¹⁹¹Ir(n,γ) E=thermal:secondary 1991Ke10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012

Others: 2007ChZX, 1989Du03, 1988Ba49, 1980SiZT, 1976Ra25. See also the references listed with ¹⁹¹Ir(n,γ) E=thermal: Primary. Target $J^{\pi}=3/2^+$.

All $E\gamma$ and $I\gamma$ data in this data set are from (n,γ) E=thermal; however, documentation for E=resonance (several) and E=reactor spectrum studies yielding secondary γ information, and additional data available from those sources, are also included in this data set (as indicated).

1976Ra25 (E=thermal): measured precise $E\gamma$ in 40-600-keV range (curved crystal spect); report $E\gamma$ values for a few placed transitions, plus $E\gamma$ for γ 's in the 155-165-keV range.

1980SiZT (E=reactor spectrum): measured E(ce), Ice (mag spect); report multipolarities, but do not describe measurements.

1988Ba49 (E=thermal): measured $E\gamma$, $I\gamma$ (curved crystal spect (to 640 keV)), E(ce), Ice (mag spect (to 215 keV)).

1989Du03 (E=thermal): measured Ey, Iy in 20-60-keV range (Si(Li), FWHM=300 eV at 17 keV, 350 eV at 30 keV).

- 1991Ke10 (E=thermal). Measured E γ , I γ : curved-crystal spectrometer (FWHM=5 arcsec), Compton-suppression spectrometer and Ge(Li) detectors (for isotopic identification and I γ calibration), natural Ir, 86% and 88.8% ¹⁹¹Ir targets. Conversion electron data: magnetic spectrometer (momentum resolution 0.19% at 30 keV, 0.06% at 190 keV), 94.3% ¹⁹¹Ir target, measured E(ce) (19-280 keV), I(ce); calibration based on ten unspecified transitions. $\gamma\gamma$ coin data: HP Ge (FWHM \approx 500 eV at 60 keV) and Ge(Li) spectrometer (FWHM=2.5 keV at 100 keV), timing resolution FWHM=35 ns, deduced level T_{1/2} from $\gamma\gamma$ (t) or centroid shift. Supersedes earlier reports by some of the same authors in 1988Ba49, 1980SiZT, 1976Ra25. See also 1997BaZV for suggested placement of some transitions which were reported but not placed by 1991Ke10.
- **1991Ke10** (E=resonance): E(resonance)=0.655 eV (J=1), 5.36 eV (J=1), 6.13 eV (J=2); pulsed n beam, tof, natural Ir target, Ge(Li) detector, measured E(n), E γ (secondaries), I γ ; deduced level J^{π} from population ratios of secondary gammas, defined as I γ (at J=2 resonance)/I γ (at J=1 resonance) (expected ratios are 1.1 (J=2), 2.4 (J=3), assuming J=1 for 236 level whose ratio is 0.85).
- 2007ChZX (supersedes 2003ChZS): evaluation of thermal neutron capture data. includes new measurements (referred to In this evaluation As 'Budapest Data'): ^{nat}IR target; thermal neutrons from Budapest reactor; Ge(Li); measured $E\gamma$, $I\gamma$ for strongest primary and secondary transitions; report elemental photon cross sections.
- See 2001Va11 for a proposed model-independent procedure to determine from experimental data the most probable level density and value of the sum of dipole strength functions for nuclei with arbitrary level density.
- The level scheme is from 1991Ke10, with the addition of fourteen levels defined by γ placements suggested in 1997BaZV, the addition of four transitions deexciting previously established levels (1997BaZV), and relocation of the 126.958 γ as suggested in 1997BaZV. Since the levels introduced by 1997BaZV seem somewhat speculative and have not yet been published, the evaluator shows all but the 441 level (supported by $\gamma\gamma$ coin) as tentative.

¹⁹²Ir Levels

 $E(\gamma)$, $J(\gamma)$ Level introduced by 1997BaZV; based on Nilsson model calculations, γ decay patterns and mult.

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0.0	4+		Probable Configuration= $((\pi 3/2[402])-(\nu 11/2[615]))+((\pi 11/2[505])-(\nu 3/2[512]))$ (1991Ke10).
12.984? 14	(6^{+})		
16.050? 23	(6 ⁻)		
56.720 [°] 5	1-		
66.830 20	$(4)^{-}$	15 ns 4	
84.275 <i>3</i>	3-	1.9 ns 4	Possible bandhead for Configuration= $((\pi 3/2[402])-(\nu 9/2[505]))$ (1991KE10).
104.776 ^b 5	$(1)^{-}$	17.4 ns 26	
115.564 ^c 5	$(2)^{-}$		
118.7824 18	3-	>15 ns	Possible bandhead for Configuration= $((\pi 3/2[402])+(\nu 3/2[512]))$ (1991KE10).
128.744 ^{<i>a</i>} 6	(0) ⁻		

Continued on next page (footnotes at end of table)

 $[\]sigma_{\rm n}$ =954 10 (2006MuZX).

¹⁹¹Ir(n,γ) E=thermal:secondary **1991Ke10** (continued)

¹⁹²Ir Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
139.942? 18	(5^+)		
143.556^{a} 6	$(1)^{-}$		
144 904? 5	(5^+)		
192,935,6	$(2)^{-}$		
102 511 & 5	$(1)^+$	27 56	
195.511 J 212.0000 5	(1)	2.7 118 0	I-2 is implied if hand assignment is accurat
212.000 J	(1,2)		J-2 is implied it band assignment is correct.
210.903 7 4	(4)		
225.5521 24	$(0)^{-}$		
225.910 0	(2)		
220.2011 7	(≤ 2)		
239 7702 6	$(1)^{-}$		
240.902^{b} 5	$(1)^{-}$		
265 1602 8	(0^{-})		
265.100.0	$(3)^{-}$		
277 993 5	$(4)^{-}$		
284 215 ^{&} 5	$(2)^+$		
288.403.6	$(2)^{-}$		
292.381 13	$(2)^{-}$		
310.999 6	2-		
319.883 8	$(2)^{-}$		
331.077 6	$(2)^{-}$		
331.761 6	(1)-		
351.690 [@] 4	$(2)^{+}$		
365.653? 7	$(2^{-},3^{-})$		
366.730 8	$(2)^{-}$		
368.353 7	$(2)^{-}$		
389.720 ⁰ 9	$(2)^{-}$		
392.351 7	$(1,2,3)^{-}$		
415.038 10	1-,2-,3-		
418.141? [@] 7	$(3^+, 4^+)$		
440.870 6	(3 ⁺)		
451.250 13	$(1,2)^{-}$		
489.50? 15	1-,2-,3-		
508.988 8	$(2,3)^{-}$		
513.197? [@] 8	(4^{+})		
529.167? 10	(1 ⁻)		
530.266? 13	1-,2-,3-		
670.640? <i>13</i>	(4^{+})		

[†] From least-squares fit to $E\gamma$.

[±] From $\gamma\gamma$ (t) or centroid shift (1991Ke10).

[#] From Adopted Levels. See 1991Ke10 for authors' J^{π} based on γ multipolarities and decay patterns in (n,γ) E=thermal, reduced intensities of primary gammas in average resonance capture, population ratios for secondary gammas following capture in isolated J=1 and J=2 resonances, level population in (d,p) and (d,t) reactions (i.e., all data from 1991Ke10).

