|                 |                 | History             |                        |
|-----------------|-----------------|---------------------|------------------------|
| Туре            | Author          | Citation            | Literature Cutoff Date |
| Full Evaluation | Coral M. Baglin | NDS 113,1871 (2012) | 15-Jun-2012            |

 $Q(\beta^{-}) = -6.14 \times 10^{3} 4$ ;  $S(n) = 9.49 \times 10^{3} 3$ ;  $S(p) = 5.49 \times 10^{3} 4$ ;  $Q(\alpha) = 3393 17$  2012Wa38

Note: Current evaluation has used the following Q record -6140 35 9490 27 5490 40 3392 17 2003Au03,2011AuZZ.

 $Q(\beta^-),\,Q(\alpha):$  from 2011AuZZ (cf. -6140 40 and 3387 16 from 2003Au03).

Additional information 1.

 $3 \times 10^{-5}$ % limit set for population of <sup>192</sup>Hg by <sup>196</sup>Pb  $\alpha$  decay (1963Ka17).

See 1985K109, 1986U102 for hfs and isotope shift data.

Theory (partial list only):

Calculations using Coulomb and proximity potential model:  $T_{1/2}$  for g.s.  $\alpha$  and cluster decay (2010Sa39).

# <sup>192</sup>Hg Levels

Cross Reference (XREF) Flags

| Α | <sup>192</sup> Tl $\varepsilon$ decay (9.6 min+10.8 min)                               | D | $(HI,xn\gamma)$                      |
|---|----------------------------------------------------------------------------------------|---|--------------------------------------|
| В | <sup>192</sup> Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup> Pt( $\alpha$ ,6n $\gamma$ ) | E | $^{160}$ Gd( $^{36}$ S,4n $\gamma$ ) |
| С | $^{197}$ Au(p,6n $\gamma$ )                                                            | F | (HI,xny):SD                          |
|   |                                                                                        |   |                                      |

