974Ya03, 1978Ti02, 1979FuZN and 2006Le06. 1981Hj01 report average spin distributions and deexcitation γ multiplicities for quasicontinuum levels excited in ¹⁹²Os(α ,4n γ) at E(α)=51-55 MeV.

¹⁹⁰Os(α ,2n γ), ¹⁹²Os(α ,4n γ) **2006Le06**,1976Cu02,1976Hj01 (continued)

¹⁹²Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
2623.87 ^{&} 23	12+	2.62 ns 18	 T_{1/2}: in-beam direct timing of delayed conversion electrons (1978Ti02). Other values: 3.5 ns 5 (1976Cu02), 2.6 ns 5 (1976Hj01). g-factor=-0.18 9 (2006Le06, 2006Le44) from IPAD, using 105γ, 501γ, 653γ.
2626.8 ^b 3	12-		
2709.3 ^{<i>a</i>} 3	11-		
2933.2? 3	(12^{+})		
2936.5 <i>3</i>	12+		
2946.1 3	$(11)^{+}$		
2950.4? 4			
2998.38 ^{&} 25	14+		
3022.4 ^b 3	13-		
3080.3? 3	(14^{+})		
3082.4 ^{<i>a</i>} 6	(12^{-})		
3225.6 4	(13+)		
3357.7 ^a 6	13-		
3400.2? 5			
3542.2 ^{&} 3	16^{+}		
3569.5? 5			
3674.0? 6			
3695.4 ^b 3	15^{-}		
3883.4 4			
3923.7 <mark>b</mark> 3	(17^{-})		
4160.6 ^b 4			
4204.3 ^{&} 5	18^{+}		
4320.7? 4			
4950.8 ^{&} 6	(20^{+})		

[†] From least-squares fit to $E\gamma$.

[±] Authors' values from γ -ray multipolarities, coincidence data, and band structure (from 1976Hj01, except as noted). See ¹⁹²Pt Adopted Levels for evaluator's assignments.

Band(A): K=0 g.s. band.

[@] Band(B): $K^{\pi}=2^+$ quasi- γ vibration band.

& Band(C): π =+ band.

^{*a*} Band(D): semidecoupled π =- band. Built on the 5⁻ two-quasiparticle excitation.

^b Band(E): π =- band. Built on 2172-keV 10⁻ isomer; probable configuration=(($\nu 9/2[505]$)+($\nu 11/2[615]$)).