[@] Band(A): *γ* band (1991Ke10).

[&] Band(B): possible Configuration=((π 11/2[505])-(ν 9/2[505])) (1991KE10).

^{*a*} Band(C): possible Configuration= $((\pi 3/2[402]) - (\nu 3/2[512]))$ (1991KE10). The levels assigned to this band by 1991Ke10 differ from those assigned in Adopted Levels on the basis of later transfer reaction data.

^b Band(D): possible Configuration=((π 1/2[400])-(ν 3/2[512])) (1991KE10). The levels assigned to this band by 1991Ke10 differ

¹⁹¹Ir(n,γ) E=thermal:secondary **1991Ke10** (continued)

¹⁹²Ir Levels (continued)

from those assigned in Adopted Levels on the basis of later transfer reaction data.

^{*c*} Band(E): possible Configuration=((π 3/2[402])-(ν 1/2[510])) (1991KE10).

 $\gamma(^{192}{\rm Ir})$

I γ normalization: From I γ (58.84)=1.20 *3* per 100 neutron captures (E=thermal, 1989Du03); values have been calibrated to σ_n =954 *10* (2006MuZX). The absolute photon cross section data from 2007ChZX give 1.49 *8* per 100 n captures for this γ , but this is one of the many transitions for which data from 1991Ke10 and 2007ChZX are inconsistent. the proposed normalization gives values In satisfactory agreement with absolute values from 2007ChZX for a number of other low-energy transitions. The listed uncertainties in I γ do not include an 11% uncertainty due to absolute calibration. This uncertainty is included in the normalization factor. With this normalization, Σ (I(γ +ce) to g.s.+13+16+57) \approx 71%.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	<i>δ</i> #	α^{d}	Comments
^x 19.71 [@] 3	0.25 [@] 4					(M1)		127.6	α (M1)exp=38 <i>11</i> for (19.7 γ +20.0 γ) doublet (1991Ke10); authors do not state the subshell measured, but their deduced mult suggests the M1 subshell. α (M1)(M1 theory)=20.2.
^x 19.96 [@] 2	0.34 [@] 4					(M1)		122.9	α (M1)exp=38 <i>11</i> for (19.7 γ +20.0 γ) doublet (1991Ke10); authors do not state the subshell measured, but their deduced mult suggests the M1 subshell. α (M1)(M1 theory)=19.5.
23.970 [@] 6	2.11 [@] 13	128.744	$(0)^{-}$	104.776	$(1)^{-}$	M1		71.4	α (M1)exp=16 3 (1991Ke10)
26.231 [@] 6	1.64 [@] 8	267.128	(3)-	240.902	$(2)^{-}$	M1		54.7	α (M1)exp=7.2 22 (1991Ke10)
26.960 ^{@bf} 10	0.240 [@] 17	239.770?	$(1)^{-}$	212.808	$(1,2)^{-}$				α (L1)exp=81 25 (1991Ke10)
	-								α (L1)exp is much larger than expected from M1 theory.
28.010 [@] 10	0.220 [@] 18	143.556	$(1)^{-}$	115.564	(2) ⁻	M1		45.0	α (L1)exp=31 13 (1991Ke10)
32.981 [@] 7	$0.70^{\textcircled{0}}4$	225.916	$(2)^{-}$	192.935	(2)-	M1		27.8	$\alpha(L1)\exp=13\ 4\ (1991Ke10)$
34.520 [@] 10	0.300 [@] 21	118.7824	3-	84.275	3-	M1		24.3	α (L1)exp=16 5 (1991Ke10)
38.80 [@] 2	0.32 [@] 3	143.556	$(1)^{-}$	104.776	$(1)^{-}$	M1		17.19	α (L1)exp=12 6 (1991Ke10)
^x 47.443 16	2.70 19					M1		9.50	α (L1)exp=8.0 25 (1991Ke10)
48.0568 8	79 4	104.776	(1) ⁻	56.720	1-	M1+E2	0.163 10	12.3 5	α (L1)exp=6.2 7 (1991Ke10) Mult., δ : from L1:L2:L3:M1:M2:N1=100 <i>10</i> :29 4:23 3:24 5:8.9 26:8.1 <i>16</i> (authors' analysis, 1991Ke10). δ =0.17 +25-17 from α (L1)exp alone. I _{γ} : from 1989Du03.
49.390 [@] 10	1.51 [@] 9	192.935	$(2)^{-}$	143.556	$(1)^{-}$	M1		8.44	α (L1)exp=7 3 (1991Ke10)
49.970 [@] 10	1.42 [@] 9	193.511	$(1)^{+}$	143.556	(1)-	(E1)		0.513	$\alpha(L1)exp=8.3 \ 21 \ (1991Ke10)$
	_								Mult.: α (L1)exp allows mult=M1 or E1+M2 (δ =0.21 3); the latter is required by level scheme, but δ violates RUL.
50.780 ^{@bf} 10	1.64 [@] 10	66.830	(4)-	16.050?	(6 ⁻)	E2		98.9	α(L2)exp=33 4 (1991Ke10) Mult.: from L1:L2:L3:M2:M3:N2+N3=7 4:100 10:111 17:26 8:26 8:18 9 (1991Ke10).
54.324 4	3.83 23	267.128	(3)-	212.808	(1,2) ⁻	M1		6.38	α (L1)exp=3.6 <i>10</i> (1991Ke10) I _{γ} : from 1989Du03. Other E γ : 54.340 8 (1989Du03).

