¹⁹²Ir IT decay (241 y) **1959Sc41,1977ScZU**

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin NDS 113, 1871 (2012) 15-Jun-2012

Parent: 192 Ir: E=168.14 12; J^{π} =(11⁻); $T_{1/2}$ =241 y 9; %IT decay=100.0

Additional information 1. Others: 1963Ha17, 1970Ha32.

Data are combined from 1959Sc41 and 1977ScZU; sources from neutron capture by ¹⁹¹Ir; measured I(K x ray), I(L x ray), E(ce), Ice (scin). Isomeric assignment based on parent-daughter relationship to ¹⁹²Ir(73.829 d).

¹⁹²Ir Levels

E(level)	$J^{\pi \ddagger}$	T _{1/2}	Comments			
0.0	4+	73.829 d <i>11</i>				
12.984? <i>14</i>	(6^{+})		E(level): from Adopted Levels.			
168.14 [†] <i>12</i>	$(11^{-})^{\dagger}$	241 y 9	%IT=100			
			T _{1/2} : from 1970Ha32. Others: 1959Sc41 (>5 y), 1963Ha17.			

^{† 1959}Sc41 conclude that the 241 y isomer's IT either feeds the g.s. or is followed by radiation(s) with E γ <30 keV. The tentative 6⁺ 12.98-keV and 6- 16.05-keV states (see Adopted Levels) would not have been detected by 1959Sc41; the former would suggest J^{π} =11⁻ for the isomer, analogous to that for the ¹⁹⁰Ir high-spin isomer. Also, Nilsson model calculations (1997BaZV) predict low-lying 11⁻ and 10⁺ states. The latter state and a low-lying 9⁺ state predicted by interacting-boson fermion-fermion calculations (1991Ke10), however, do not appear to be compatible with an E5 isomeric transition.

$\gamma(^{192}\text{Ir})$

 $I(\gamma+ce)$ normalization: from Σ ($I(\gamma+ce)$ to g.s.)=100%; No g.s. branch expected ($\Delta J=7$).

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\#}$	$I_{(\gamma+ce)}^{\ddagger}$	Comments
(12.984)	12.984?	(6+)	0.0	4+	[E2]	≈5.7×10 ⁴	100	ce(L)/(γ +ce)=0.637; ce(M)/(γ +ce)=0.286 E $_{\gamma}$: from level energy difference; no radiation observed.
155.16 <i>12</i>	168.14	(11 ⁻)	12.984?	(6 ⁺)	(E5) [†]	1085	100	ce(K)/(γ +ce)=0.00642 14; ce(L)/(γ +ce)=0.695 9; ce(M)/(γ +ce)=0.232 5; ce(N+)/(γ +ce)=0.0663 14 ce(N)/(γ +ce)=0.0580 12; ce(O)/(γ +ce)=0.00832 18; ce(P)/(γ +ce)=2.60×10 ⁻⁵ 6 α (exp)=1000 100 (1977ScZU) E $_{\gamma}$: from 1977ScZU. Other value: 161 keV 5 (1959Sc41). α : Other α (E5 theory): 1106 8 (private communication from K. Alder to authors of 1977ScZU).

[†] From α (K)exp. Also, [I γ (K x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (241 y)]/ [I γ (K x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (73.829 d)]≈1 (1959Sc41) and [I γ (L x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (241 y)]/ [I γ (L x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (73.829 d)]≈16 (1959Sc41); therefore, the 155 transition is mainly converted in the L shell, as is typical for high electric multipolarity.

[‡] From Adopted Levels.

[‡] Absolute intensity per 100 decays.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹²Ir IT decay (241 y) 1959Sc41,1977ScZU

Legend

Decay Scheme

%IT=100.0

---- γ Decay (Uncertain)