From ENSDF

$\gamma(^{192}\text{Pt})$

See 1976Cu02 and 1976Hj01 for I γ (other conditions), additional angular distribution coefficients, and coincidence data.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α^{d}	Comments
(40.4)	<9.5×10 ⁻⁵	2623.87	12+	2583.48	10+	[E2]		329	E_{γ} : 40.4 3 from level energy difference. L: deduced from Ti(104.7 χ)=24.6.
69.12 ^{<i>a</i>} 10	3.7 3	2172.46	10-	2103.34	9-	M1		3.47	Ti(40.4 γ)/Ti(104.7 γ)<0.0013 (1978Ti02), and α (E2 theory). I _{γ} : 0.8 2 In (α ,2n γ) At 27 MeV (2006Le06). α (L+)exp=3.9 12 from (α ,4n γ). Mult: from α (L +)exp. deduced from intensity balance at
104.73 10	4.8 4	2623.87	12+	2519.14	10+	E2		4.05	2172 level. I_{γ} : 0.3 <i>I</i> In (α ,2n γ) At 27 MeV (2006Le06). Mult.: Q from $\gamma(\theta)$, not M2 from T _{1/2} and RUL. A_2 =+0.38 5, A ₄ =+0.03 <i>IO</i> (1976Hj01); A ₂ =+0.27 5, A ₄ =-0.18
134.46 ^{<i>a</i>} 10	20.6 12	1518.45	7-	1384.00	5-	E2		1.508	6 (1976Hj01). I_{γ} : 11.1 2 In (α ,2n γ) At 27 MeV (2006Le06). α (L)exp=0.078 24 from (α ,2n γ). Δ_{γ} = +0.22 2 Δ_{γ} = -0.02 3 (1976Hi01)
147.07 ^e 12	3.0 3	3080.3?	(14 ⁺)	2933.2? ((12 ⁺)	(E2)		1.075	$A_{2}=+0.32 4, A_{4}=-0.05 8 (1976Hj01); A_{2}=+0.28 5, A_{4}=-0.18$ 7 (1976C)
152.98 ^a 12	3.4 <i>3</i>	1518.45	7-	1365.46	6+	(E1)		0.1380	I_{γ} : 1.8 2 In (α ,2n γ) At 27 MeV (2006Le06). A ₂ =-0.11 4, A ₄ =+0.03 6 (1976Hj01). Mult : favorad by intensity balance at 1365 level
160 10 ^e 20	107	4320 72		4160.6					Mult. Tavoled by Intensity balance at 1505 level.
183.04 ^{<i>a</i>} 20	1.7 2	1384.00	5-	1201.06	4+	D+Q			I_{γ} : 1.2 2 In (α ,2n γ) At 27 MeV (2006Le06). A ₂ =-0.04 <i>II</i> , A ₄ =-0.03 <i>I</i> 8 (1976Hi01).
188.03 20	2.2 2	3883.4		3695.4	15-	D+Q			$A_2 = -0.15 6$, $A_4 = -0.13 9 (1976 Hj01)$.
207.93 ^{<i>a</i>} 15	4.6 4	2172.46	10-	1964.54	8-	(E2)		0.315	I _y : 1.0 2 In $(\alpha, 2n\gamma)$ At 27 MeV (2006Le06). Mult.: (Q) from $\gamma(\theta)$, not M2 from RUL; E2 favored by intensity balance.
210.3.6	0.8.2	2313.6		2103.34	9-	D			$A_2 = -0.25$ 6. $A_4 = +0.07$ 8 (1976Hj01).
228.34 15	3.3 3	3923.7	(17^{-})	3695.4	15-	(E2)		0.231	$A_2 = +0.37 \ 3, \ A_4 = -0.07 \ 6 \ (1976Hj01).$
236.84 16	2.3 2	4160.6		3923.7 ((17^{-})	D+Q			$A_2 = -0.01$ 5, $A_4 = +0.10$ 6 (1976Hj01); suggests $\Delta J = 1$ transition.
273.83 ^e 18	1.9 2	3674.0?		3400.2?		D+Q			$A_2 = -0.56 \ 15, \ A_4 = +0.06 \ 19 \ (1976 Hj01).$
279.57 18	1.9 2	3225.6	(13+)	2946.1	$(11)^{+}$	(E2)		0.1218	A ₂ =+0.25 8, A ₄ =-0.08 15 (1976Hj01). Mult.: Q from $\gamma(\theta)$ for intraband G.
288.54 ^{&} 10		1666.51		1377.97	3-				
295.96 12	6.6 5	612.45	2+	316.50	2+	M1+E2	+6 ^b 2	0.108 7	α (K)exp=0.076 23. A ₂ =+0.08 3, A ₄ =-0.07 3 (1976Hj01).
308.44 12	3.4 3	920.88	3+	612.45	2+	M1+E2	+7 ^b 2	0.095 4	Mult.: adopted $T_{1/2}$ and RUL exclude $\Delta \pi$ =yes option from