	¹⁹¹ Ir(\mathbf{n},γ) E=thermal:secondary 1991Ke10 (continued)												
						<u>γ</u>	v(¹⁹² Ir) (cor	ntinued)					
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α^d	Comments				
56.71 3	0.69 9	56.720	1-	0.0	4+	E3		2.85×10 ³	$\alpha(L2)\exp=1070 \ 160 \ (1991Ke10)$ From subshell ratios of 1991Ke10, viz., L1:L2:L3:M2:M3:M4+M5:N2+N3=2.7 \ 13:100 \ 8:92 \ 11:28 \ 4:22.5 \ 23:2.9 \ 5:17 \ 3. E _{γ} : from ce data (1991Ke10). Other E γ : 56.67 2 (1989Du03).				
58.8438 10	51.8 <i>16</i>	115.564	(2)-	56.720	1-	M1+E2	0.227 5	7.17 14					
66.472 14	1.2 6	292.381	(2)-	225.916	(2)-	M1		3.53	α (L1)exp=4.2 27 (1991Ke10) other E _Y (I _Y): 66.62 9 (42 3) (2007ChZX: Budapest Data).				
66.83 2 ^x 68.443 20	16.2 <i>13</i> 0.7 <i>4</i>	66.830	(4)-	0.0	4+	[E1]		0.231					
69.252 6	3.1 9	212.808	$(1,2)^{-}$	143.556	$(1)^{-}$	M1		3.14	α (L1)exp=2.6 <i>11</i> (1991Ke10)				
72.025 3	7.6 19	128.744	$(0)^{-}$	56.720	1-	MI		2.80	$\alpha(L1)\exp=1.3.5$ (1991Ke10)				
72.326 ⁰ 5 72.464 <i>12</i>	3.5 <i>11</i> 1.1 6	513.197? 392.351	(4^{+}) $(1,2,3)^{-}$	440.870 319.883	(3^{+}) $(2)^{-}$	MI		2.76	α (L1)exp=2.0 8 (1991Ke10) other E γ (I γ): 73.35 5 (555 19) (2007ChZX; Budapest Data). Presumably a complex line In 2007ChZX.				
77.368 4	4.7 14	192.935	(2)	115.564	$(2)^{-}$	M1		12.62	α (L1)exp=1.4 6 (1991Ke10)				
77.9466 8	50 10	193.511	$(1)^{+}$	115.564	$(2)^{-}$	E1		0.738	α (L1)exp=0.16 5 (1991Ke10)				
*83.371 11	1.4 7	415 029	1- 0- 2-	221 077	(0) =	M1		10.30	α (L1)exp=3.5 25 (1991Ke10)				
83.930 13	2.2 11	415.038	1,2,3 3^{-}	0.0	(2) 4^+	IVII F1		10.10	$\alpha(L1)\exp=2.5.76$ (1991Ke10) $\alpha(L1)\exp=0.113.25$ (1001Ke10)				
84.270 5	100 10	04.275	5	0.0	4	EI		0.014	Mult.: from L1:L2:L3:M1=100 20:45 13:53 13:26 8 (1991Ke10). Mult=E1+M2, δ =+0.055 +10-13 from α (L1)exp alone is considered less reliable than results based on subshell ratios.				
86.837 5	10 2	143.556	$(1)^{-}$	56.720	l^{-}	M1		9.17	$\alpha(L1)\exp=1.2 \ 3 \ (1991Ke10)$				
88.7335.8	53 5	193.511	(1)'	104.776	(1)	EI		0.540	α (L1)exp=0.18 4 (1991Ke10) Mult: from L1:L2:L3:M1=100 20:38 18:38 18:27 13 (1991Ke10). Mult=E1+M2, δ =+0.091 +13-15 from α (L1)exp alone is considered less reliable than result based on subshell ratios.				
90.7035 15	0.8 <i>4</i> 16.4 <i>25</i>	284.215	(2) ⁺	193.511	(1)+	M1		8.10	α(K)exp=5.9 <i>13</i> (1991Ke10) Mult.: from K:L1:M1=100 <i>16</i> :22 <i>3</i> :6.2 <i>21</i> (1991Ke10).				
^x 90.794 25	1.8 5												
90.854 <i>/</i> 5	2.5 5	331.761	$(1)^{-}$	240.902	$(2)^{-}$	M1		8.06	α (L1)exp=1.4 5 (1991Ke10)				

S

From ENSDF

 $^{192}_{77}\mathrm{Ir}_{115}\text{--}5$

I

				¹⁹¹ Ir(n	ι,γ) E=the	ermal:seco	ndary	1991Ke10 (continued)
						γ (¹⁹² Ir) (contin	ued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^{d}	Comments
95.068 ^{bf} 12	3.0 6	513.197?	(4^{+})	418.141?	$(3^+, 4^+)$	M1	7.08	α (K)exp=4.8 17 (1991Ke10)
95.47 4	2.2 4	288.403	$(2)^{-}$	192.935	(2) ⁻	M1	7.00	α (K)exp=6.6 24 (1991Ke10) other E γ (I γ): 95.37 6 (12 4) (2007ChZX; Budapest Data).
97.351 ^e 6	3.1 ^e 6	240.902	$(2)^{-}$	143.556	$(1)^{-}$			α (K)exp=5.5 <i>18</i> (1991Ke10), mult=M1 for doubly-placed G.
97.351 ^e 6 x98.410 25	3.1 ^e 6 0.9 5	389.720	(2)-	292.381	(2)-			α (K)exp=5.5 <i>18</i> (1991Ke10), mult=M1 for doubly-placed G.
98.524 ^{<i>b</i>} <i>f</i>	4.0 6	365.653?	$(2^{-}, 3^{-})$	267.128	(3)-	M1	6.39	α (K)exp=3.5 <i>12</i> (1991Ke10)
^x 99.62 3	3.0 6					M1 E0	6.19	α (K)exp=3.3 18 (1991Ke10) Multi- 1001Ke10 chapter as but no on they estimate $k_{\rm e}<2$
101 221 75	134	368 353	$(2)^{-}$	267 128	$(3)^{-}$	EU		Num.: 1991Ke10 observe ce but no γ ; they estimate $1\gamma < 2$.
x102.29 3	1.4 4	500.555	(2)	207.120	(5)	M1	5.74	$\alpha(K) \exp = 9.5 (1991 \text{Ke} 10)$
104.020 25	1.6 5	415.038	1-,2-,3-	310.999	2-			
105.155 12	1.7 5	331.077	$(2)^{-}$	225.916	$(2)^{-}$	M1	5.30	$\alpha(K) \exp = 7.4 (1991 \text{Ke} 10)$
^x 105.497 20	3.0 6							α (K)exp=1.2 6 (1991Ke10)
107.025 8	2.5 [°] 8	235.760?	(1^{-})	128.744	$(0)^{-}$	M1	5.04	α (K)exp=4.0 18 (1991Ke10)
107.129 10	2.8 7	225.916	(2) $(1,2)^{-}$	118.7824	$(1)^{-}$	MI M1	5.03	$\alpha(K) \exp = 3.6 \ I6 \ (1991 \text{Ke} 10)$ $\alpha(K) \exp = 3.6 \ A \ (1001 \text{Ke} 10)$
108.0318 10	51.5 25	212.000	(1,2)	104.770	(1)	1411	4.91	Mult.: from K:L1:M1=100 10:13.2 26:7 3. Mult=M1+E2, δ =+0.39 +19–27 from α (K)exp alone is considered less reliable than result based on subshell ratios.
108.668 12	1.4 4	192.935	$(2)^{-}$	84.275	3-	M1	4.83	α (K)exp=5 3 (1991Ke10)
110.358 4	6.6 8	225.916	(2) ⁻	115.564	(2)-	M1	4.62	α (K)exp=4.8 <i>13</i> (1991Ke10) other E γ (I γ): 110.65 7 (15.3 <i>10</i>) (2007ChZX; Budapest Data).
111.025 ^{bf} 3	12.2 12	239.770?	$(1)^{-}$	128.744	$(0)^{-}$	M1	4.54	α (K)exp=5.6 9 (1991Ke10)
118.270 6	1.9 4	331.077	(2)-	212.808	(1,2)-	M1	3.79	α (K)exp=3.7 20 (1991Ke10) other E γ (I γ): 118.38 8 (11.6 17) (2007ChZX; Budapest Data).
118.7817 18	6.9 8	118.7824	3-	0.0	4+	El	0.257	α (K)exp<0.5 (1991Ke10) Population ratio>1.5 in (n, γ) E=resonance (1991Ke10) favors J=3,4 for parent level.
*120.153 5	2.0 4	225 016	$(2)^{-}$	104 776	$(1)^{-}$	M1	3 54	$\alpha(K) = 50.18(1001K = 10)$
122,599,10	2.0 4	389 720	$(2)^{-}$	267 128	$(1)^{-}$	M1	3.42	$\alpha(K)\exp=3.0.13(1991Ke10)$ $\alpha(K)\exp=3.0.13(1991Ke10)$
1221077710	210 /	2071120	(-)	20/1120	(0)		01.12	other E γ (I γ): 123.09 <i>16</i> (5.3 9) (2007ChZX; Budapest Data).
^x 122.748 15	1.9 6					M1	3.41	α (K)exp=4.2 <i>16</i> (1991Ke10)
^x 124.771 5	10.7 11					M1	3.25	α (K)exp=1.9 5 (1991Ke10)
×1.0 < 50 < 0								Population ratio>1.5 in (n,γ) E=resonance (1991Ke10) favors J=3,4 or possibly 2 for parent level.
^126.586 9	1.8 5							
126.958 ^{vJ} 3	24.0 24	139.942?	(5 ⁺)	12.984?	(6 ⁺)	M1	3.09	α (K)exp=2.8 7 (1991Ke10) Population ratio>6.0 in (n, γ) E=resonance (1991Ke10); from this ratio 1997BaZV and 1991Ke10 favor J=5 and 4, respectively, for parent level. Therefore, the evaluator does not adopt the placement of the 127 γ from the J=2, 320 level suggested in 1991Ke10.

