¹⁹¹Ir(n,γ) E=thermal:primary **1991Ke10,1971Kr09**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012

Others: 1959Ba05, 1959Kn63, 1966Wa02, 1967Do08, 1973PrZI, 1975PrZP, 1978CoZD, 1979SiZU, 1983MuZU, 1988Mu26, 2007ChZX.

Target $J^{\pi}=3/2^+$.

 σ_n =954 10 (2006MuZX).

All E γ and I γ data in this data set are from (n,γ) E=thermal, with the exception of the 6112 γ (as noted). However, documentation for E=resonance (several) and E=reactor spectrum studies is also included in this data set, for completeness. See ¹⁹¹Ir(n, γ) E=2, 24 keV data set for average resonance capture data.

1971Kr09 (E=thermal): measured $E\gamma$, $I\gamma$ (Ge(Li)-scin pair spect).

1983MuZU (E=resonance: avg): measured averaged intensities of primary γ 's (Ge(Li)); determined J^{π} for low-lying states. 1988Mu26 (E=reactor spectrum, filtered beam): measured E γ , I γ (Ge(Li)-NaI-NaI 3-crystal pair spect).

1991Ke10 (E=thermal): natural Ir, 86% ¹⁹¹Ir and 98.1% ¹⁹³Ir targets, pair spectrometer ($E\gamma$ calibration based on ¹⁴N(n, γ));

measured Ey, Iy.

2007ChZX (supersedes 2003ChZS): evaluation of thermal neutron capture data. includes new measurements (referred to In this evaluation As 'Budapest Data'): ^{nat}IR target; thermal neutrons from Budapest reactor; Ge(Li); measured E γ , I γ for strongest primary and secondary transitions; reported elemental photon cross sections.

The level scheme and all data are from 1991Ke10, unless noted otherwise. 1988Mu26 proposed an alternative level scheme (not adopted), with capture state at 6169 keV and $J^{\pi}=4^{-}$ for ground state.

¹⁹²Ir Levels

E(level) [‡]	$J^{\pi \dagger}$	E(level) [‡]	$\mathrm{J}^{\pi}^{\dagger}$	E(level) [‡]	$J^{\pi \dagger}$
0.0	4+	508.81 16	(2,3) ⁻	865.58 23	0 ⁻ to 3 ⁻
56.9 [#] 8	1-	516.5 7	1-,2-,3-	870.49 21	
67.9? 15	$(4)^{-}$	530.23 16	1-,2-,3-	884.5 6	1-,2-,3-
86.0 10	3-	536.89 <i>23</i>		893.57 18	
104.69 24	$(1)^{-}$	543.65 21	0 ⁻ to 3 ⁻	907 4	$1^{-}, 2^{-}, 3^{-}$
116.01 18	$(2)^{-}$	560.5 7		914.5 <i>4</i>	
119.5 12	3-	585.5 <i>3</i>		937.4 6	0^{-} to 3^{-}
130.8 11		602.27 17	0^{-} to 3^{-}	944.3 <i>4</i>	
142.9 5	(1) ⁻	612.9 8	0^{-} to 3^{-}	950.1 5	
173.2 12		628.9 <i>4</i>	$1^{-}, 2^{-}, 3^{-}$	963.0 18	
193.26 [@] 24	$(2)^{-}\&(1)^{+}$	633.36 17		978.28 <i>21</i>	
203.5 11	≤3	645.8 <i>3</i>	0 ⁻ to 3 ⁻	999.6 <i>3</i>	
212.5 10	$(1,2)^{-}$	657.8 <i>13</i>		1003.6 3	
226.01 24	$(2)^{-}\&(\leq 2^{-})$	663.31 <i>17</i>		1013.7 4	0^{-} to 3^{-}
235.78 23	(1 ⁻)	681.3 5	1-,2-,3-	1019? 4	1-,2-,3-
239.94 23	$(2)^{-}$	702.8 <i>3</i>	0^{-} to 3^{-}	1031.09 16	
287.8 6	$(2)^{-}$	707.9 9		1044.7 <i>3</i>	
292.15 24	$(2)^{-}$	714.1 7	0^{-} to 3^{-}	1050.55 15	$1^{-}, 2^{-}, 3^{-}$
317.3 7	$(2)^{-}$	734.3 6		1060.11 20	
331.27 [@] 19	$(2)^{-}\&(1)^{-}$	739.09 22	1-,2-,3-	1068.9 <i>3</i>	
351.6 10	$(2)^{+}$	749.5 <i>3</i>		1074.7 <i>3</i>	
368.0 [@] 5	$(2)^{-}\&(2)^{-}$	766.69 17	1-,2-,3-	1088.5 10	
380.3 7		777.4 3	0 ⁻ to 3 ⁻	1093.8 4	
389.76 [@] 22	$(2)^{-}\&(1,2,3)^{-}$	788.2 10		1107.0 <i>3</i>	
415.19 16	1-,2-,3-	797.1 5		1112.6 5	
439.8 <i>3</i>	1-,2-,3-	813.19 23	1-,2-,3-	1131.9 4	
451.2 3	$(1,2)^{-}$	821.84 20		1145.01 24	
470.8 5	1-,2-,3-	841.0 <i>3</i>	0 ⁻ to 3 ⁻	1151.7 <i>11</i>	
489.7 5	1-,2-,3-	850.9 4	0^- to 3^-	1155.9 4	

Continued on next page (footnotes at end of table)

¹⁹¹Ir(n,γ) E=thermal:primary **1991Ke10,1971Kr09** (continued)

¹⁹²Ir Levels (continued)

E(level) [‡]
1160.8 4
1169.5 4
1177.40 19
1194.4 3
1204.8 4
1212.14 18
1217.03 17
1231.3 3
1242.9 5
1248.4 <i>3</i>
1255.34 22
1259.2 6
1265.3 6
12/3.0 13
1202.07
1299.4 6
1304.4 3
1323.0 5
1331.05 17
1338.7 3
1343.4 10
1348.4 0
1365 0 0
1372.1.8
1381.0 3
1388.49 23
1396.5 6
1409.1 10
1418.23 19
1432.5 0
1430.7 10
1448 1 4
1464.0 5
1468.5 5
1486.7 6
1495.3 10
1502.5 10
1514.5 8
1530.04 20
1551 54 73
1558.1 10
1571.9 5
1586.7 10
1597.0 10
1608.3 6
1020.2 0
1034.8 <i>14</i> 1641 5 <i>13</i>
1648.5 9
1659.0 7
1666.69 22
1676.8 7

¹⁹¹Ir(n,γ) E=thermal:primary **1991Ke10,1971Kr09** (continued)

¹⁹²Ir Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	Comments	
1692.4 7 1703.0 7			
(6198.13 ^{&} 11)	1 ⁺ ,2 ^{+<i>a</i>}	Additional information 1.	

