¹⁹¹Ir(n,γ) E=2, 24 keV **1991Ke10**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012				

Target $J^{\pi} = 3/2^+$.

1991Ke10: E(n)=2 keV, 24 keV (beam FWHM≈0.7 and 2 keV, respectively): measured Eγ, Iγ for average resonance capture primary transitions observed in two independent studies. "BNL" study: 3-crystal pair spectrometer (FWHM=6 keV at 5 MeV), Eγ calibration from thermal capture in chlorine, 98.2% ¹⁹¹Ir target. "Kiev" study: pair spectrometer (Ge(Li) + NaI(Tl), FWHM=8 keV at≈7 MeV), 78.3%, 84.7%, 88.8% ¹⁹¹Ir, 97.6% ¹⁹³Ir and natural Ir targets.

¹⁹²Ir Levels

In average resonance capture by a $3/2^+$ target, the strongest primary gammas (E1) can populate 0^- , 1^- , 2^- or 3^- levels; M1 primary transitions (expected to have $\approx 23\%$ the strength of the E1 transitions in this region (1991Ke10)) can populate $\pi = +$ levels with J<4.

E(level) [†]	E(level) [†]	E(level) [†]	E(level) [†]
56.7 <i>3</i>	228.2 10	331.3 [‡] 2	515.8 6
83.0 8	236.6 13	367.3 [‡] 3	529.5 4
105.7 5	241.1 9	390.2 [‡] 3	543.3 4
116.2 [‡] 4	266.0 [@] 3	414.7 [#] 3	558.8 4
130.8 7	277.7 10	439.6 <i>3</i>	581.9 <i>3</i>
143.3 <i>3</i>	287.9 [#] 4	449.8 <i>3</i>	603.2 4
193.4 [‡] 3	293.1 6	470.8 <i>3</i>	(6199.8)
202.8 11	310.2 3	488.8 <i>6</i>	
212.8 [#] 3	319.4 4	507.6 <i>3</i>	

[†] Authors' preferred value, based on both 2-keV and 24-keV data.

[‡] For unresolved doublet (1991Ke10).

[#] The reduced intensity (viz., $I\gamma/E\gamma^5$) for the primary γ feeding this level is greater than expected for a γ feeding a single level; this suggests the existence of a multiplet at this energy.

[@] Possibly for a doublet consisting of the 265.2 and 267.1 Adopted Levels.

$\gamma(^{192}\mathrm{Ir})$

E_{γ}^{\dagger}	$I\gamma/E\gamma^{5}$	E _i (level)	E_f	Comments
5596.6 2	0.49 4	(6199.8)	603.2	other Ey: 5594.6 6 (Kiev study).
5617.9 2	0.71 6	(6199.8)	581.9	other $E\gamma$: 5614.8 7 (Kiev study).
5641.0 <i>3</i>	0.22 4	(6199.8)	558.8	other E γ : 5639.4 7 (Kiev study).
5656.5 <i>3</i>	0.54 6	(6199.8)	543.3	
5670.3 <i>3</i>	0.57 5	(6199.8)	529.5	other E γ : 5667.3 6 (Kiev study).
5684.0 4	0.219 22	(6199.8)	515.8	other E γ : 5682.0 7 (Kiev study).
5692.2 2	0.46 4	(6199.8)	507.6	other E γ : 5691.0 6 (Kiev study).
5711.0 5	0.39 7	(6199.8)	488.8	other $E\gamma$: 5708.1 6 (Kiev study).
5728.9 2	0.33 <i>3</i>	(6199.8)	470.8	
5750.0 2	0.43 <i>3</i>	(6199.8)	449.8	
5760.1 2	0.44 3	(6199.8)	439.6	In the E(n)=2 keV Kiev study, this is a doublet (E γ =5761.4 11 and 5756.1 15).
5785.1 <i>1</i>	0.45 9	(6199.8)	414.7	
5809.6 1	0.45 3	(6199.8)	390.2	
5832.5 1	0.53 4	(6199.8)	367.3	other E γ : 5831.1 6 (Kiev study).
5868.4 1	0.64 5	(6199.8)	331.3	· · · ·
5880.3 <i>3</i>	0.233 19	(6199.8)	319.4	

Continued on next page (footnotes at end of table)

¹⁹¹Ir(n,γ) E=2, 24 keV **1991Ke10** (continued)

$\gamma(^{192}$ Ir) (continued)

E_{γ}^{\dagger}	$I\gamma/E\gamma^{5\ddagger}$	E _i (level)	E_f	Comments
5889.6 2	0.286 22	(6199.8)	310.2	
5906.7 4	0.33 5	(6199.8)	293.1	
5911.9 <i>3</i>	0.65 6	(6199.8)	287.9	
5922.1 8	0.066 19	(6199.8)	277.7	
5933.8 1	0.286 22	(6199.8)	266.0	$I\gamma/E\gamma^5$: possibly for a doublet.
5958.6 7	0.49 13	(6199.8)	241.1	
5963.2 10	0.45 11	(6199.8)	236.6	
5971.6 8	0.31 3	(6199.8)	228.2	
5987.0 2	0.42 3	(6199.8)	212.8	$I\gamma/E\gamma^5$: possibly for a doublet.
5996.9 9	0.067 18	(6199.8)	202.8	
6006.4 2	0.41 3	(6199.8)	193.4	$I\gamma/E\gamma^5$: for doublet.
6056.5 2	0.296 23	(6199.8)	143.3	
6069.0 5	0.148 21	(6199.8)	130.8	other E γ : 6071.1 6 (Kiev study).
6083.6 <i>3</i>	0.41 3	(6199.8)	116.2	$I\gamma/E\gamma^5$: for doublet.
6094.1 <i>3</i>	0.265 22	(6199.8)	105.7	
6116.8 6	0.13 3	(6199.8)	83.0	other $E\gamma$: 6113.6 6 (Kiev study).
6143.1 2	0.296 24	(6199.8)	56.7	

[†] From E(n)=2 keV BNL study. except As noted, agreement with the data from the Kiev study is satisfactory. [‡] Measured $I\gamma/E\gamma^5$ data from the BNL study at E(n)=2 keV. Expected values are 0.294, 0.172, 0.122, 0.068, respectively, for

* Measured $1\gamma/E\gamma^3$ data from the BNL study at E(n)=2 keV. Expected values are 0.294, 0.172, 0.122, 0.068, respectively, for $J^{\pi}=(1^- \text{ or } 2^-), 3^-, 0^-, (1^+ \text{ or } 2^+)$; significantly larger values may indicate the presence of a multiplet. see table 6 from 1991Ke10 for E(n)=24 keV data.

From ENSDF

ω

 $^{192}_{77}\mathrm{Ir}_{115}\text{--}3$