 $^{192}_{77}\mathrm{Ir}_{115}\text{-}6$

				¹⁹¹ I	r(n,y)	E=thermal	secondar	y 1991Ke10 (continued)
						<u>γ(</u>	¹⁹² Ir) (cor	ntinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	J_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
^x 128.59 4 128.736 ^f 25	1.2 6 1.3 7	128.744	(0)-	0.0	4+			Mult=M4 (α =1082)implied by level scheme, inconsistent with absence of transition in ce spectrum. Therefore, γ is probably misplaced (1991Ke10); consequently, this placement has been omitted from Adopted Levels, Gammas.
$x_{130.909}$	1.5 8					M1	2.71	$\alpha(K) = 20.11(1001K \times 10)$
$133.934^{f} 9$	2.1 5 2.4 6 2 4 6	418.141?	(3+,4+)	284.215	(2)+	M1 M1 M1	2.71 2.66 2.64	$\alpha(K)\exp=2.0$ 11 (1991Ke10) $\alpha(K)\exp=2.3$ 13 (1991Ke10) $\alpha(K)\exp=1.8$ 10 (1991Ke10)
136.1248 15	80 <i>10</i>	240.902	(2)-	104.776	(1)-	M1	2.54	$\alpha(K)\exp[-1.6.10](1991Ke10)$ $\alpha(K)\exp[-1.8.3](1991Ke10)$ for $(136.2\gamma+136.1\gamma)$ doublet in which this transition is major component implies mult=M1 for this transition.
136.210 6	49 6	192.935	(2)-	56.720	1-	(M1,E2)	1.9 6	other E γ (I γ): 136.2 5 (149 5) (2007ChZX; Budapest Data). α (K)exp=1.8 3, mult=M1 (1991Ke10) for (136.2 γ +136.1 γ) favors mult=M1.E2 for this transition.
136.792 2 138.247 <i>4</i>	27.3 22 6.6 8	193.511 331.761	$(1)^+$ $(1)^-$	56.720 193.511	1^{-} (1) ⁺	E1 (E1)	0.179 0.1744	α (K)exp=0.26 9 (1991Ke10) α (K)exp=0.45 23 (1991Ke10) other E γ (I γ): 138.43 10 (16.8 13) (2007ChZX; Budapest Data). Mult.: E1 or E2 from α (K)exp; $\Delta\pi$ =yes from level scheme.
^x 138.942 ^{&} 5	5.7 <mark>&</mark> 7					M1	2.39	α (K)exp=1.9 3 (1991Ke10)
139.736 ^{bf} 9 ^x 140.17 5	3.4 5 1.4 7	365.653?	(2 ⁻ ,3 ⁻)	225.916	(2)-	M1	2.35	$\alpha(K)\exp=3.2\ 12\ (1991Ke10)$
140.237 <i>14</i> 140.610 <i>15</i> 140.830 <i>15</i>	4.0 6 1.2 6 2.0 6	451.250 508.988 366.730	$(1,2)^{-}$ $(2,3)^{-}$ $(2)^{-}$	310.999 368.353 225.916	2^{-} (2) ⁻ (2) ⁻	M1	2.33	α (K)exp=2.3 6 (1991Ke10)
x142.210 25 x144.356 7	2.1 5 3.0 6		(-)		(_)	M1	2.24	$\alpha(K)\exp=2.4\ 13\ (1991Ke10)$
144.828 11	7.0 11	288.403	(2)-	143.556	(1)-			other E γ (I γ): 144.79 6 (51.3 25) (2007ChZX; Budapest Data). α (K)exp=1.6 3 (1991Ke10) for (144.8 γ +144.9 γ) doublet.
144.904 ^{bf} 5	38 4	144.904?	(5 ⁺)	0.0	4+	(M1)	2.12	Mult.: α (K)exp=1.6 3 (1991Ke10) for (144.8 γ +144.9 γ) doublet dominated by the latter G.
^x 146.902 6 148.822 ^e 3 148.822 ^e 3	3.3 5 13.4 ^e 13 13.4 ^e 13	292.381 389.720	$(2)^{-}$ $(2)^{-}$	143.556 240.902	$(1)^{-}$ $(2)^{-}$	M1	2.04	$\begin{array}{l} \alpha(\textbf{K}) \exp=1.8 \ 9 \ (1991 \text{Ke10}) \\ \alpha(\textbf{K}) \exp=1.6 \ 3 \ (1991 \text{Ke10}), \ \text{mult}=\text{M1} \ \text{for doubly-placed G.} \\ \alpha(\textbf{K}) \exp=1.6 \ 3 \ (1991 \text{Ke10}), \ \text{mult}=\text{M1} \ \text{for doubly-placed G.} \\ \text{other } \text{E}\gamma \ (I\gamma): \ 148.85 \ 6 \ (30.3 \ 18) \ (2007 \text{ChZX}; \ \text{Budapest Data}). \\ \text{Population ratio}=1.0 \ 4 \ \text{in } (n,\gamma) \ \text{E}=\text{resonance} \ (1991 \text{Ke10}) \ \text{favors J}=1,2 \ \text{for parent level.} \end{array}$
*149.953 5 *151.275 20 151.444 25 151.561 3	2.4 6 1.1 6 3.2 6 25.0 25	392.351 267.128	(1,2,3) ⁻ (3) ⁻	240.902 115.564	$(2)^{-}$ $(2)^{-}$	M1	1.87	α (K)exp=1.5 3 (1991Ke10) Population ratio=2.3 5 in (n, γ) E=resonance (1991Ke10) favors J=3 for
^x 151.754 4	4.3 6					M1	1.86	parent revel. $\alpha(K)\exp=2.5 \ 10 \ (1991Ke10)$

