$^{182}W(^{16}O,6n\gamma), Gd(^{40}Ar,xn\gamma)$ 1991La07,1979Ro06

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012				

Others: 1982AIZY, 1983St15, 1983St16, 1984Ma37, 1985Ma34, 1985St16, 1986PeZY. 1979Ro06: ¹⁵⁶Gd(⁴⁰Ar,4nγ), E(⁴⁰Ar)=190 MeV; Gd targets enriched to 93.58% in ¹⁵⁶Gd; measured Eγ, Iγ (Ge(Li), FWHM=2.7 keV at 1332 keV), γγ, Xγ coin (4 dimensional (energy-time)); used ¹⁸²W(¹⁶O,6nγ), E=132 MeV, to confirm assignments to ¹⁹²Pb. Used beam pulsing to look for lifetimes \geq 160 ns.

1983St15, 1983St16: 156 Gd(40 Ar,4n γ), E(40 Ar)=185 MeV; Gd targets enriched to 94% in 156 Gd; measured γ (t) and differential perturbed angular distributions; deduced $T_{1/2}$ (1983St15) and g (1983St15, 1983St16) for (12⁺) isomer and $T_{1/2}$ (1983St16) for

10⁺ isomer. 1985St16: ¹⁵⁶Gd(⁴⁰Ar,4n γ), E(⁴⁰Ar)=185 MeV; ¹⁶⁰Gd(³⁶Ar,4n γ), E(³⁶Ar)=175 MeV; measured γ (t); deduced T_{1/2} for 10⁺ and

12⁺ isomers. 1991La07: ¹⁸²W(¹⁶O,6n γ), E=109 MeV; both thick and thin >90% ¹⁸²W targets; measured Ice (Si(Li) detector), E γ , I γ , ce- γ coin, $\gamma\gamma$ coin, $\gamma\gamma(t)$, beam- $\gamma(t)$; deduced conversion coefficients, $T_{1/2}$ for 10^+ and $(10^-, 11^-)$ isomers.

The level scheme and all data are from 1991La07, unless noted to the contrary.

¹⁹²Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments	
0.0#	0+			
853.9 [#] 2	2^{+}			
1355.7 # 3	4+			
1860.0 4	5-			
1921.1 [#] 4	6+			
2303.8 [#] 5	(8+)			
2323.3 ^{&} 5	7-		a significant intensity imbalance (viz., 54 12) exists at this level.	
2507.4 ^{&} 6	(8-)			
2514.4 ^{&} 5	9-			
2520.6 [@] 6	8+			
2581.1 [@] 6	10^{+}	93 ns 11	%IT=100	
			T _{1/2} : weighted average of 100 ns <i>15</i> from γ (t) (1983St16) and 85 ns <i>15</i> from $\gamma\gamma$ (t) (1991La07). Much lower than adopted value.	
2625.1 [@] 12	12+	1.10 μs 5	%IT=100	
			$g=-0.173\ 2\ (1983\ St15)$	
			g-factor: from TDPAD. The from $\alpha(t)$ (10958116) Others: 1.07 via 10 (10928115) 0.88 via 20 (1070B α 06)	
274366	$(10^{-} 11^{-})$	95 ns 15	$1_{1/2}$: from $\gamma(t)$ (19855110). Others: 1.07 μ s 70 (19855115), 0.88 μ s 20 (1979R000). %IT=100	
2713.00	(10,11)	<i>yo</i> no 10	$T_{1/2}$: from beam- γ (t) (1991La07); inconsistent with adopted value.	

[†] From least-squares fit to $E\gamma$.

[‡] Authors' values (1991La07), based on coincidence data, γ -ray multipolarities, and systematics of even-mass Pb nuclei. See ¹⁹²Pb Adopted Levels for evaluator's assignments.

[#] Band(A): $\pi = +, \alpha = 0$ low-J yrast states. J=2,4,6 states probably have significant admixture of deformed two quasiproton intruder configurations (1991La07).

