¹⁹²**Os**(α , α') **1981Ba49**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012		

Others: 1976Ba06, 1976Ba23, 1978Bu21.

Note that 1989Ba54 (192 Os(p,p'), (pol p,p')) suggest that the much greater sensitivity of α scattering to multi-step processes makes the deduction of E2 and E4 excitation matrix elements less straightforward and their values less reliable than their counterparts deduced from proton scattering.

1976Ba23: $E(\alpha)=13-24$ MeV; split-pole spectrograph + position-sensitive proportional counter; $\theta(lab)=130^{\circ}$; coupled-channel calculations; deduced interference between one- and two-step amplitudes for excitation of 489 level.

1978Bu21: $E(\alpha)=24$ MeV; 99.06% ¹⁹²Os target, $\theta(lab)=60^{\circ}-140^{\circ}$, magnetic spectrograph (FWHM ≈ 25 keV); measured $\sigma(\theta)$ for 1069 level.

1981Ba49: $E(\alpha)=24$ MeV; osmium targets enriched to 98.7% in ¹⁹²Os; measured E(level) (mag spect, proportional counter, FWHM=50 keV), angular distributions (50° to 140°); used coupled channels analysis to interpret data (agreement good for g.s. band, reasonable for quasi- γ vibration band, and poor for K=4 band (bandhead at 1069 keV)).

¹⁹²Os Levels

E(level)	$J^{\pi^{\dagger}}$	$\beta_4(\text{nuclear})^{\ddagger}$	Comments
0.0	0^{+}		
206	2+		β_2 (Coulomb)=0.164, β_2 (nuclear)=0.14 (from interference data) (1976Ba06).
489	2^{+}		
580	4+	-0.026	
910	4^{+}	+0.005	
1069	4+	-0.010 [#]	
1341	3-		

[†] Adopted values.

[‡] Nuclear hexadecapole deformation parameter (β_4 (nuclear)/ β_4 (Coulomb)=0.83 constraint applied) from 1981Ba49. Others: 1976Ba06, 1978Bu21.

[#] β_4 (nuclear): analysis of $\sigma(\theta)$ data indicates that direct E4 excitation dominates the (α, α') cross section for this level, with two-step E2 excitation contributing the balance; $\sigma(\theta)$ calculated assuming constructive interference between the E4 and E2 amplitudes did not differ sufficiently from the destructive interference case for experiment to favor one over the other (1978Bu21).