L

 $^{192}_{77}\mathrm{Ir}_{115}\text{-}7$

	¹⁹¹ Ir(\mathbf{n},γ) E=thermal:secondary 1991Ke10 (continued)												
	γ ⁽¹⁹² Ir) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	δ #	α^{d}	Comments				
^x 155.354 17	1.8 5												
156.081 3	12.6 13	212.808	$(1,2)^{-}$	56.720	1-	M1		1.721	α (K)exp=1.1 3 (1991Ke10)				
156.653 ⁰ 3	22.2 18	440.870	(3+)	284.215	(2)+	(M1)		1.704	other E γ (I γ): 156.38 <i>6</i> (35.8 <i>16</i>) (2007ChZX; Budapest Data). α (K)exp=0.9 <i>19</i> (1991Ke10) obviously includes a typographical error, presumably in the uncertainty (authors				
									assign M1(+E2)). Placement supported by $\gamma\gamma$ coin data.				
158.179 10	1.8 5	351.690	$(2)^{+}$	193.511	$(1)^{+}$								
^x 159.495 <i>3</i> ^x 161.966 <i>11</i>	7.6 8 1.4 <i>4</i>					E2		0.763	α (K)exp=0.5 3 (1991Ke10)				
^x 162.370 8	2.2 5					M1		1.540	$\alpha(K)\exp=1.4\ 7\ (1991Ke10)$				
162.826 ^J 15	1.7 4	451.250	$(1,2)^{-}$	288.403	$(2)^{-}$	M1		1.528	α (K)exp=2.4 <i>13</i> (1991Ke10)				
^x 165.084 18	2.9 4					M1 M1		1.469	$\alpha(K) \exp [-1.3\% (1991 \text{Ke}10)]$				
^x 165 568 4	2.5 5					M1		1.401	$\alpha(\mathbf{K})\exp[-1.3 \ 0 \ (1991 \text{Ke}10)]$ $\alpha(\mathbf{K})\exp[-1.3 \ 4 \ (1991 \text{Ke}10)]$				
166.086^{bf} 6	11.0.11	302 351	$(1 2 3)^{-}$	226 2612	$(< 2^{-})$	M1		1.137	$\alpha(K) \exp[-1.2, 2, (1001 \text{ Ke} 10)]$				
166.439 6	3.0 5	392.351	$(1,2,3)^{-}$	225.916	$(\underline{32})^{-}$	1411		1.775	$u(\mathbf{R}) c_{\mathbf{R}} p = 1.2.2 (1) p \Pi c_{10} p$				
169.202 7	23.0 23	225.916	(2) ⁻	56.720	1-	E2		0.617	α (K)exp=0.43 <i>12</i> (1991Ke10) Mult.: from 1991Ke10, presumably based on K:L2:L3. mult=E2+M1, δ =2.1 +2 <i>1</i> -6 based on α (K)exp alone. other E γ (I γ): 169.25 <i>5</i> (39.6 <i>17</i>) (2007ChZX; Budapest Data).				
169.541 ^{<i>ebf</i>} 5	6.5 ^e 8	226.261?	(≤2 [−])	56.720	1-				other Eγ (Ιγ): 169.25 5 (39.6 17) (2007ChZX; Budapest Data).				
160 541 ef 5	(5 ⁰)	490 509	1- 0- 2-	210 002	$(2)^{-}$				$\alpha(K) \exp[-1.7/7]$, mult=M1 (1991Ke10) for doubly-placed G.				
^x 172.18 5	0.5° 8 1.0 5	489.50?	1,2,3	519.885	(2)				$\alpha(\mathbf{K})\exp[1.77, \text{ mult=M1}]$ (1991Ke10) for doubly-placed G.				
172.841 4	5.9 6	288.403	$(2)^{-}$	115.564	(2) ⁻	M1		1.291	$\alpha(K)\exp=1.1 \ 3 \ (1991Ke10)$				
x173.707 13 174.144 10 x175.11 7	1.3 7 2.6 5 0.50 25	415.038	1-,2-,3-	240.902	(2)-	M1 M1		1.273 1.264	α (K)exp=1.2 7 (1991Ke10) α (K)exp=2.1 <i>11</i> (1991Ke10)				
x175.376 25 176.826 25 x177.052 25 x177.305 20	1.6 <i>4</i> 2.5 5 1.3 7	292.381	(2) ⁻	115.564	(2) ⁻	M1		1.211	α (K)exp=1.4 7 (1991Ke10)				
177.926 <i>12</i> x178.21 <i>5</i>	3.5 7 0.50 25	508.988	(2,3) ⁻	331.077	(2)-	M1		1.190	α (K)exp=1.0 5 (1991Ke10)				
179.038 ^{<i>f</i>} 2	25.0 20	235.760?	(1 ⁻)	56.720	1-	M1+E2	1.0 +4-2	0.81 11	α (K)exp=0.58 <i>10</i> (1991Ke10) Population ratio=0.85 <i>9</i> in (n, γ) E=resonance (1991Ke10); J=1 assumed for parent level in order to normalize measured ratios.				

 ∞

 $^{192}_{77}\mathrm{Ir}_{115}\mathrm{-8}$

L

	¹⁹¹ Ir(\mathbf{n},γ) E=thermal:secondary 1991Ke10 (continued)												
						γ	(¹⁹² Ir) (c	continued)					
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡ <i>C</i>	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [#]	α^{d}	Comments					
^x 180.724 4	10.8 11					M1	1.139	 α(K)exp=1.1 2 (1991Ke10) Population ratio=0.91 20 in (n,γ) E=resonance (1991Ke10) favors J=1 or possibly 2 for parent level. 					
^x 181.32 3 ^x 181.80 ^{&} 4 ^x 182.74 4	1.0 <i>3</i> 0.7 ^{&} <i>4</i> 1.0 <i>3</i>												
^x 183.310 <i>15</i> 183.624 <i>6</i>	0.8 <i>4</i> 9.3 <i>11</i>	288.403	(2)-	104.776	(1)-	M1	1.090	α (K)exp=1.1 3 (1991Ke10) Population ratio=1.5 4 in (n, γ) E=resonance (1991Ke10) favors J=2 or possibly 3 for parent level.					
^x 185.051 18	1.6 5												
185.50 4 187.521 6	0.8 4 5.3 6	331.077	(2) ⁻	143.556	(1)-	M1	1.027	α (K)exp=0.8 2 (1991Ke10) Population ratio=1.1 4 in (n, γ) E=resonance (1991Ke10) favors J<3 for parent level.					
188.19 <i>4</i> ^x 188 60 7	1.6 5	331.761	$(1)^{-}$	143.556	(1)-			other E _Y (I _Y): 187.87 18 (7 3) (2007ChZX; Budapest Data).					
189.099 <i>10</i> <i>x</i> 190.216 <i>5</i>	2.4 <i>5</i> 5.2 <i>6</i>	508.988	(2,3) ⁻	319.883	(2)-	M1	0.987	other E γ (I γ): 189.89 <i>19</i> (6.1 23) (2007ChZX; Budapest Data). α (K)exp=0.9 3 (1991Ke10) Population ratio>2.0 in (n, γ) E=resonance (1991Ke10) favors J=3,4 for parent level					
191.16 ^f 4	0.8 4	319.883	(2)-	128.744	(0)-								
192.070 25 193.718 4	1.8 <i>J</i> 10.3 <i>12</i>	277.993	(4)-	84.275	3-	M1	0.938	α (K)exp=0.78 25 (1991Ke10) Population ratio>2.5 in (n, γ) E=resonance (1991Ke10) favors J=3,4 for parent level.					
^x 193.93 4	1.5 8												
^x 195.09 4	1.5 5												
195.426 <i>14</i>	3.3 8	310.999	2-	115.564	$(2)^{-}$								
x195.656 25	2.30 227												
^x 196.725 25	1.5 5												
197.072 ^{<i>f</i>} 8	4.5 9	489.50?	1-,2-,3-	292.381	(2) ⁻	M1	0.894	α (K)exp=0.8 3 (1991Ke10) other E γ (I γ): 197.12 21 (9.5 25) (2007ChZX; Budapest Data).					
^x 197.95 3	1.3 4												
199.190 ^{<i>f</i>} 12	4.9 10	530.266?	1-,2-,3-	331.077	(2) ⁻	M1	0.868	α (K)exp=0.65 <i>18</i> (1991Ke10) other E γ (I γ): 199.02 <i>10</i> (13.9 23) (2007ChZX; Budapest Data).					
199.41 <i>4</i> 201.108 <i>20</i>	1.7 5 2.6 7	392.351 319.883	$(1,2,3)^{-}$ $(2)^{-}$	192.935 118.7824	$(2)^{-}$ 3 ⁻	M1 M1	0.865 0.845	α (K)exp=1.1 5 (1991Ke10) α (K)exp=1.3 6 (1991Ke10)					
^x 201.246 <i>12</i> ^x 202.255 <i>9</i>	8.5 9 4.6 6					M1 M1	0.844 0.832	other E γ (I γ): 201.48 9 (17.7 22) (2007ChZX; Budapest Data). α (K)exp=0.94 18 (1991Ke10) α (K)exp=0.80 26 (1991Ke10)					