[@] Band(B): Configuration= $(\nu i_{13/2})^{-2}$ (1991La07).

& Band(C): $\pi = -$, 2-quasineutron states. (($\nu i_{13/2}$)($\nu p_{3/2}$ or $f_{5/2}$ or $f_{7/2}$)) states (1991La07).

182 W(16 O,6n γ), Gd(40 Ar,xn γ) 1991La07,1979Ro06 (continued)									
γ ⁽¹⁹² Pb)									
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ	α [#]	Comments
(7.0)		2514.4	9 ⁻	2507.4	(8 ⁻)	(E2)		$3.0 \times 10^2 $	Ti(7.0) \leq 53 from intensity balance at the 2507 level. E _{γ} : from level energy difference. Mult : 19911 a07 report that
-+.0 <i>10</i>		2025.1	12	2301.1	10	(L2)		5.0×10 7	the 44-keV transition is a fully converted E2 transition, but present no experimental data.
60.6 <i>6</i>	≤0.69	2581.1	10+	2520.6	8+	(E2)		63 4	I _γ : I(γ+ce) ≤41 4 from I(γ+ce) balance at 2521 level, so Iγ≤0.63 6 if mult is E2. I _γ : Ti(61γ)/Ti(854γ)≤0.34 in (⁴⁰ Ar,4nγ) (1979Ro06), from intensity balance at
66.7 6		2581.1	10+	2514.4	9-	E1		0.272 8	2521 level. I(γ+ce)≤121 from I(γ+ce) balance at 2514 level. Mult.: (L1+L2)/L3=3.0 5 (1991La07). Also, 1979Ro06 report that E1 is the only mult compatible with their observed photon intensities.
162.5 3	47 5	2743.6	(10-,11-)	2581.1	10+	E1		0.1304	α (K)exp=0.074 6 (1991La07); α (L)exp=0.020 4 (1991La07)
184.1 <i>4</i>	24 4	2507.4	(8-)	2323.3	7-	M1+E2	0.89 15	1.17 10	$\alpha(L)exp=0.826 \ \varphi (1991La07)$ $\alpha(K)exp=0.84 \ g (1991La07)$ $\alpha(L1)exp+\alpha(L2)exp=0.112 \ 19$ (1991La07). δ : from $\alpha(K)exp$.
191.0 <i>3</i>	35 4	2514.4	9-	2323.3	7-	E2		0.503	α (K)exp=0.162 20 (1991La07); α (L)exp=0.30 5 (1991La07) I _{γ} : Ti(191 γ)/Ti(854 γ)=0.50 15 in (⁴⁰ Ar,4n γ) (1979Ro06).
210.6 4	10.3 15	2514.4	9-	2303.8	(8+)	E1+M2	0.28 4	0.45 11	α (K)exp=0.34 7 (1991La07) δ : from α (K)exp
277.3 6	2.3 5	2581.1	10+	2303.8	(8+)	E2		0.1466 23	α (K)exp=0.055 9 (1991La07) An uncertainty in α (K)exp of 0.092, given in 1991La07, is presumed to be a misprint of 0.009.
382.8 <i>4</i> 402.2 <i>5</i> 439.7 <i>3</i>	16.8 20 9.4 10 7.9 10	2303.8 2323.3 2743.6	(8 ⁺) 7 ⁻ (10 ⁻ ,11 ⁻)	1921.1 1921.1 2303.8	6 ⁺ 6 ⁺ (8 ⁺)	E2 (E1) (E3)		0.0579 0.01523 0.1489	α (K)exp=0.0643 <i>10</i> (1991La07) α (K)exp=0.0253 <i>10</i> (1991La07) α (K)exp=0.08 <i>5</i> (1991La07); α (L3)exp=0.048 <i>12</i> (1991La07) α (L1)exp+ α (L2)exp=0.114 <i>15</i> (1991La07). Mult.: α (K)exp favors E3, but α (K)exp, α (L1)exp+ α (L2)exp and α (L3)exp are mutually inconsistent. Note that B(E3)(W.u.) for this transition exceeds RUL.