				¹⁹⁰ Os(α ,2n γ), ¹⁹² Os(α ,4n γ)			2006Le	06,1976Cu(2,1976Hj01 (continued)
γ ⁽¹⁹² Pt) (continued)									
E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α^{d}	Comments
316.50 ^a 5	100	316.50	2+	0.0	0+	E2		0.0841	$\gamma(\theta)$. $A_2 = +0.28 \ 3, \ A_4 = -0.01 \ 6 \ (1976 \text{Hj}01)$. I_{γ} : 100 In ($\alpha, 2n\gamma$) At 27 MeV (2006 Le06). K:L:M=100:50:18; $\alpha(\text{L})\exp=0.027 \ 8$.
319.9 ^e 4 339.37 20	≈2.5 7.5 8	3400.2? 2511.9	11-	3080.3? 2172.46	(14 ⁺) 10 ⁻	M1+E2	-0.4 ^c 1	0.198 <i>10</i>	A ₂ =+0.25 2, A ₄ =-0.03 3 (1976Hj01). A ₂ =+0.36 (1976Hj01). α (K)exp=0.13 4, mean value from (α ,2n γ) and (α ,4n γ); K/L=4.9 from (α ,2n γ).
353.00 12	3.8 3	2936.5	12+	2583.48	10+	E2		0.0616	A ₂ =-0.82 6, A ₄ =+0.14 6 (1976Hj01). α (K)exp=0.034 11 from (α ,4n γ). A ₄ =+0.34 5 A ₄ =-0.12 8 (1976Hj01)
362.54 15	2.4 2	1746.54	(6) ⁻	1384.00	5-	M1+E2	+0.4 ^c 1	0.166 9	$\alpha(K)\exp[-0.124]$ from $(\alpha,2n\gamma)$.
374.51 12	12.8 10	2998.38	14+	2623.87	12+	E2		0.0523	$\alpha(K) \exp \approx 0.05 \text{ from } (\alpha, 4n\gamma).$
381.5 <i>3</i>	0.8 3	3923.7	(17 ⁻)	3542.2	16+				$A_2 = +0.264, A_4 = -0.105 (1970 \text{ mJ01}).$
395.64 20	2.1 3	3022.4	13-	2626.8	12-	(M1+E2)		0.09 5	$A_2 = -0.80\ 23, A_4 = +0.33\ 22\ (1976Hj01).$ Mult : D+O AI=1 from $2(\theta)$ for intraband G
^x 398.73 23 ^x 407.0 [@]	2.0 3								Assignment to ¹⁹² Pt uncertain (1976Hj01); $E\gamma$ =407.23 <i>10</i> in
411.03 <i>20</i> 414.04 ^{<i>e</i>} <i>16</i>	2.7 <i>3</i> 5.4 <i>5</i>	2583.48 2933.2?	10 ⁺ (12 ⁺)	2172.46 2519.14	10 ⁻ 10 ⁺	E2		0.0399	$A_2 = +0.40 \ 6, \ A_4 = +0.05 \ 12 \ (1976Hj01).$ $\alpha(K)\exp=0.025 \ 8 \ from \ (\alpha,4n\gamma).$ $A_2 = +0.27 \ 3, \ A_4 = -0.07 \ 5 \ (1976Hj01).$
416.8 <i>5</i> 426.91 <i>18</i>	1.1 <i>4</i> 4.0 <i>4</i>	1201.06 2946.1	4^+ (11) ⁺	784.57 2519.14	4 ⁺ 10 ⁺	M1+E2 ^b M1+E2	$^{+6^{b}2}_{+0.5^{c}1}$	0.042 <i>3</i> 0.102 <i>6</i>	Mult.: δ unreasonably large for $\Delta \pi$ =yes. α (K)exp=0.12 4 from (α ,4n γ). Δ_{α} =+0.52 3 Δ_{4} =+0.03 8 (1976Hi01)
438.5 ^e 3 446.10 ^a 10	0.7 2 14.1 <i>11</i>	2950.4? 1964.54	8-	2511.9 1518.45	11 ⁻ 7 ⁻	M1+E2	+0.5 ^c 1	0.091 5	I_{γ} : 8.6 2 In (α ,2n γ) At 27 MeV (2006Le06). α (K)exp=0.089 27; K:L:M=76:10:5 from (α ,2n γ).
454.32 25	7.9 8	2626.8	12-	2172.46	10^{-}	E2		0.0314	$\alpha_{2}^{2}=+0.55$ 2, $A_{4}^{2}=+0.04$ 2 (1976hJ01). $\alpha(K)\exp<0.03$ from ($\alpha,4n\gamma$); this allows mult=E2 or E1.
468.06 ^{<i>a</i>} 5	96 6	784.57	4+	316.50	2+	E2		0.0291	$A_2 = +0.17$ 3, $A_4 = -0.08$ 4 (1976H)01). I_{γ} : 74.0 4 In (α ,2n γ) At 27 MeV (2006Le06). α (K)exp=0.021 7; K:L:M=48:10:2.7. $A_2 = +0.27$ 2, $A_3 = -0.043$ (1976Hi01)
x470.93 20 485.3 3 489.2 ^e 3 500.62 10	2.1 4 1.0 2 ≈4.0 32.9 23	1406.2 3569.5? 2519.14	10+	920.88 3080.3? 2018.52	3 ⁺ (14 ⁺) 8 ⁺	D+Q E2		0.0247	$A_{2}=+0.42 II (1976Hj01).$ $A_{2}=+0.22 II (1976Hj01).$ $A_{2}=-0.72 (1976Hj01), -0.85 I5 (1976Cu02).$ $I_{\gamma}: 3.4 2 In (\alpha, 2n\gamma) At 27 MeV (2006Le06).$