 $^{192}_{77}\mathrm{Ir}_{115}\mathrm{-}9$

L

				¹⁹¹ Ir(\mathbf{n}, γ) E=thermal:secondary				1991Ke10 (continued)
						$\gamma(^{192}$	² Ir) (contir	nued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
203.018 8	3.3 5	331.761	(1)-	128.744	$(0)^{-}$	M1	0.823	α (K)exp=0.70 20 (1991Ke10)
*203.676 <i>14</i> *204.078 <i>11</i> *204.469 <i>25</i> 206.219 <i>4</i>	2.7 <i>4</i> 4.8 6 4.5 7 29.4 24	310.999	2-	104.776	(1)-	M1 M1 M1	0.811 0.807 0.788	 other Eγ (Iγ): 203.83 8 (21.7 16) (2007ChZX; Budapest Data). α(K)exp=0.63 20 (1991Ke10) α(K)exp=0.44 23 (1991Ke10) α(K)exp=0.63 11 (1991Ke10) Population ratio=1.08 20 in (n,γ) E=resonance (1991Ke10) favors J=2 or possibly 1 for parent level. other Eγ (Iγ): 206.19 6 (48.1 23) (2007ChZX; Budapest Data).
207.302 ^{bf} 6	6.2 7	223.352?	(6 ⁺)	16.050?	(6 ⁻)	E1	0.0624	α (K)exp<0.16 (1991Ke10)
208.437 ^{bf} 7	3.8 6	265.160?	(0-)	56.720	1-	M1	0.765	α (K)exp=0.92 24 (1991Ke10) other E γ (I γ): 208.07 16 (9.1 12) (2007ChZX; Budapest Data).
210.353 ^{ebf} 5	9.3 ^e 9	223.352?	(6 ⁺)	12.984?	(6^{+})			α (K)exp=0.45 <i>16</i> (1991Ke10), mult=M1(+E2) for multiply-placed G.
210.353 ^e 5	9.3 ^e 9	451.250	$(1,2)^{-}$	240.902	$(2)^{-}$			α (K)exp=0.45 <i>16</i> (1991Ke10), mult=M1(+E2) for multiply-placed G.
210.353 ^{<i>ef</i>} 5	9.3 ^e 9	530.266?	1-,2-,3-	319.883	(2) ⁻			α (K)exp=0.45 <i>16</i> (1991Ke10), mult=M1(+E2) for multiply-placed G. other E γ (I γ): 210.74 <i>10</i> (27 5) (2007ChZX; Budapest Data).
^x 211.194 6	15.1 12					M1	0.738	α (K)exp=0.47 16 (1991Ke10)
212.31 5	0.9 5	331.077	$(2)^{-}$	118.7824	3-	1.01	0.701	other E γ (I γ): 211.49 5 (8 4) (2007ChZX; Budapest Data).
215.091 12	2.9 4	319.883	(2)	104.776	(1)	MI M1	0.701	$\alpha(K) \exp[-0.74] (1991 \text{Ke}[0])$
213.319 0	5.0 5	551.077	(2)	115.504	(2)	1111	0.097	other E _Y (I _Y): 215 37 15 (9.6.12) (2007ChZX: Budanest Data)
216.196 4	8.0 10	331.761	(1)-	115.564	(2)-	M1	0.691	α (K)exp=0.61 <i>17</i> (1991Ke10) other E γ (I γ): 216.75 5 (72 3) (2007ChZX; Budapest Data); presumably for doublet (216.9 γ +216.2 γ).
216.905 ^{bf} 4	46 4	216.905?	(4+)	0.0	4+	M1	0.685	 α(K)exp=0.61 <i>11</i> (1991Ke10) other Eγ (Iγ): 216.75 5 (72 3) (2007ChZX; Budapest Data); presumably for doublet (216.9γ +216.2γ). Population ratio=3.0 <i>10</i> in (n,γ) E=resonance (1991Ke10); from this ratio 1997BaZV and 1991Ke10 favor J=4 and 3, respectively, for parent level.
^x 219.160 ^{&} 4 ^x 219.72.8	$20.3^{\&} 20$ 0.8 4					E1	0.0543	α (K)exp=0.044 <i>10</i> (1991Ke10)
220.57 4	1.0 3	508.988	$(2,3)^{-}$	288.403	$(2)^{-}$			
^x 222.180 <i>10</i>	5.6 7					M1	0.641	α (K)exp=0.68 <i>14</i> (1991Ke10) Population ratio=0.87 <i>17</i> in (n, γ) E=resonance (1991Ke10) favors J=1 or possibly 2 for parent level.
x222.42 10 223.18 3 x225.21 8	0.8 4 2.2 4	366.730	(2)-	143.556	(1)-			other Eγ (Iγ): 222.36 10 (10.8 21) (2007ChZX; Budapest Data).
225.21 8 226.297 <i>3</i>	1.1 <i>3</i> 30.0 <i>24</i>	331.077	(2)-	104.776	(1)-	M1	0.609	 α(K)exp=0.56 12 (1991Ke10) other Eγ (Iγ): 226.23 14 (52 5) (2007ChZX; Budapest Data). Population ratio=1.08 12 in (n,γ) E=resonance (1991Ke10) favors J=2 for parent level.