[†] From Adopted Levels. Additionally, with $J^{\pi}=1^+,2^+$ for thermal n capture state(s), J=0,1,2,3 for levels which have significant feeding by primary γ 's in (n, γ) E=thermal.

[‡] Deduced from least-squares fit to $E\gamma$ for primary γ 's (the highest energy γ ($E\gamma$ =6141.1 keV 8) is assumed to populate the 57 level), assuming E=S(n) from 2011AuZZ for the capture state(S).

Adopted value.

[@] Probable doublet (see Adopted Levels, Gammas), with J^{π} components indicated.

& Neutron separation energy from 2011AuZZ.

^{*a*} s-wave capture by $3/2^+$ target.

$\gamma(^{192}{\rm Ir})$

I γ normalization: From I(6079 γ +6082 γ +6093 γ)=0.91 per 100 captures if σ_n =924 53 (1971Kr09), revised by evaluator assuming σ_n =954 10 (2006MuZX). With this normalization, I(6082 γ +6093 γ)=0.80 4 cf. 0.89 3 from 2007ChZX (Budapest data) and Σ I γ (primary) \approx 15%; the normalized I γ data from 1991Ke10 are In satisfactory agreement with those from 2007ChZX (Budapest Data) In the majority of cases (exceptions are noted).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	Comments
4495.1 ^b 7	9.1 ^b 15	(6198.13)	$1^+, 2^+$	1703.0	other E _{\(\gamma\)} : 4496.03 22 (16.4 16) (2007ChZX; Budapest Data).
4505.7 ^b 7	9.1 ^b 15	(6198.13)	$1^+, 2^+$	1692.4	
4521.3 ^{#b} 7	7.6 ^{#b} 15	(6198.13)	$1^+, 2^+$	1676.8	other Ey (Iy): 4520.6 6 (4.5 15) (2007ChZX; Budapest Data).
4531.38 ^{#&} 22	27 ^{#b} 5	(6198.13)	$1^+, 2^+$	1666.69	
4539.1 ^{#b} 7	12 ^{#b} 3	(6198.13)	$1^+, 2^+$	1659.0	other Ey (Iy): 4540.4 8 (2.2 11) (2007ChZX; Budapest Data).
4549.6 ^{#b} 9	8 ^{#b} 3	(6198.13)	$1^+, 2^+$	1648.5	other Ey (Iy): 4549.5 8 (2.2 11) (2007ChZX; Budapest Data).
4556.6 ^{#b} 13	8 ^{#b} 3	(6198.13)	$1^+, 2^+$	1641.5	
4563.3 ^{#b} 14	6 ^{#b} 5	(6198.13)	$1^+, 2^+$	1634.8	
4571.9 ^b 6	20 ^b 3	(6198.13)	$1^+, 2^+$	1626.2	other Ey (Iy): 4569.9 4 (8.6 15) (2007ChZX; Budapest Data).
4589.8 ^b 6	23 ^b 5	(6198.13)	$1^+, 2^+$	1608.3	other Ey (Iy): 4591.35 16 (21.3 17) (2007ChZX; Budapest Data).
4601.1 ^b 10	5 ^b 3	(6198.13)	$1^+, 2^+$	1597.0	
4611.4 ^b 10	5 ^b 3	(6198.13)	$1^+, 2^+$	1586.7	
4626.2 ^{&} 5	6.1 ^b 15	(6198.13)	$1^+, 2^+$	1571.9	
4640.0 10	6.8 25	(6198.13)	$1^+, 2^+$	1558.1	
4646.53 ^{&} 13	10.6 21	(6198.13)	$1^+, 2^+$	1551.54	
4663.5 ^{&} 3	10 3	(6198.13)	$1^+, 2^+$	1534.6	
4668.03 ^{&} 20	14 4	(6198.13)	$1^+, 2^+$	1530.04	
4683.6 8	3.8 24	(6198.13)	$1^+, 2^+$	1514.5	
4695.6 ^b 10	3.0 ^b 15	(6198.13)	$1^+, 2^+$	1502.5	
4702.8 ^b 10	3.0 ^b 15	(6198.13)	$1^+, 2^+$	1495.3	
4711.4 ^b 6	7.6 ^b 15	(6198.13)	$1^+, 2^+$	1486.7	
4729.6 ^{&} 5 4734.1 5	5.8 26 20 4	(6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$	1468.5 1464.0	