4

From ENSDF

 $^{192}_{78}\text{Pt}_{114}$ -4

				¹⁹⁰ Os (α ,2n γ),	¹⁹² Os (α ,4)	$n\gamma$) 2000	5Le06,1976Cu02,1976Hj01 (continued)
							$\gamma(^{192}\text{Pt})$	(continued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
								α (K)exp=0.018 6, K/L>3 from (α ,4n γ).
510.4 5	7.8 20	3022.4	13-	2511.9	11-			$A_2 = +0.32 3$, $A_4 = -0.07 4$ (1976Hj01).
×531.5 3 543.85 20	1.2 2 4.5 <i>4</i>	3542.2	16+	2998.38	14+	E2	0.0202	α (K)exp<0.03; K/L \approx 10 from (α ,4n γ).
X51002	112							$A_2 = +0.49 \ 3, \ A_4 = -0.08 \ 7 \ (1976 Hj01).$
~348.8 3 552 1 3	1.12	3082 /	(12^{-})	2530.3	(10^{-})	0		$\Delta_{2} = \pm 0.49.10$ $\Delta_{4} = -0.02.13(1076 Hi01)$
561.0 3	2.0 3	1481.9	(12) 5 ⁺	920.88	(10 ⁻) 3 ⁺	E2	0.0188	$\alpha(K) \exp = 0.018 \ 6 \ from (\alpha, 4n\gamma).$ $\alpha_{\alpha, \gamma} = 0.35 \ 7 \ 4 \ - + 0.01 \ 13 \ (1976 Hi01)$
564.9 4	3.7 11	2583.48	10^{+}	2018.52	8+	(E2)	0.0185	$\alpha(K)\exp<0.03$ for 564.9 γ and 565.8 γ combined (from (α ,4n γ)). $\alpha_{\alpha}=0.37$ 3, $\alpha_{\alpha}=-0.066$ (1976Hi01) for doublet
565.8 5	2.8 9	2530.3	(10 ⁻)	1964.54	8-	(E2)	0.0184	$\alpha(K) \exp \langle 0.03 \text{ for } 564.9\gamma \text{ and } 565.8\gamma \text{ combined (from } (\alpha,4n\gamma)).$ $\alpha_{} = 0.37$ 3 $\alpha_{} = 0.066$ 6 (1976Fi01) for doublet
580.88 ^a 12	45 <i>3</i>	1365.46	6+	784.57	4+	E2	0.01734	I_{γ} : 15.5 2 In (α ,2n γ) At 27 MeV (2006Le06). α (K)exp=0.013 4; K/L=3.4.
584.89 ^a 12	26.7 19	2103.34	9-	1518.45	7-	E2	0.01707	A ₂ =+0.33 3, A ₄ =-0.05 4 (1976Hj01). I _{γ} : 9.0 2 In (α ,2n γ) At 27 MeV (2006Le06). α (K)exp=0.012 4: K/I ~4
588 67 20	283	1201.06	4+	612.45	2+	(E2) <mark>b</mark>	0.01682	$A_{2}=+0.23.9$ $A_{4}=-0.01.15$ (1976Hi01)
x595 0 [@]	2.0 5	1201.00		012.15	2	(112)	0.01002	$\Delta_{2} = +0.13 \ 8 \ (1976Hi01)$
599.40 ^{<i>a</i>} 12	50 4	1384.00	5-	784.57	4+	E1		A ₂ =+0.15 ° (19/01)01). Assignment to ¹⁹² Pt uncertain (1976Hj01). I _{γ} : 42.5 3 In (α ,2n γ) At 27 MeV (2006Le06). α (K)exp=0.0048 14, K/L=8.2 from (α ,4n γ); α (K)exp=0.0055 17 from (α ,2n γ). A ₂ =-0.07 2, A ₄ =+0.04 3 (1976Hj01).
604.34 ^{&} 20		920.88	3+	316.50	2+			E_{γ} : 604.4 (uncertainty ≤ 0.3) in 1976Hj01.
605.92 25	3.3 4	2709.3	11-	2103.34	9-	E2	0.01574	α (K)exp=0.011 3 from (α ,4n γ). A ₂ =+0.39 10, A ₄ =-0.02 15 (1976Hj01).
612.6 <i>3</i> <i>x</i> 615.8 <i>3</i>	0.9 2 1.4 3	612.45	2+	0.0	0^+	E2 ^b	0.01535	Mult.: adopted $T_{1/2}$ and RUL exclude $\Delta \pi$ =yes option from $\gamma(\theta)$.
631.5 4	1.2 3	2113.4	7+	1481.9	5+			α (K)exp<0.015 from (α ,2n γ), so mult=E2 or E1.
648.4 5	1.5 3	3357.7	13-	2709.3	11-			$A_2 = +0.29 \ I8 \ (1976 Hj01).$
653.05 16	39 <i>3</i>	2018.52	8+	1365.46	6+	E2	0.01330	α (K)exp=0.010 3; K:L:M=37:10:1.5 from (α ,4n γ). A ₂ =+0.36 3, A ₄ =-0.07 5 (1976Hi01).
662.1 <i>3</i>	2.0 3	4204.3	18+	3542.2	16+	E2	0.01291	α (K)exp=0.013 4 from (α ,4n γ). A γ =+0.22 8, A4=-0.12 13 (1976Hi01).
^x 669.3 [@]						D+Q		$A_2 = -0.15 \ I0$, $A_4 = +0.14 \ I4 \ (1976 \text{Hj}01)$. $E\gamma = 669.4 \ 3 \text{ in } 1974 \text{Ya}03$. May deexcite a known $(2)^+ \ 2048 \ \text{level}$
673.01 25	7.0 7	3695.4	15-	3022.4	13-	E2	0.01245	$\alpha(K)\exp=0.012 \ 4 \ from (\alpha,4n\gamma).$ $\alpha_{}=0.29 \ 4 \ \alpha_{}=0.02 \ 6 \ (1976Hi01)$
697.0 <i>3</i>	4.0 5	3695.4	15-	2998.38	14+	E1		$a(K)\exp(-0.005 \text{ from } (\alpha, 4n\gamma)).$ $A_2=-0.31 \ 12, \ A_4=+0.08 \ 15 \ (1976\text{Hj}01).$