From ENSDF

 $^{192}_{77}\mathrm{Ir}_{115}\text{--}10$

 $^{192}_{77}\mathrm{Ir}_{115}\mathrm{-}10$

	$\frac{191}{100}$ Ir(n, γ) E=thermal:secondary 1991Ke10 (continued)												
γ ⁽¹⁹² Ir) (continued)													
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments					
226.74 <i>4</i> x228.228 25	2.3 5 1.6 3	310.999	2-	84.275	3-	M1	0.606	$\alpha(K)\exp=0.9\ 5\ (1991Ke10)$					
229.769 ^b <i>f</i> 11 ^x 230.235 20 ^x 231.40 5	4.0 6 1.6 5 3.7 6	670.640?	(4 ⁺)	440.870	(3 ⁺)	M1	0.584	α (K)exp=0.40 20 (1991Ke10)					
231.67 3	5.6 7	288.403	(2) ⁻	56.720	1-	M1	0.571	α (K)exp=0.36 <i>15</i> (1991Ke10) other E γ (I γ); 231.64 8 (12.3 <i>17</i>) (2007ChZX; Budapest Data).					
232.891 <i>16</i> x^{2} 234.602 ^{&} 20 x^{2} 238.561 20	2.5 5 1.2 ^{&} 4 1.4 4	351.690	(2)+	118.7824	3-								
241.872 15	2.6 5	508.988	(2,3)-	267.128	(3)-	M1	0.507	α (K)exp=0.9 5 (1991Ke10) other E γ (I γ): 241.70 15 (8.4 17) (2007ChZX; Budapest Data).					
x245.162 20 x245.671 10 x245.83 4 246.152 12	1.5 <i>4</i> 4.7 6 1.6 5	280 720	(2)-	142 556	(1)-	M1	0.485	α(K)exp=0.43 17 (1991Ke10)					
246.132 12 246.801 14 *247.81 4 *248 56 12	1.8 5 1.8 5 1.6 5 0.4 2	331.077	$(2)^{-}$	84.275	(1) 3 ⁻			other E _γ (I _γ): 246.9 20 (4.2 12) (2007ChZX; Budapest Data).					
x250.750 6	11.5 12					M1	0.459	α (K)exp=0.37 <i>10</i> (1991Ke10) Population ratio=1.35 <i>26</i> in (n, γ) E=resonance (1991Ke10) favors J=2 for parent level.					
252.54 ^{bf} 6 254.277 15	4.1 6 13.9 <i>14</i>	670.640? 310.999	(4 ⁺) 2 ⁻	418.141? 56.720	(3 ⁺ ,4 ⁺) 1 ⁻	M1,E2 M1	0.31 <i>15</i> 0.442	$\begin{array}{l} \alpha(K) \exp = 0.24 \ 12 \ (1991 \text{Ke10}) \\ \alpha(K) \exp = 0.28 \ 13 \ (1991 \text{Ke10}) \\ \text{Population ratio} = 0.97 \ 16 \ \text{in } (n, \gamma) \text{ E} = \text{resonance } (1991 \text{Ke10}) \text{ favors J} = 2 \text{ or} \\ \text{possibly 1 for parent level.} \end{array}$					
^x 255.375 20 ^x 255.74 3	1.8 5 4.4 7		<i>(</i> 1 -) -			E1,E2		$\alpha(K)\exp{-0.23}$ (1991Ke10)					
258.338 25	3.0 6	451.250	(1,2) ⁻	192.935	$(2)^{-}$	M1	0.423	α (K)exp=0.65 26 (1991Ke10) other E γ (I γ): 259.11 8 (16.8 23) (2007ChZX; Budapest Data).					
-259.550 8	9.8 12					IVI I	0.418	α (K)exp=0.38 / (1991Ke10) Population ratio=1.6 5 in (n, γ) E=resonance (1991Ke10) favors J=2,3 for parent level.					
^x 261.743 25 261.951 6	2.7 7 25.0 25	366.730	(2)-	104.776	(1) ⁻	M1	0.407	 α(K)exp=0.30 5 (1991Ke10) other Eγ (Iγ): 262.01 6 (39.6 23) (2007ChZX; Budapest Data). Population ratio=1.35 21 in (n,γ) E=resonance (1991Ke10) favors J=2 for parent level. 					
x262.48 4 263.571 8	2.2 <i>6</i> 10.7 <i>11</i>	368.353	(2)-	104.776	(1) ⁻	M1	0.400	α (K)exp=0.33 <i>10</i> (1991Ke10)					
264.003 ^{bf} 9	7.0 8	529.167?	(1-)	265.160?	(0 ⁻)	M1,E2	0.27 13	α (K)exp=0.21 <i>11</i> (1991Ke10) other E γ (I γ); 263.90 <i>11</i> (18,1 <i>17</i>) (2007ChZX; Budapest Data).					
267.416 10	7.8 9	351.690	$(2)^{+}$	84.275	3-	E1,E2		$\alpha(K)\exp(-0.13 (1991Ke10))$					

From ENSDF

 $^{192}_{77}\mathrm{Ir}_{115}\text{--}11$

L

				¹⁹¹ Ir(n	$(\gamma) E = tl$	hermal:sec	ondary 199	01Ke10 (co	ontinued)
						γ (¹⁹² I	r) (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α^{d}	Comments
									Population ratio=1.25 35 in (n,γ) E=resonance (1991Ke10)
^x 267 99 6	0.50.25								favors J=2 or possibly 1 for parent level.
x269.56 10	2.0 4								
x270.363 17	6.2 9					M1		0.373	α (K)exp=0.32 <i>14</i> (1991Ke10)
$^{271.30.6}$	3.2 6	410 1419	(2 + 4 +)	144.0049	(5+)				(W) and 0.160 much E2 (1001K-10) for double alread C
273.25^{ef} 3	$6.1^{\circ} 9$	418.141 <i>1</i> 508.088	$(3^{+},4^{+})$ $(2^{-}3)^{-}$	144.904? 235.7602	(5^{-})				$\alpha(\mathbf{x}) \exp[=0.16, 9]$, mult=E2 (1991Ke10) for doubly-placed G.
215.25 - 5	0.1 9	500.900	(2,3)	235.700	(1)				Data).
252 55 4		202 251	(1.0.0)-	110 500 (2-				α (K)exp=0.16 9, mult=E2 (1991Ke10) for doubly-placed G.
273.57 4 ^x 274 57 4	2.27	392.351	$(1,2,3)^{-}$	118.7824	3-				
275.042 20	4.0 8	331.761	(1)-	56.720	1-				other Ey (Iy): 274.88 16 (9.6 21) (2007ChZX; Budapest
276 762 16	6610	202 251	$(1, 2, 2)^{-}$	115 564	$(2)^{-}$	E2		0.1200	Data). $\alpha(K) = 0.15.7 (1001K + 10)$
^x 276.93 4	1.7 5	392.331	(1,2,3)	115.504	(2)	E2		0.1209	$u(\mathbf{K})\exp[-0.157](1991\text{Ke}10)$
278.199 ^{bf} 16	5.2 6	418.141?	$(3^+, 4^+)$	139.942?	(5 ⁺)	E1,E2			$\alpha(K) \exp(-0.19 \ (1991 \text{Ke} 10))$
									other E γ (I γ): 278.33 7 (25.3 21) (2007ChZX; Budapest
^x 278.50 4	1.9 5								Data).
^x 280.56 ^{&} 8	2.8 <mark>&</mark> 6								
284.072 12	13.9 11	368.353	$(2)^{-}$	84.275	3-	M1		0.326	α (K)exp=0.26 4 (1991Ke10) other Fig. (1): 284 20 7 (25 2 10) (2007Ch7X). Producert
									Other Ey (17): 284.297 (25.3 19) (2007ChZX; Budapest Data).
284.939 14	6.4 8	389.720	(2)-	104.776	(1)-	M1+E2	1.1 +30-7	0.21 9	$\alpha(K) \exp = 0.16 \ 8 \ (1991 Ke 10)$
x289.838 16	4.4 7	202 201	(2)-	0.0	4	M1		0.309	α (K)exp=0.23 <i>12</i> (1991Ke10)
292.35 ⁷ 6 *296 622 20	1.7 5 4 5 <i>14</i>	292.381	(2)	0.0	4'	M1		0 290	other E γ (I γ): 292.6 3 (5.5 16) (200/ChZX; Budapest Data). α (K)exp=0.33 16 (1991Ke10)
^x 297.78 10	1.1 3							0.290	
^x 298.849 ^{&} 18	3.7 ^{&} 7		4- 0- 0-		(
299.50 5	1.6 5	415.038	1-,2-,3-	115.564	$(2)^{-}$				other Ey (Iy): 297.51 23 (8.4 22) (200/ChZX; Budapest Data)
^x 300.279 15	6.2 9					E2		0.0946	$\alpha(K) \exp[=0.11\ 5\ (1991 \text{Ke}10)]$
x302.57 6	1.8 5								
302.911 ⁰ 10	7.2 11	529.167?	(1 ⁻)	226.261?	(≤2 [−])	M1		0.274	$\alpha(K) \exp = 0.28 \ 9 \ (1991 Ke10)$ other Eq. (12): 302 91 7 (15.6 14) (2007 Cb7X: Budapest
									Data).
x303.73 4	2.3 5	200 720	$\langle 2 \rangle^{-}$	04 275	2-				
305.45 3	2.7 5	389.720	(2)	84.275	3				otner E γ (I γ): 305.49 18 (5.8 13) (200/ChZX; Budapest Data).
310.01 4	3.2 10	366.730	(2) ⁻	56.720	1-				other Eγ (Ιγ): 310.04 <i>19</i> (7.9 <i>13</i>) (2007ChZX; Budapest Data).