	¹⁹¹ Ir(\mathbf{n},γ) E=thermal:primary 1991Ke10,1971Kr09 (continued)								
γ ⁽¹⁹² Ir) (continued)									
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Comments				
4750.0 <i>4</i> 4756.3 <i>10</i> 4761.4 <i>10</i>	14 <i>3</i> 3.5 23 4.4 24	(6198.13) (6198.13) (6198.13)	$ \frac{1^+, 2^+}{1^+, 2^+} \\ 1^+, 2^+ \\ 1^+, 2^+ $	1448.1 1441.8 1436.7	other E γ (I γ): 4755.2 <i>19</i> (14.6 <i>12</i>) (2007ChZX; Budapest Data).				
4765.6 6 4779.84 19 4789.0 10 4801.6 6	16 3 18.9 21 4.8 25	(6198.13) (6198.13) (6198.13) (6108.13)	$1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$	1432.5 1418.23 1409.1 1306.5	other E γ (I γ): 4765.7 <i>19</i> (9.1 <i>10</i>) (2007ChZX; Budapest Data). E $_{\gamma}$: from (2007ChZX; Budapest Data) where I γ =11.9 <i>12</i> .				
$4809.58^{\&} 23$ $4817.1^{\&} 3$	17.4 22 10 <i>3</i>	(6198.13) (6198.13) (6198.13)	$1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$	1390.5 1388.49 1381.0					
4826.0 8 4832.2 9 4838.2 8 4849.7 6 4854.7 10	5.1 15 4.5 15 7.0 18 9 3 12.7 23	(6198.13) (6198.13) (6198.13) (6198.13) (6198.13)	$1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$	1372.1 1365.9 1359.9 1348.4 1343.4					
4859.32 25 4867.01 ^{&} 17 4875.1 5	24 <i>3</i> 32 <i>3</i> 16 <i>3</i>	(6198.13) (6198.13) (6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$	1338.7 1331.05 1323.0					
4893.763 4898.76 $4907.0^{b} 8$ $4915 5^{b} 7$	13 4 18 4 $4.5^{b} 15$ $27^{b} 6$	(6198.13) (6198.13) (6198.13) (6198.13)	$1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$	1299.4 1291.1 1282.6	other E _Y (I_Y): 4916.8.3 (10.8.79) (2007Cb7X: Budapest Data)				
4924.5 ^b 15 4932.8 6 4938.9 6 4942.72 22	$5^{b} 3$ 10.6 26 11 4 19 5	(6198.13) (6198.13) (6198.13) (6198.13) (6198.13)	$1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$	1273.6 1265.3 1259.2 1255.34	other E γ (I γ): 4927.4 8 (2.2 11) (2007ChZX; Budapest Data). other E γ (I γ): 4932.9 6 (4.1 15) (2007ChZX; Budapest Data).				
4949.7 ^{&} 3 4955.2 5 4966.8 ^{&} 3	11 4 7 3 6 3	(6198.13) (6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$	1248.4 1242.9 1231.3					
4972.24 21 4980.43 17 4985.92 18 4993.3 4	11.2 <i>19</i> 27 <i>3</i> 25 <i>3</i> 12.6 20	$\begin{array}{c} (6198.13) \\ (6198.13) \\ (6198.13) \\ (6198.13) \end{array}$	$1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$	1225.82 1217.63 1212.14 1204.8	E_{γ} : from (2007ChZX; Budapest Data) where I γ =30.6 <i>19</i> . E_{γ} : from (2007ChZX; Budapest Data) where I γ =21.6 <i>14</i> .				
5003.7 ^{&} 3 5020.66 19 5028.6 4 5037.3 ^{&} 4 5042.2 4 5046 4 11	15.8 22 21 3 11 3 7 3 26 5 5 5 15	(6198.13) (6198.13) (6198.13) (6198.13) (6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$	1194.4 1177.40 1169.5 1160.8 1155.9 1151.7	E_{γ} : from (2007ChZX; Budapest Data) where I _γ =24.6 24. other E _γ (I _γ): 5028.44 18 (25.0 24) (2007ChZX; Budapest Data).				
5040.4 11 $5053.05^{\&} 24$ $5066.2^{\&} 4$ 5085.5 5 5091.1 3	9.2 24 4.4 16 10.2 24 16 5 17	(6198.13) (6198.13) (6198.13) (6198.13) (6198.13)	$1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$	1131.7 1145.01 1131.9 1112.6					
5104.3 4 5109.6 10 5123.4 3 5129.2 3	4.8 <i>18</i> 5 <i>3</i> 5 <i>3</i> 29 <i>3</i>	$\begin{array}{c} (6198.13) \\ (6198.13) \\ (6198.13) \\ (6198.13) \\ (6198.13) \end{array}$	$1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$ $1^{+},2^{+}$	1093.8 1088.5 1074.7 1068.9	other Εγ (Ιγ): 5129.2 16 (33.6 22) (2007ChZX; Budapest Data).				
5137.95 ^{&} 20	15.5 20	(6198.13)	$1^+, 2^+$	1060.11					

Continued on next page (footnotes at end of table)

