¹⁹³Ir(d, ³He) **1982Bl17**

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012	

Target $J^{\pi}=3/2^+$.

Data are from 1982B117. E(d)=40 MeV; iridium targets enriched to 99.45% in 193 Ir; measured E(level) (mag spect with position sensitive detectors backed by plastic scin, FWHM \approx 25-30 keV); measured angular distributions at angles chosen to maximize differentiation sensitivity for L(p)=2 and L(p)=0 transfer components (θ (c.m.) \approx 5-30°); deduced approximate total and partial spectroscopic strengths.

¹⁹²Os Levels

E(level)	L [†]	C^2S^{\ddagger}
0.0	(2)	0.34
210 2	(2)	0.38
490 5	(0+2)	0.010+0.13
910 9	(2)	0.10 [#]
1070 11	(2)	0.28 [#]
1960 <i>20</i>		
2030 20		

[†] From DWBA analysis of angular distributions.

 $^{^{\}ddagger}$ C²S, uncertainty≈20%; $s_{1/2}$ and $d_{3/2}$ orbitals assumed for L=0 and 2 transfer, respectively, unless noted to the contrary.

 $^{^{\#}}$ d_{5/2} orbital assumed.