¹⁹²Po IT decay 2003Va16

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012

Parent: ¹⁹²Po: E=2294.6; J^π=(11⁻); T_{1/2}=0.58 μs 10; %IT decay=100.0
2003Va16: ¹⁹²Po sources from ¹⁴²Nd(⁵²Cr,2n), E=4.25 MeV/nucleon (mid-target); 99.8% ¹⁴²Nd target; recoils separated by velocity filter SHIP and implanted into 16-strip position-sensitive Si detector; six Si detectors (for ce) and four-fold segmented

Clover detector; measured E γ , E α , I α , α - γ coin, parent T_{1/2}. Supersedes 2002VaZZ.

¹⁹²Po Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}	31.8 ms 15	$T_{1/2}$: from ¹⁹² Po α (t) (2003Va16).
262 [#]	(2^+)		
605 [#]	(4+)		
1043 [#]	(6 ⁺)		
1561 [#]	(8^+)		
2141 [#]	(10^{+})		
2295	(11^{-})	0.58 µs 10	%IT=100
			E(level): level must lie above the (10^+) 2141 level because the 579 γ from that level is observed In IT decay.
			$T_{1/2}$: from $\alpha(t)$ (2003Va16).
			J^{π} : an 11 ⁻ isomer is known In neighboring even-A Po isotopes with A \geq 194.

[†] From $E\gamma$.

[‡] From Adopted Levels.

[#] Band(A): $K^{\pi} = 0^+$ g.s. Band.

$\gamma^{(192}$ Po)									
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.	α #	$I_{(\gamma+ce)}$ ‡	Comments
154@	86.52	2295	(11 ⁻)	2141	(10 ⁺)	E1	0.1558	100	ce(K)/(γ +ce)=0.1080 14; ce(L)/(γ +ce)=0.0205 3; ce(M)/(γ +ce)=0.00485 7; ce(N+)/(γ +ce)=0.001508 22 ce(N)/(γ +ce)=0.001232 18; ce(O)/(γ +ce)=0.000248 4; ce(P)/(γ +ce)=2.85×10 ⁻⁵ 4 Mult.: based on observed I(K x ray), the upper limit for α (K)exp implies E1 multipolarity (2003Va16).
262		262	(2+)	0.0	0+	[E2]	0.191		$\alpha(K)=0.0910 \ 13; \ \alpha(L)=0.0746 \ 11; \ \alpha(M)=0.0195 3; \ \alpha(N+)=0.00607 \ 9 \alpha(N)=0.00501 \ 7; \ \alpha(O)=0.000971 \ 14; \alpha(P)=9 \ 50\times10^{-5} \ 14$
343		605	(4+)	262	(2+)	[E2]	0.0854		$\alpha(\mathbf{K}) = 0.0496 \ 7; \ \alpha(\mathbf{L}) = 0.0267 \ 4; \ \alpha(\mathbf{M}) = 0.00689 \ 10; \ \alpha(\mathbf{N}+) = 0.00215 \ 3 \ \alpha(\mathbf{N}) = 0.001768 \ 25; \ \alpha(\mathbf{O}) = 0.000347 \ 5; \ \alpha(\mathbf{P}) = 3.55 \times 10^{-5} \ 5$
438		1043	(6 ⁺)	605	(4 ⁺)	[E2]	0.0444		α (K)=0.0292 4; α (L)=0.01144 16; α (M)=0.00290 4; α (N+)=0.000909 13

Continued on next page (footnotes at end of table)

¹⁹²Po IT decay 2003Va16 (continued)

$\gamma(^{192}\text{Po})$ (continued)

Eγ [†]	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α #	Comments
^x 445							α (N)=0.000745 <i>11</i> ; α (O)=0.0001477 <i>21</i> ; α (P)=1.582×10 ⁻⁵ <i>23</i>
518	1561	(8+)	1043	(6 ⁺)	[E2]	0.0295	$\alpha(K)=0.0206 \ 3; \ \alpha(L)=0.00671 \ 10; \ \alpha(M)=0.001682 \ 24; \ \alpha(N+)=0.000528 \ 8$
579	2141	(10+)	1561	(8 ⁺)	[E2]	0.0228	$\alpha(N)=0.000432\ 6;\ \alpha(O)=8.63\times10^{-5}\ 12;\ \alpha(P)=9.54\times10^{-6}\ 14$ $\alpha(K)=0.01646\ 23;\ \alpha(L)=0.00481\ 7;\ \alpha(M)=0.001197\ 17;$ $\alpha(N+)=0.000376\ 6$
r (0,5							$\alpha(N)=0.000307 5; \alpha(O)=6.18\times10^{-5} 9; \alpha(P)=6.96\times10^{-6} 10$

^x605

 † From 2003Va16; uncertainty unstated by authors.

[‡] Absolute intensity per 100 decays.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{x} \gamma$ ray not placed in level scheme.

¹⁹²₈₄Po₁₀₈

¹⁹²₈₄Po₁₀₈