$\frac{1}{2} \frac{1}{2} \frac{1}$			¹⁹¹ Ir	$(\mathbf{n}, \gamma) \mathbf{E} =$	thermal:pr	imary 1	991Ke10,1971Kr09 (continued)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γ ⁽¹⁹² Ir) (continued)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Comments			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5147.51 ^{&} 15	52 5	(6198.13)	$1^+.2^+$	1050.55	123-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5153.4 ^{&} 3	93	(6198.13)	$1^+.2^+$	1044.7	- ,_ ,-				
$ \begin{split} & 178^{46} d & 3^{46} b & (6198.13) + 1^{-2} + 10197 + 1^{-2} - 3^{-2} \\ & 10184 & 4 & 90.26 & (6198.13) + 1^{-2} + 1003.6 \\ & 198.58^{4} & 3 & 16 & (6198.13) + 1^{-2} + 999.6 \\ & 5198.58^{4} & 3 & 17 & 4 & (6198.13) + 1^{-2} + 999.6 \\ & 5235.1^{b} / 8 & 1.5^{b} / 5 & (6198.13) + 1^{-2} + 999.6 \\ & 5235.1^{b} / 8 & 1.5^{b} / 5 & (6198.13) + 1^{-2} + 990.6 \\ & 5248.05 & 5.3 & (6198.13) + 1^{-2} + 963.0 \\ & 5248.05 & 5.3 & (6198.13) + 1^{-2} + 963.0 \\ & 5238.6^{4} & 35 & (6198.13) + 1^{-2} + 991.4 \\ & 5200.7 & 10.122 & (6198.13) + 1^{-2} + 901.7 \\ & 5238.6^{4} & 35 & (6198.13) + 1^{-2} + 901.7 \\ & 5231.6^{6} & 7 & 4 & (6198.13) + 1^{-2} + 893.57 \\ & 5313.6 & 7 & 4 & (6198.13) + 1^{-2} + 893.57 \\ & 5313.6 & 7 & 4 & (6198.13) + 1^{-2} + 893.57 \\ & 5327.56^{4} & 22 & 96 & (6198.13) + 1^{-2} + 893.57 \\ & 5372.56^{4} & 22 & 92 & 6 & (6198.13) + 1^{-2} + 884.5 + 1^{-2} - 3^{-3} \\ & 5377.6 & 10.2 & 2 & (6198.13) + 1^{-2} + 884.5 + 1^{-2} - 3^{-3} \\ & 5377.6 & 10 & 22 & 6 & (6198.13) + 1^{-2} + 884.5 + 1^{-2} - 3^{-3} \\ & 5377.6 & 10 & 2 & 0 & (6198.13) + 1^{-2} + 881.4 \\ & 5384.86 & 23 & 12.6 & 14 & (6198.13) + 1^{-2} + 881.4 \\ & 5384.86 & 23 & 12.6 & 14 & (6198.13) + 1^{-2} + 881.4 \\ & 5384.86 & 23 & 12.6 & 14 & (6198.13) + 1^{-2} + 771.4 & 0^{-1} 0 & 3^{-3} \\ & 400.9 & 5 & 13.8 & 16 & (6198.13) + 1^{-2} + 771.4 & 0^{-1} 0 & 3^{-3} \\ & 5481.36^{6} & 17 & 38 & 3 & (6198.13) + 1^{-2} + 774.3 & 771.4 & 0^{-1} 0 & 3^{-3} \\ & 5483.96^{7} & 2 & 2 & 14 & (6198.13) + 1^{-2} + 774.3 & 771.4 & 0^{-1} 0 & 3^{-3} \\ & 5483.96^{7} & 12 & 38.3 & (6198.13) + 1^{-2} + 748.2 \\ & 5483.96^{7} & 12 & 30.2 & (6198.13) + 1^{-2} + 744.3 & 1^{-2} & 777.4 & 0^{-1} 0 & 3^{-3} \\ & 5483.96^{7} & 18 & 5 & (6198.13) + 1^{-2} + 748.2 \\ & 5483.96^{7} & 18 & 5 & (6198.13) + 1^{-2} + 743.3 & 1^{-2} & 777.4 & 0^{-1} 0 & 3^{-3} \\ & 5483.96^{7} & 18 & 5 & (6198.13) + 1^{-2} + 748.2 & 578.5 \\ & 5581.4^{b} & 8 & 3^{b} & (6198.13) + 1^{-2} + 663.31 \\ & 5492.4^{b} & 3 & 30 & (6198.13) + 1^{-2} + 744.6 \\ & 5483.97 & 755 & (6198.13) + 1^{-2} + 663.31 \\ & 54$	5166.97 16	41 4	(6198.13)	$1^+, 2^+$	1031.09					
	5178 ^{#bd} 4	3 ^{#b} 6	(6198.13)	$1^+, 2^+$	1019?	1-,2-,3-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5184.4 4	9.0 26	(6198.13)	$1^+, 2^+$	1013.7	0^{-} to 3^{-}				
$ 5198.5^{6'3} 3 = 17.4 (6198.13) 1^{+}2^{+} 999.6 \\ 5219.77^{6'} 21 = 27.5 (6198.13) 1^{+}2^{+} 978.28 \\ 5238.6^{+} 3 = 5.3 (6198.13) 1^{+}2^{+} 963.0 \\ 5248.0 5 = 5.3 (6198.13) 1^{+}2^{+} 963.0 \\ 5258.6^{+} 4 = 5.3 (6198.13) 1^{+}2^{+} 937.4 0^{-} to 3^{-} \\ 5283.6 4 = 33.5 (6198.13) 1^{+}2^{+} 914.5 \\ 5291^{b} 4 = 3^{b} 6 (6198.13) 1^{+}2^{+} 977 1^{-}2^{-}3^{-} \\ 5313.6 6 = 7.4 (6198.13) 1^{+}2^{+} 907 1^{-}2^{-}3^{-} \\ 5313.6 6 = 7.4 (6198.13) 1^{+}2^{+} 844.5 1^{-}2^{-}3^{-} \\ 5327.56^{b} 21 = 29.6 (6198.13) 1^{+}2^{+} 884.5 1^{-}2^{-}3^{-} \\ 5327.56^{b} 21 = 29.6 (6198.13) 1^{+}2^{+} 884.5 1^{-}2^{-}3^{-} \\ 5347.2^{b} 4 = 8.3 (6198.13) 1^{+}2^{+} 884.5 1^{-}2^{-}3^{-} \\ 5347.2^{b} 4 = 8.3 (6198.13) 1^{+}2^{+} 884.0 0^{-} to 3^{-} \\ 5347.2^{b} 4 = 8.3 (6198.13) 1^{+}2^{+} 884.0 0^{-} to 3^{-} \\ 5347.2^{b} 4 = 8.3 (6198.13) 1^{+}2^{+} 881.0 0^{-} to 3^{-} \\ 5347.2^{b} 4 = 8.3 (6198.13) 1^{+}2^{+} 881.0 0^{-} to 3^{-} \\ 5400.9 5 = 13.8 16 (6198.13) 1^{+}2^{+} 788.2 \\ 5400.6^{b} 3 = 8.3 (6198.13) 1^{+}2^{+} 788.2 \\ 5420.6^{b} 3 = 8.3 (6198.13) 1^{+}2^{+} 788.2 \\ 5433.36^{b} 7 = 8.3 (6198.13) 1^{+}2^{+} 789.2 \\ 5438.86 23 = 21.7 \ 23 (6198.13) 1^{+}2^{+} 788.2 \\ 5438.86 23 = 21.7 \ 23 (6198.13) 1^{+}2^{+} 789.2 \\ 5438.86^{b} 22 = 214 (6198.13) 1^{+}2^{+} 774.0^{-} to 3^{-} 5 \\ 548.86^{b} 2 = 21.7 \ 23 (6198.13) 1^{+}2^{+} 774.9 1^{-} to 3^{-} 5 \\ 548.39 7 7.6 \ 26 (6198.13) 1^{+}2^{+} 774.9 1^{-} to 3^{-} 5 \\ 548.39 7 7.6 \ 26 (6198.13) 1^{+}2^{+} 774.9 1^{-} to 3^{-} 5 \\ 548.39 7 7.6 \ 26 (6198.13) 1^{+}2^{+} 702.8 0^{-} to 3^{-} 5 \\ 548.39 7 7.6 \ 26 (6198.13) 1^{+}2^{+} 702.8 0^{-} to 3^{-} 5 \\ 554.2^{b} 3 8 \ 3 (6198.13) 1^{+}2^{+} 663.31 5^{-} 5 \\ 554.2^{b} 3 8 \ 3 (6198.13) 1^{+}2^{+} 663.31 5^{-} 5 \\ 554.2^{b} 3 9 \ 0.24 (6198.13) 1^{+}2^{+} 663.31 5^{-} 5 \\ 554.2^{b}$	5194.5 ^{&} 3	16 4	(6198.13)	$1^+, 2^+$	1003.6					
$ \begin{split} & 5219.77^{k} 21 & 27.5 & (6198.13) & 1^{+}2^{+} & 978.28 \\ & 5235.1^{b} 18 & 1.5^{b} 15 & (6198.13) & 1^{+}2^{+} & 963.0 \\ & 5253.8^{k} 4 & 5.3 & (6198.13) & 1^{+}2^{+} & 944.3 \\ & 5260.7 & 10.1 22 & (6198.13) & 1^{+}2^{+} & 944.3 \\ & 5283.6 & 4 & 33.5 & (6198.13) & 1^{+}2^{+} & 914.5 \\ & 5283.6 & 4 & 35 & (6198.13) & 1^{+}2^{+} & 893.7 \\ & 5283.6 & 4 & 35 & (6198.13) & 1^{+}2^{+} & 893.57 \\ & 5313.6 & 7.4 & (6198.13) & 1^{+}2^{+} & 870.49 \\ & 5322.56^{k} 21 & 29.6 & (6198.13) & 1^{+}2^{+} & 870.49 \\ & 5322.76^{k} 23 & 20.4 & (6198.13) & 1^{+}2^{+} & 855.8 & 0^{-10.3} \\ & 537.6 & 32.5 & (6198.13) & 1^{+}2^{+} & 855.9 & 0^{-10.3} \\ & 537.6 & 32.5 & (6198.13) & 1^{+}2^{+} & 856.9 & 0^{-10.3} \\ & 5376.21^{k} 20 & 13.4 16 & (6198.13) & 1^{+}2^{+} & 813.19 & 1^{-2}.3^{-} \\ & 5376.21^{k} 20 & 13.4 16 & (6198.13) & 1^{+}2^{+} & 813.19 & 1^{-2}.3^{-} \\ & 540.98^{b} 10 & 1^{b} 3 & (6198.13) & 1^{+}2^{+} & 788.2 \\ & 540.98^{b} 10 & 1^{b} 3 & (6198.13) & 1^{+}2^{+} & 788.2 \\ & 5420.6^{k} 3 & 8.3 & (6198.13) & 1^{+}2^{+} & 777.4 & 0^{-10.3} \\ & 5431.36^{k} 17 & 38.3 & (6198.13) & 1^{+}2^{+} & 777.4 & 0^{-10.3} \\ & 5431.36^{k} 17 & 38.3 & (6198.13) & 1^{+}2^{+} & 777.4 & 0^{-10.3} \\ & 5438.96^{k} 22 & 12.4 & (6198.13) & 1^{+}2^{+} & 776.69 & 1^{-2}.3^{-3} \\ & 5438.96^{k} 22 & 12.4 & (6198.13) & 1^{+}2^{+} & 774.4 & 0^{-10.3} \\ & 5433.6^{k} 17 & 38.3 & (6198.13) & 1^{+}2^{+} & 774.4 & 0^{-10.3} \\ & 5439.6^{k} 17 & 55.5 & (6198.13) & 1^{+}2^{+} & 702.8 & 0^{-10.3} \\ & 5437.6^{k} 17 & 55.5 & (6198.13) & 1^{+}2^{+} & 702.8 & 0^{-10.3} \\ & 5544.73^{k} 17 & 59.5 & (6198.13) & 1^{+}2^{+} & 702.8 & 0^{-10.3} \\ & 5544.73^{k} 17 & 59.5 & (6198.13) & 1^{+}2^{+} & 663.31 \\ & 5540.21^{k} 12 & 0.018 & (6198.13) & 1^{+}2^{+} & 663.31 \\ & 5540.21^{k} 12 & 0.018 & (6198.13) & 1^{+}2^{+} & 628.9 & 1^{-2}.3^{-3} \\ & 5545.1^{k} 8 & 4.5^{k} 15 & (6198.13) & 1^{+}2^{+} & 628.9 & 1^{-2}.3^{-3} \\ & 5545.1^{k} 8 & 4.5^{k} 15 & (6198.13) & 1^{+}2^{+} & 628.9 & 1^{-2}.3^{-3} \\ & 5545.1^{k} 8 & 4.5^{k} 15 & (6198.13) & 1^{+}2^{+} & 628.9 & 1^{-2$	5198.5 ^{&} 3	17 4	(6198.13)	$1^+, 2^+$	999.6					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5219.77 ^{&} 21	27 5	(6198.13)	$1^+, 2^+$	978.28					
5248.0 5 5 3 (6198.13) 1 ⁺ 2 ⁺ 950.1 5253.8 ^k 4 5 3 (6198.13) 1 ⁺ 2 ⁺ 944.3 5260.7 6 10.1 22 (6198.13) 1 ⁺ 2 ⁺ 944.3 5283.6 4 33 5 (6198.13) 1 ⁺ 2 ⁺ 944.5 5291. b^4 3 b^6 (6198.13) 1 ⁺ 2 ⁺ 893.7 5304.48 ^k 18 32 3 (6198.13) 1 ⁺ 2 ⁺ 884.5 1 ⁻ 2 ⁻ , 3 ⁻ 5313.6 6 7 4 (6198.13) 1 ⁺ 2 ⁺ 884.5 1 ⁻ 2 ⁻ , 3 ⁻ 5327.56 ^k 21 29 6 (6198.13) 1 ⁺ 2 ⁺ 850.9 0 ⁻ to 3 ⁻ 5357.0 3 32 5 (6198.13) 1 ⁺ 2 ⁺ 850.9 0 ⁻ to 3 ⁻ 5357.0 3 32 5 (6198.13) 1 ⁺ 2 ⁺ 850.9 0 ⁻ to 3 ⁻ 5357.0 3 32 5 (6198.13) 1 ⁺ 2 ⁺ 821.84 5364.62 3 12.6 14 (6198.13) 1 ⁺ 2 ⁺ 821.84 5364.68 2^3 12.6 14 (6198.13) 1 ⁺ 2 ⁺ 821.84 5364.68 2^3 12.6 14 (6198.13) 1 ⁺ 2 ⁺ 821.84 5364.68 2^3 12.6 14 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.3 6^6 (6198.13) 1 ⁺ 2 ⁺ 777.9 70.9 5435.7 6 18 5 (6198.13) 1 ⁺ 2 ⁺ 770.9 5435.7 6 18 5 (6198.13) 1 ⁺ 2 ⁺ 770.9 5435.7 6 18 5 (6198.13) 1 ⁺ 2 ⁺ 749.5 5536.7 5 24.2 25 (6198.13) 1 ⁺ 2 ⁺ 72 ⁻ 702.8 0 ⁻ to 3 ⁻ 5431.3 1^- 27 76.26 (6198.13) 1 ⁺ 2 ⁺ 743.3 554.68 17 55 5 (6198.13) 1 ⁺ 2 ⁺ 707.9 5435.2 k^3 9.02 4 (6198.13) 1 ⁺ 2 ⁺ 657.8 5534.7 3^k 47 59 5 (6198.13) 1 ⁺ 2 ⁺ 657.8 5534.7 3^k 48 4 (6198.13) 1 ⁺ 2 ⁺ 663.31 554.68 17 55 5 (6198.13) 1 ⁺ 2 ⁺ 62.8 9 1 ⁻ 2 ⁻ 3 ⁻ 554.68 17 55 5 (6198.13) 1 ⁺ 2 ⁺ 62.9 0 ⁻ to 3 ⁻ 5555.1 k^8 4.5 k^5 15 (6198.13) 1 ⁺ 2 ⁺ 612.9 0 ⁻ to 3 ⁻ 5585.1 k^8 4.5 k^5 15 (6198.13) 1 ⁺ 2 ⁺ 612.9 0 ⁻ to 3 ⁻ 5585.1 k^8 4.5 k^5 15 (6198.13) 1 ⁺ 2 ⁺ 612.9 0 ⁻ to 3 ⁻ 5595.7 k^7 7 3.6 k^6 (6198.13) 1 ⁺ 2 ⁺ 560.5 561.25 3 444 6 (6198.13) 1 ⁺ 2 ⁺ 560.5	5235.1 ^b 18	1.5 ^b 15	(6198.13)	$1^+, 2^+$	963.0					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5248.0 5	53	(6198.13)	$1^+, 2^+$	950.1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5253.8 [°] 4	53	(6198.13)	$1^+, 2^+$	944.3	0 2-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5260.7 6	10.1 22	(6198.13)	1+,2+	937.4	0^{-} to 3^{-}	other E γ (1 γ): 5261.33 20 (19.0 17) (2007ChZX; Budapest Data)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5283.6.4	33.5	(6198.13)	$1^{+}.2^{+}$	914.5		Data).			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5291^{b} 4$	3 ^b 6	(6198.13)	1+.2+	907	123-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5304 48 ^{&} 18	32.3	(6198-13)	$1^+,2^+$	893 57	1 ,2 ,0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5313.6 6	74	(6198.13)	$1^{+},2^{+}$	884.5	1-,2-,3-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5327.56 ^{&} 21	29 6	(6198.13)	$1^+, 2^+$	870.49					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5332.47 ^{&} 23	20 4	(6198.13)	$1^+, 2^+$	865.58	0 ⁻ to 3 ⁻				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5347.2 ^{&} 4	8 <i>3</i>	(6198.13)	$1^+, 2^+$	850.9	0 ⁻ to 3 ⁻				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5357.0 3	32 5	(6198.13)	1+,2+	841.0	0 ⁻ to 3 ⁻	other E _γ (I _γ): 5357.49 <i>17</i> (38 <i>3</i>) (2007ChZX; Budapest Data).			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5376.21 ^{&} 20	13.4 16	(6198.13)	$1^+, 2^+$	821.84					
5400.9 5 13.8 16 (6198.13) 1 ⁺ ,2 ⁺ 797.1 other Ey (Iy): 5400.7 18 (14.9 12) (2007ChZX; Budapest Data). 5409.8 ^b 10 1 ^b 3 (6198.13) 1 ⁺ ,2 ⁺ 788.2 5420.6 ^{&} 3 8 3 (6198.13) 1 ⁺ ,2 ⁺ 777.4 0 ⁻ to 3 ⁻ 5431.36 ^{&} 17 38 3 (6198.13) 1 ⁺ ,2 ⁺ 766.69 1 ⁻ ,2 ⁻ ,3 ⁻ 5448.5 3 21.7 23 (6198.13) 1 ⁺ ,2 ⁺ 749.5 5458.96 ^{&} 22 21 4 (6198.13) 1 ⁺ ,2 ⁺ 734.3 E _y : from (2007ChZX; Budapest Data) where Iy=11.6 26. 5483.9 7 7.6 26 (6198.13) 1 ⁺ ,2 ⁺ 707.9 5495.1 ^{&} 8 3 (6198.13) 1 ⁺ ,2 ⁺ 702.8 0 ⁻ to 3 ⁻ 5516.7 5 24.2 25 (6198.13) 1 ⁺ ,2 ⁺ 681.3 1 ⁻ ,2 ⁻ ,3 ⁻ other Ey (Iy): 5517.18 19 (28.4 18) (2007ChZX; Budapest Data) 5534.73 ^{&} 17 59 5 (6198.13) 1 ⁺ ,2 ⁺ 657.8 5554.2 ^{&} 3 9.0 24 (6198.13) 1 ⁺ ,2 ⁺ 657.8 5554.68 17 55 5 (6198.13) 1 ⁺ ,2 ⁺ 645.8 0 ⁻ to 3 ⁻ 5564.68 17 55 5 (6198.13) 1 ⁺ ,2 ⁺ 645.8 0 ⁻ to 3 ⁻ 5564.68 17 55 5 (6198.13) 1 ⁺ ,2 ⁺ 645.8 0 ⁻ to 3 ⁻ 5564.68 17 55 5 (6198.13) 1 ⁺ ,2 ⁺ 645.8 0 ⁻ to 3 ⁻ 5564.68 17 55 5 (6198.13) 1 ⁺ ,2 ⁺ 645.8 0 ⁻ to 3 ⁻ 5564.68 17 55 5 (6198.13) 1 ⁺ ,2 ⁺ 645.8 0 ⁻ to 3 ⁻ 5585.1 ^b 8 4.5 ^b 15 (6198.13) 1 ⁺ ,2 ⁺ 612.9 0 ⁻ to 3 ⁻ 5585.1 ^b 8 4.5 ^b 15 (6198.13) 1 ⁺ ,2 ⁺ 612.9 0 ⁻ to 3 ⁻ 5595.77 ^{&} 17 28.0 23 (6198.13) 1 ⁺ ,2 ⁺ 585.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺ 560.5 5637.5 7 3.6 18 (6198.13) 1 ⁺ ,2 ⁺	5384.86 23	12.6 14	(6198.13)	$1^+, 2^+$	813.19	$1^{-}, 2^{-}, 3^{-}$	E_{γ} : from (2007ChZX; Budapest Data) where I_{γ} =8.4 9.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5400.9 5	13.8 16	(6198.13)	1+,2+	797.1		other Εγ (Ιγ): 5400.7 <i>18</i> (14.9 <i>12</i>) (2007ChZX; Budapest Data).			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5409.8 ^b 10	1 ⁰ 3	(6198.13)	$1^+, 2^+$	788.2					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5420.6 3	83	(6198.13)	$1^+, 2^+$	777.4	0 ⁻ to 3 ⁻				