¹⁸²W(¹⁶O,6nγ), Gd(⁴⁰Ar,xnγ) **1991La07,1979Ro06** (continued)

$\gamma(^{192}\text{Pb})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	α #	Comments
463.3 3	41 3	2323.3	7-	1860.0	5-	E2	0.0354	α (K)exp=0.037 6 (1991La07)
								α (L1)exp+ α (L2)exp=0.0085 <i>17</i> (1991La07). L : Ti(463 γ)/Ti(854 γ)=0.45 <i>15</i> in (⁴⁰ Ar 4n γ) (1979Ro06)
501.8 2	98 6	1355.7	4+	853.9	2+	E2	0.0291	α (K)exp=0.0318 22 (1991La07)
								$\alpha(L1)\exp+\alpha(L2)\exp=0.0052$ 15 (1991La07).
504 3 3	43 3	1860.0	5-	1355 7	Δ^+	F1		I_{γ} : Ti(502 γ)/Ti(854 γ)=0.90 20 in (* Ar,4n γ) (19/9R006). α (K)exp=0.0080 20 (1991La07)
501.55	15 5	1000.0	5	1555.7		LI		$\alpha(L1)\exp(-0.0000 20 (1991La07))$ $\alpha(L1)\exp(-\alpha(L2)\exp(-0.004 3 (1991La07)).$
565 4 2	(1.0	1021 1		1255 7	4+	50	0.0220	I _{γ} : Ti(504 γ)/Ti(854 γ)=0.50 20 in (⁴⁰ Ar,4n γ) (1979Ro06).
565.4 3	64 8	1921.1	0	1355.7	4	E2	0.0220	α (K)exp=0.021 2 (1991La07) α (L1)exp+ α (L2)exp=0.0051 10 (1991La07).
								I_{γ} : Ti(565 γ)/Ti(854 γ)=0.50 <i>10</i> in (⁴⁰ Ar,4n γ) (1979Ro06).
599.5 4	40 4	2520.6	8+	1921.1	6+	E2	0.0193	α (K)exp=0.0167 <i>18</i> (1991La07); α (L3)exp=0.0010 8 (1001L c07)
								$\alpha(L1)\exp(\alpha(L2)) = 0.0016 \ 8 \ (1991La07).$
								I _{γ} : Ti(600 γ)/Ti(854 γ)=0.34 <i>10</i> in (⁴⁰ Ar,4n γ) (1979Ro06).
853.9 2	100	853.9	2^{+}	0.0	0^{+}	E2		α (K)exp=0.0094 7 (1991La07) α (L1)exp= α (L2)exp=0.0021 4 (1001L α 07)
								$\alpha(L1)exp+\alpha(L2)exp=0.0021 4 (1991La07).$

[†] From (¹⁶O,6n γ) at E=109 MeV (1991La07); I γ is relative to I(854 γ)=100. 1979Ro06 (in fig. 6) indicate I(γ +ce) for ¹⁵⁶Gd(⁴⁰Ar,4n γ), E(⁴⁰Ar)=190 MeV; this information is given in comments on the relevant gammas.

[‡] From measured conversion electron data of 1991La07, unless noted otherwise.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{192}_{82}\text{Pb}_{110}\text{-}4$

¹⁸²W(¹⁶O,6nγ), Gd(⁴⁰Ar,xnγ) 1991La07,1979Ro06

 $^{192}_{82} \mathrm{Pb}_{110}$

¹⁸²W(¹⁶O,6nγ), Gd(⁴⁰Ar,xnγ) 1991La07,1979Ro06 (continued)

 $^{192}_{82} \mathrm{Pb}_{110}$