 $^{192}_{78}\text{Pt}_{114}\text{-}5$

From ENSDF

 $^{192}_{78} Pt_{114}\text{--}5$

L

$\gamma(^{192}\text{Pt})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments
746.5 <i>4</i> 884.5	1.2 <i>3</i> 0.23 <i>8</i>	4950.8 1201.06	(20 ⁺) 4 ⁺	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_2 = +0.05$ (1976Hj01). I_{γ} : deduced from $I_{\gamma}(416.8\gamma)$: $I_{\gamma}(588.7\gamma)$: $I_{\gamma}(884.5\gamma) = 18.0$ 11:100:7.1 15 (1979FuZN).
^x 886 [@] 1061.46 ^{&} 15		1377.97	3-	316.50 2+	Deexcites E(level)>5000 (1976Hj01).

[†] From 1976Cu02, except where noted (¹⁹²Os(α ,4n γ), E(α)=45.5 MeV, θ =125°).

[‡] I γ from ¹⁹²Os(α ,4n γ), E(α)=45.5 MeV, θ =125° (1976Cu02), except where noted; values are relative to I(316.5 γ)=100. I γ data for (α ,2n γ) At E=27 MeV (2006Le06) are given In comments.

[#] From ce data (1976Hj01) and/or γ -ray angular distributions, except where noted; the photon and ce intensity scales were normalized through $\alpha(K)(316.5\gamma)=0.0535$ (E2 theory). Stretched Q assignments from $\gamma(\theta)$ are based on large positive A₂ and small negative A₄.

[@] From 1976Hj01 (¹⁹²Os(α ,4n γ), E(α)=46 MeV, θ =125°); uncertainties range from 0.1 to 0.3 keV.

[&] From 1974Ya03 (¹⁹⁰Os(α ,2n γ), E(α)=24 MeV).

^{*a*} γ -ray associated with>3-ns delay (1976Hj01).

^b From γ -ray angular distributions in 1979FuZN.

^c From ce data and γ -ray angular distributions in 1976Hj01.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*e*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

From ENSDF

 $^{192}_{78}\text{Pt}_{114}$

¹⁹⁰Os(α ,2n γ), ¹⁹²Os(α ,4n γ) 2006Le06,1976Cu02,1976Hj01