5448.5 3 21.7 23 (6198.13) $1^+, 2^+$ 749.5 5458.96 22 21 4 (6198.13) $1^+, 2^+$ 739.09 $1^-, 2^-, 3^-$ 5463.7 6 18 5 (6198.13) $1^+, 2^+$ 734.3 E _y : from (2007ChZX; Budapest Data) where I _y =11.6 26. 5483.9 7 7.6 26 (6198.13) $1^+, 2^+$ 707.9 5495.2 3 8 3 (6198.13) $1^+, 2^+$ 702.8 0 ⁻ to 3 ⁻ 5516.7 5 24.2 25 (6198.13) $1^+, 2^+$ 663.31 5534.73 $^{\&}$ 17 59 5 (6198.13) $1^+, 2^+$ 663.31 5540.2 13 2.0 18 (6198.13) $1^+, 2^+$ 663.31 5552.2 $^{\&}$ 3 9.0 24 (6198.13) $1^+, 2^+$ 665.8 5552.2 $^{\&}$ 3 9.0 24 (6198.13) $1^+, 2^+$ 645.8 0 ⁻ to 3 ⁻ 5564.68 17 55 5 (6198.13) $1^+, 2^+$ 645.8 0 ⁻ to 3 ⁻ 5564.68 17 55 5 (6198.13) $1^+, 2^+$ 645.8 0 ⁻ to 3 ⁻ 5569.1 4 18 4 (6198.13) $1^+, 2^+$ 628.9 $1^-, 2^-, 3^-$ E _y : from (2007ChZX; Budapest Data) where I _y =64 4. 5585.1 b 8 4.5 b 15 (6198.13) $1^+, 2^+$ 612.9 0 ⁻ to 3 ⁻ 5595.77 $^{\&}$ 17 28.0 23 (6198.13) $1^+, 2^+$ 602.27 0 ⁻ to 3 ⁻ 5612.5 3 44 4 (6198.13) $1^+, 2^+$ 585.5 5637.5 7 3.6 18 (6198.13) $1^+, 2^+$ 560.5	5431.36 ^{&} 17	38 <i>3</i>	(6198.13)	$1^+, 2^+$	766.69	1-,2-,3-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5448.5 3	21.7 23	(6198.13)	1+,2+	749.5					
5463.7 6 5483.9 7 5483.9 7 5490.1 9 5495.2 8 3 5516.7 5 524.2 25 (6198.13) $1^+,2^+$ (6198.13) $1^+,2^+$ (612.9 0 ⁻ to 3 ⁻ (6198.13) $1^+,2^+$ (612.9 0 ⁻ to 3 ⁻	5458.96 [°] 22	21 4	(6198.13)	$1^+, 2^+$ $1^+, 2^+$	739.09	1-,2-,3-	E. from (2007Ch7V, Dudanast Data) scheme Iv. 116.26			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5405.70 548397	18.5	(6198.13) (6198.13)	$1^{+},2^{+}$ $1^{+},2^{+}$	734.3 714 1	0^{-} to 3^{-}	E_{γ} : from (200/CnZX; Budapest Data) where $I\gamma = 11.6$ 20.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5490.1 9	8.3 10	(6198.13)	$1^{+},2^{+}$	707.9	0 10 5				
5516.7 5 24.2 25 (6198.13) $1^+, 2^+$ 681.3 $1^-, 2^-, 3^-$ other Ey (Iy): 5517.18 19 (28.4 18) (2007ChZX; Budapest Data). 5534.73 & 17 59 5 (6198.13) $1^+, 2^+$ 663.31 5540.2 13 2.0 18 (6198.13) $1^+, 2^+$ 657.8 5552.2 & 3 9.0 24 (6198.13) $1^+, 2^+$ 645.8 0^- to 3^- 5564.68 17 55 5 (6198.13) $1^+, 2^+$ 633.36 E _y : from (2007ChZX; Budapest Data) where Iy=64 4. 5569.1 4 18 4 (6198.13) $1^+, 2^+$ 632.9 $1^-, 2^-, 3^-$ other Ey (Iy): 5570.03 22 (25.0 18) (2007ChZX; Budapest Data). 5585.1 b 8 4.5^b 15 (6198.13) $1^+, 2^+$ 602.27 0 ⁻ to 3^- 5595.77 & 17 28.0 23 (6198.13) $1^+, 2^+$ 585.5 5637.5 7 5612.5 3 44 4 (6198.13) $1^+, 2^+$ 585.5 5637.5 7 3.6 18 (6198.13) $1^+, 2^+$ 560.5 5612.6 21 21.0 24 (6198.13) $1^+, 2^+$ 560.5 563.5 563.5	5495.2 ^{&} 3	8 <i>3</i>	(6198.13)	$1^+, 2^+$	702.8	0 ⁻ to 3 ⁻				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5516.7 5	24.2 25	(6198.13)	1+,2+	681.3	1-,2-,3-	other Eγ (Iγ): 5517.18 <i>19</i> (28.4 <i>18</i>) (2007ChZX; Budapest Data).			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5534.73 ^{&} 17	59 5	(6198.13)	$1^+, 2^+$	663.31					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5540.2 13	2.0 18	(6198.13)	$1^+, 2^+$	657.8					
5564.68 17 55 (6198.13) $1^+, 2^+$ 633.36 E _y : from (2007ChZX; Budapest Data) where Iy=64 4. 5569.14 18 (6198.13) $1^+, 2^+$ 628.9 $1^-, 2^-, 3^-$ other Ey (Iy): 5570.03 22 (25.0 18) (2007ChZX; Budapest Data) 5585.1 ^b 8 4.5 ^b 15 (6198.13) $1^+, 2^+$ 612.9 0^- to 3^- 5595.77 ^{&} 17 28.0 23 (6198.13) $1^+, 2^+$ 602.27 0^- to 3^- 5612.5 3 44 4 (6198.13) $1^+, 2^+$ 585.5 5637.5 7 3.6 18 (6198.13) $1^+, 2^+$ 560.5 5654.2 0 (6198.13) $1^+, 2^+$ 560.5	5552.2 & 3	9.0 24	(6198.13)	$1^+, 2^+$	645.8	0^- to 3^-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5564.68 17	55 5	(6198.13)	$1^+, 2^+$	633.36	1- 0- 0-	E_{γ} : from (2007ChZX; Budapest Data) where $I_{\gamma}=64.4$.			
$5585.1^{b} 8 4.5^{b} 15 (6198.13) 1^{+}, 2^{+} 612.9 0^{-} to 3^{-}$ $5595.77^{\&} 17 28.0 23 (6198.13) 1^{+}, 2^{+} 602.27 0^{-} to 3^{-}$ $5612.5 3 44 4 (6198.13) 1^{+}, 2^{+} 585.5$ $5637.5 7 3.6 18 (6198.13) 1^{+}, 2^{+} 560.5$ $5637.5 7 3.6 18 (6198.13) 1^{+}, 2^{+} 560.5$	5569.1 4	18 4	(6198.13)	1,2,	628.9	1 ,2 ,3	other E γ (I γ): 55/0.03 22 (25.0 18) (200/ChZX; Budapest Data).			
$5595.77^{\circ} 17 28.0 23 (6198.13) 1^+, 2^+ 602.27 0^- \text{ to } 3^-$ $5612.5 3 44 4 (6198.13) 1^+, 2^+ 585.5$ $5637.5 7 3.6 18 (6198.13) 1^+, 2^+ 560.5$ $(6198.13) 1^+, 2^+ 560.5$	5585.1 ⁰ 8	4.5 ⁰ 15	(6198.13)	$1^+, 2^+$	612.9	0^{-} to 3^{-}				
5612.5 44 (6198.13) $1^+, 2^+$ 585.5 5637.5 7 3.6 18 (6198.13) $1^+, 2^+$ 560.5 5637.6 22 24 (6198.13) $1^+, 2^+$ 560.5 5637.6 22 (6198.13) $1^+, 2^+$ 560.5	5595.77 ^{&} 17	28.0 23	(6198.13)	$1^+, 2^+$	602.27	0 ⁻ to 3 ⁻				
5057.57 5.076 (0120.15) 1,2 500.5	5612.5 3	44 4	(6198.13)	$1^+, 2^+$ $1^+, 2^+$	585.5					
5654.39.21 22.3 (6198.13) 17.27 543.65 U ⁺ to 3 ⁻ E.: trom (2007ChZX: Budanest Data) where $12=14.6.12$	5654.39.21	5.0 18 22.3	(6198.13)	$1^{+},2^{+}$	500.5 543.65	0^{-} to 3^{-}	E.: from (2007ChZX: Budapest Data) where Iv=14.6.12			
$5661.15^{\&}23$ 16.0.24 (6198.13) 1 ⁺ .2 ⁺ 536.89	5661.15 ^{&} 23	16.0.24	(6198-13)	$1^+ 2^+$	536.89	5 65 5	-,			
$5667.81^{\&}$ 16 100.0 (6198.13) 1 ⁺ .2 ⁺ 530.23 1 ⁻ .2 ⁻ .3 ⁻	5667.81 ^{&} 16	100.0	(6198.13)	$1^+.2^+$	530.23	123-				

