¹⁹²Ir IT decay (241 y) **1959Sc41,1977ScZU** Type Author Citation Literature Cutoff Date Full Evaluation Coral M. Baglin NDS 113, 1871 (2012) 15-Jun-2012 Parent: 192 Ir: E=168.14 12; J^{π} =(11⁻); $T_{1/2}$ =241 y 9; %IT decay=100.0 Additional information 1. Others: 1963Ha17, 1970Ha32. Data are combined from 1959Sc41 and 1977ScZU; sources from neutron capture by ¹⁹¹Ir; measured I(K x ray), I(L x ray), E(ce), Ice (scin). Isomeric assignment based on parent-daughter relationship to ¹⁹²Ir(73.829 d). #### ¹⁹²Ir Levels | E(level) | $J^{\pi \ddagger}$ | T _{1/2} | Comments | | | | |-------------------------------|----------------------|--------------------|--|--|--|--| | 0.0 | 4+ | 73.829 d <i>11</i> | | | | | | 12.984? <i>14</i> | (6^{+}) | | E(level): from Adopted Levels. | | | | | 168.14 [†] <i>12</i> | $(11^{-})^{\dagger}$ | 241 y 9 | %IT=100 | | | | | | | | T _{1/2} : from 1970Ha32. Others: 1959Sc41 (>5 y), 1963Ha17. | | | | ^{† 1959}Sc41 conclude that the 241 y isomer's IT either feeds the g.s. or is followed by radiation(s) with E γ <30 keV. The tentative 6⁺ 12.98-keV and 6- 16.05-keV states (see Adopted Levels) would not have been detected by 1959Sc41; the former would suggest J^{π} =11⁻ for the isomer, analogous to that for the ¹⁹⁰Ir high-spin isomer. Also, Nilsson model calculations (1997BaZV) predict low-lying 11⁻ and 10⁺ states. The latter state and a low-lying 9⁺ state predicted by interacting-boson fermion-fermion calculations (1991Ke10), however, do not appear to be compatible with an E5 isomeric transition. ### $\gamma(^{192}\text{Ir})$ $I(\gamma+ce)$ normalization: from Σ ($I(\gamma+ce)$ to g.s.)=100%; No g.s. branch expected ($\Delta J=7$). | E_{γ} | E_i (level) | \mathbf{J}_i^{π} | \mathbb{E}_f | \mathbf{J}_f^{π} | Mult. | $\alpha^{\#}$ | $I_{(\gamma+ce)}^{\ddagger}$ | Comments | |------------------|---------------|----------------------|----------------|----------------------|-------------------|----------------------|------------------------------|--| | (12.984) | 12.984? | (6+) | 0.0 | 4+ | [E2] | ≈5.7×10 ⁴ | 100 | ce(L)/(γ +ce)=0.637; ce(M)/(γ +ce)=0.286
E $_{\gamma}$: from level energy difference; no radiation observed. | | 155.16 <i>12</i> | 168.14 | (11 ⁻) | 12.984? | (6 ⁺) | (E5) [†] | 1085 | 100 | ce(K)/(γ +ce)=0.00642 14; ce(L)/(γ +ce)=0.695 9; ce(M)/(γ +ce)=0.232 5; ce(N+)/(γ +ce)=0.0663 14 ce(N)/(γ +ce)=0.0580 12; ce(O)/(γ +ce)=0.00832 18; ce(P)/(γ +ce)=2.60×10 ⁻⁵ 6 α (exp)=1000 100 (1977ScZU) E $_{\gamma}$: from 1977ScZU. Other value: 161 keV 5 (1959Sc41). α : Other α (E5 theory): 1106 8 (private communication from K. Alder to authors of 1977ScZU). | [†] From α (K)exp. Also, [I γ (K x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (241 y)]/ [I γ (K x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (73.829 d)]≈1 (1959Sc41) and [I γ (L x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (241 y)]/ [I γ (L x ray)/I γ (192Pt 316 γ) for ¹⁹²Ir (73.829 d)]≈16 (1959Sc41); therefore, the 155 transition is mainly converted in the L shell, as is typical for high electric multipolarity. [‡] From Adopted Levels. [‡] Absolute intensity per 100 decays. [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. # ¹⁹²Ir IT decay (241 y) 1959Sc41,1977ScZU Legend ## Decay Scheme %IT=100.0 ---- γ Decay (Uncertain)