 $^{192}_{77}\mathrm{Ir}_{115}\text{--}12$

From ENSDF

 $^{192}_{77}\mathrm{Ir}_{115}\text{-}12$

				¹⁹¹ Ir(\mathbf{n}, γ) E=thermal:secondary			econdary	1991Ke10 (continued)
						$\gamma(^{19}$	² Ir) (conti	inued)
E_{γ}^{\dagger}	Ι _γ ‡ <i>C</i>	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments
311.70 5	2.8 7	368.353	(2)-	56.720	1-			
^x 313.671 25	4.3 9							α (K)exp=0.24 9, mult=M1 (1991Ke10) for 313.7 γ +314.4 γ doublet.
x314.402 16	6.0 9							α (K)exp=0.24 9, mult=M1 (1991Ke10) for 313.7 γ +314.4 γ doublet.
316.02 10	21 11	508.988	(2,3)-	192.935	$(2)^{-}$			α (K)exp=0.12 7 (1991Ke10) other E _Y (I _Y): 315.94 9 (31 5) (2007ChZX; Budapest Data).
^x 318.46 4	4.5 9							
x319.68 10	0.9 5							
322.55 4	4.7 9	451.250	$(1,2)^{-}$	128.744	$(0)^{-}$			
^x 323.75 4	4.4 9							
x330.876 17	10.4 16					M1	0.216	α (K)exp=0.19 6 (1991Ke10)
333.866 [†] 9	16.7 25	418.141?	$(3^+, 4^+)$	84.275	3-	E1	0.0196	α (K)exp=0.024 <i>12</i> (1991Ke10)
^x 337.408 25	5.8 12							
x339.93 4	3.5 9							
x341.22 8	1.2 4							
x345.272.25	4.7 12					1.41	0.100	(W) = 0.16.5(1001W, 10)
*347.32 4	9.2 18	251 600	$(2)^{+}$	0.0	4+	MI E2	0.189	$\alpha(K) \exp = 0.165 (1991 \text{ Ke} 10)$
x352.80.5	3 2 10	331.090	(2)	0.0	4	EΔ	0.0399	$a(\mathbf{K})\exp[-0.057 15 (1991 \mathbf{K}^{-10})]$
x355 70 15	0.6.3							
x257 87 6	6.0° 12							
358 34 8	$0.0^{-2} 12$	415.038	1- 2- 3-	56 720	1-			
x359 42 15	2.7.8	415.050	1,2,5	50.720	1			
x361.85& 6	2.00							
x364 54 6	2.8 8							
365.44 4	6.4 13	508.988	$(2,3)^{-}$	143,556	$(1)^{-}$			other E ₂ (I ₂): 365.02 13 (14.9 13) (2007ChZX: Budapest Data).
^x 366.47 4	7.0 14	200.700	(2,3)	110.000	(1)			
x367.454 25	9.8 15							
^x 371.34 <i>3</i>	6.3 9							
x374.60 7	4.5 14							
^x 380.67 6	3.8 11							
x381.86 6	4.9 15							
^x 382.914 ^{&} 25	10.0 ^{&} 15							
384.64 ^f 8	3.4 10	489.50?	1-,2-,3-	104.776	$(1)^{-}$			other E _{\(\gamma\)} : 383.70 25 (6.5 16) (2007ChZX; Budapest Data).
^x 389.06 4	5.8 15							
x392.78 11	4.0 10							
^x 398.59 6	4.9 10							
^x 401.24 <i>14</i>	8.5 12							
×405.30 <i>13</i>	7.7 19							
~406.18 <i>15</i>	7.5 19							
"409.24 8 X 414 49 9	5.1 I 3							
414.48 8	1.1 21	410 1412	(2+ 4+)	0.0	4			
418.114/ 25	29 4	418.141?	(3+,4+)	0.0	47			other $E\gamma$ (1 γ): 417.99 5 (44.8 19) (2007ChZX; Budapest Data).

 $^{192}_{77} \mathrm{Ir}_{115}$ -13

 $^{192}_{77}\mathrm{Ir}_{115}\text{--}13$

From ENSDF

$\frac{191 \operatorname{Ir}(\mathbf{n}, \gamma) \operatorname{E=thermal:secondary}}{\gamma(^{192} \operatorname{Ir}) \text{ (continued)}}$										
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Comments				
x425.36 8 432.64 f 4 x440.98 8 x449.73 7 x452.42 12 x466.5 a 15 x482.93 15 x490.44 6 x504.6 3 x509.64 15 x521.60 17 x525.54 14 x534.81 13 x557.5 a 15 x574.78 18 x599.51 14 x618.60 20 x622.6 a 15	8.5 21 16.1 24 6.7 & 20 16.0 24 6.6 20 7.7 23 17.6 26 3.7 19 8.1 24 5.3 27 5.1 26 8.0 24 13 6 19 8 18 9	489.50?	1-,2-,3-	56.720	1-	other Eγ (Ιγ): 432.55 5 (24.0 9) (2007ChZX; Budapest Data).				
 ⁶C22.0° 15 ⁶G32.9 3 20 10 ⁸G92.5^d 15 [†] From 1991Ke10, except as noted. [‡] Photon intensity (for E=thermal) relative to Iy(84.3)=100 10 (1991Ke10), except as noted. Approximately half the data from 2007ChZX fail to agree within one standard deviation with those from 1991Ke10; those data are given In comments on the relevant transitions. [#] From c data of 1991Ke10, except As noted. Note that, in most cases, some E2 admixture is possible for multipolarities designated as M1. [@] From 1989Du03 (E=thermal). ^{&} May be a γ in ¹⁹³Ir arising from double neutron capture (1991Ke10). ^a From 1971Kr09; unconfirmed by 1991Ke10, so probably does not belong in ¹⁹²Ir. ^b Placement from 1997BaZV. ^c For intensity per 100 neutron captures, multiply by 0.023 3. ^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^e Multiply placed with undivided intensity. ^f Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme. 										

¹⁹¹Ir(n,γ) E=thermal:secondary 1991Ke10

¹⁹²₇₇Ir₁₁₅

¹⁹²₇₇Ir₁₁₅