Continued on next page (footnotes at end of table)

		¹⁹¹ Ir (1	n,γ) E=tl	nermal:p	rimary 1991	Ke10,1971Kr09 (continued)		
$\gamma(^{192}$ Ir) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Comments		
5681.5 7	6.9 17	(6198.13)	$1^+, 2^+$	516.5	1-,2-,3-			
5689.23 ^{&} 16 5708.3 5 5727.2 5	65 5 5.8 <i>16</i> 12.1 <i>15</i>	(6198.13) (6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$	508.81 489.7 470.8	$(2,3)^{-}$ $1^{-},2^{-},3^{-}$ $1^{-},2^{-},3^{-}$			
5746.81 ^{&} 25 5758.2 3	8.8 <i>21</i> 21.8 <i>20</i>	(6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$	451.2 439.8	$(1,2)^{-}$ $1^{-}.2^{-}.3^{-}$			
5782.85 ^{&} 16	58 7	(6198.13)	$1^{+},2^{+}$	415.19	1 ⁻ ,2 ⁻ ,3 ⁻			
5808.28 ^{&} 22 5817.7 7 5830.0 5	21 5 5.1 <i>12</i> 7.2 21	(6198.13) (6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$ $1^+, 2^+$	389.76 380.3 368.0	$(2)^{-}\&(1,2,3)^{-}$ $(2)^{-}\&(2)^{-}$			
5846.4 10	3.4 16	(6198.13)	1+,2+	351.6	$(2)^{+}$	other Eγ (Iγ): 5845.9 <i>6</i> (1.7 <i>5</i>) (2007ChZX; Budapest Data).		
5866.76 ^{&} 19 5880.7 7	32.2 <i>23</i> 2.6 <i>10</i>	(6198.13) (6198.13)	1 ⁺ ,2 ⁺ 1 ⁺ ,2 ⁺	331.27 317.3	$(2)^{-}\&(1)^{-}$ $(2)^{-}$			
5905.88 ^{cc} 24 5910.2 6	15 4 17 4	(6198.13) (6198.13)	$1^+,2^+$ $1^+,2^+$	292.15 287.8	(2) $(2)^{-}$	other E γ (I γ): 5910.9 4 (8.6 12) (2007ChZX; Budapest Data)		
^x ≈5925 [@]						Duu).		
5958.09 ^{&} 23	74 8	(6198.13)	$1^+, 2^+$	239.94	(2) ⁻			
5962.25 ^{&} 23	28 5	(6198.13)	$1^+, 2^+$	235.78	(1 ⁻)			
5972.02 ^{&} 24	10.5 20	(6198.13)	$1^+, 2^+$	226.01	$(2)^{-}\&(\leq 2^{-})$			
5985.5 10	4.1 12	(6198.13)	$1^+, 2^+$	212.5	$(1,2)^{-}$			
5994.5 ⁰ 11	2.3 ⁰ 15	(6198.13)	$1^+, 2^+$	203.5	≤3			
6004.77 ^{&} 24	10.8 18	(6198.13)	$1^+, 2^+$	193.26	$(2)^{-}\&(1)^{+}$			
$x \approx 6019^{\textcircled{0}}$								
6024.8 <i>12</i> 6055 1 5	$2.4\ 12$	(6198.13) (6198.13)	$1^+, 2^+$ $1^+, 2^+$	173.2	$(1)^{-}$			
6067 2 11	2.4 10	(6198.13) (6198.13)	$1^{+},2^{+}$	142.9	(1)			
6078.5 12	13 4	(6198.13)	$1^{+},2^{+}$	119.5	3-			
6082.02 ^{&} 18	99 7	(6198.13)	$1^{+}.2^{+}$	116.01	$(2)^{-}$			
$6093.34^{\&} 24$	25.8.20	(6198-13)	$1^+ 2^+$	104 69	$(1)^{-}$			
6112 ^a	20.0 20	(6198.13)	$1^+, 2^+$	86.0	3-			
6130.1 ^{bd} 15	1.5 ^b 15	(6198.13)	,- 1 ⁺ ,2 ⁺	67.9?	(4) ⁻	implied multipolarity of M2 or higher makes placement		
6141.1 8	5.0 10	(6198.13)	1+,2+	56.9	1-	other E γ (I γ): 6141.5 3 (2.7 3) (2007ChZX; Budapest Data).		

[†] From 1991Ke10, unless noted otherwise.

[‡] Relative values from 1991Ke10 for E=thermal, normalized so $I\gamma(5668.6\gamma)=100.0$, except as noted. See comment with normalization to obtain absolute intensities. note also that uncertainties In I γ quoted from 2007ChZX include the 3.7% uncertainty In I(5668 γ) (the reference line) combined In quadrature with the statistical uncertainty from 2007ChZX for the γ In question.

[#] Numerically resolved from overlapping peaks.

^(a) Observed in epithermal capture (1971Kr09); because of poor energy precision, transition was not used to establish a corresponding level.

& From Budapest Data from 2007ChZX. Transition's intensity is consistent with that from 1991Ke10 and $E\gamma$ is consistent with datum from 1991Ke10 but of higher precision.

^{*a*} From 1988Mu26.

¹⁹¹Ir(n,γ) E=thermal:primary **1991Ke10,1971Kr09** (continued)

$\gamma(^{192}$ Ir) (continued)

- ^b From 1971Kr09. Intensities have been scaled so that $I(6092\gamma+6081\gamma)$ in 1971Kr09 is the same as $I(6093\gamma+6082\gamma+6079\gamma)$ in 1991Ke10.
- ^c For intensity per 100 neutron captures, multiply by 0.0064.
- d Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

 $^{192}_{77}\mathrm{Ir}_{115}$

 $^{192}_{77} \mathrm{Ir}_{115}$