| E(level) <sup>†</sup>          | Jπ‡               | $T_{1/2}^{\#}$ | XREF   | Comments                                                                                                                                                                                |
|--------------------------------|-------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 <sup><i>a</i></sup>        | 0+ <i>b</i>       | 4.85 h 20      | ABCDEF | $\% \varepsilon = 100$<br>$\Delta < r^2 > (^{192}Hg - ^{198}Hg) = -0.2405 \ 14 \ (1986U102).$<br>$< r^2 > ^{1/2} (charge) = 5.423 \ 4 \ (2004An14).$                                    |
|                                |                   |                |        | $\alpha < 4 \times 10^{-6}$ (1963Ka17). Other: 1961Fo06.                                                                                                                                |
|                                | a+b               |                |        | $I_{1/2}$ : from 1961Ja10. Other value: 5.7 h 5 (1952F106).                                                                                                                             |
| 422.79 <sup>a</sup> 10         | 2+0               |                | ABCDEF | $J^{n}$ : E2 423 $\gamma$ to 0 <sup>+</sup> g.s.                                                                                                                                        |
| 1057.58 <sup><i>a</i></sup> 14 | 4 <sup>+</sup>    |                | ABCDEF | $J^{\pi}$ : E2 635 $\gamma$ to 2 <sup>+</sup> 423; member of g.s. band.                                                                                                                 |
| 1113.60 14                     | $(2)^{+}$         |                | A      | $J^{n}$ : M1+E2 691 $\gamma$ to 2 <sup>+</sup> ; D,E2 1113 $\gamma$ to 0 <sup>+</sup> g.s.; J=2 favored by analogy with <sup>194</sup> Hg.                                              |
| 1535.2 4                       | $(3)^+$           |                | A      | $J^{\pi}$ : M1(+E2) 478 $\gamma$ to 4 <sup>+</sup> 1058; M1,E2 1113 $\gamma$ to 2 <sup>+</sup> 423; J=3 favored by analogy with <sup>194</sup> Hg.                                      |
| 1732.98 16                     | $(4)^+$           |                | Α      | $J^{\pi}$ : M1+E2 675 $\gamma$ to 4 <sup>+</sup> 1058; E2 619 $\gamma$ to (2) <sup>+</sup> 1114.                                                                                        |
| 1803.05 <sup>a</sup> 16        | 6+ <b>b</b>       |                | ABCDEF | $J^{\pi}$ : E2 746 $\gamma$ to 4 <sup>+</sup> 1058; member of g.s. band.                                                                                                                |
| 1831.62 21                     | $(2^+, 3, 4^+)$   |                | A      | $J^{\pi}$ : 718 $\gamma$ to (2) <sup>+</sup> 1114, 774 $\gamma$ to 4 <sup>+</sup> 1058.                                                                                                 |
| 1843.90 <sup>c</sup> 16        | (5)-              |                | ABCDEF | $J^{\pi}$ : E1 786 $\gamma$ to 4 <sup>+</sup> 1058; J=5 required by band assignment and by analogy to <sup>194</sup> Hg.                                                                |
| 1844.59 23                     | (3,4)             |                | Α      | $J^{\pi}$ : 1422 $\gamma$ to 2 <sup>+</sup> 423; J=3,4 favored by I(1421 $\gamma$ , low-J decay):I(1421 $\gamma$ , high-J decay) in <sup>192</sup> TL $\varepsilon$ decay (1981So09).   |
| 1908.58 25                     | $1,2^{+}$         |                | Α      | $J^{\pi}$ : 1908 $\gamma$ to 0 <sup>+</sup> g.s.; 1486 $\gamma$ to 2 <sup>+</sup> 423.                                                                                                  |
| 1977.03 <sup>C</sup> 17        | $(7)^{-}$         | 1.04 ns 6      | AB DEF | $J^{\pi}$ : E1 174 $\gamma$ to 6 <sup>+</sup> 1803; stretched Q 133 $\gamma$ to (5) <sup>-</sup> 1844.                                                                                  |
|                                |                   |                |        | $T_{1/2}$ : (α)(ce)(t) in (α,4nγ), (α,6nγ) (1978Me11). Other value: 2.5 ns 10 (1975Li16) in (α,xnγ).                                                                                    |
| 1986.9? <sup>d</sup> 11        | (6 <sup>-</sup> ) |                | Е      | J <sup><math>\pi</math></sup> : D intraband 143 $\gamma$ to (5) <sup>-</sup> 1844; band assignment.                                                                                     |
| 2056.29 23                     | $(1,2^{+})$       |                | Α      | $J^{\pi}$ : 1633 $\gamma$ to 2 <sup>+</sup> 423; possible 2056 $\gamma$ to 0 <sup>+</sup> g.s.                                                                                          |
| 2081.69 23                     | $(1,2^+)$         |                | Α      | $J^{\pi}$ : 1659 $\gamma$ to 2 <sup>+</sup> 423; possible 2082 $\gamma$ to 0 <sup>+</sup> g.s.                                                                                          |
| 2186.98 21                     | (6) <sup>-</sup>  |                | Α      | $J^{\pi}$ : E1 384 $\gamma$ to 6 <sup>+</sup> 1803; M1 343 $\gamma$ to (5) <sup>-</sup> 1844; J=6 favored in ( <sup>36</sup> S,4n $\gamma$ ).                                           |
| 2216.20 <sup>d</sup> 24        | (8) <sup>-</sup>  | 0.92 ns 5      | AB DEF | $J^{\pi}$ : M1+E2 239 $\gamma$ to (7) <sup>-</sup> 1977; band assignment.<br>T <sub>1/2</sub> : ( $\alpha$ )(ce)(t) in ( $\alpha$ ,4n $\gamma$ ), ( $\alpha$ ,6n $\gamma$ ) (1978Me11). |
| 2223.85 <sup>c</sup> 24        | (9)-              |                | AB DEF | $J^{\pi}$ : E2 247 $\gamma$ to (7) <sup>-</sup> 1977; band assignment.                                                                                                                  |
| 2276.9 4                       | $1,2^{+}$         |                | Α      | $J^{\pi}$ : 2277 $\gamma$ to 0 <sup>+</sup> g.s., 1854 $\gamma$ to 2 <sup>+</sup> 423.                                                                                                  |
| 2284.7 5                       |                   |                | Α      | $J^{\pi}$ : 1171 $\gamma$ to (2) <sup>+</sup> so J $\leq$ (4).                                                                                                                          |

Continued on next page (footnotes at end of table)

| 2800.7 3         (6,7.8)         (6,7.8)         (a) $\mathbf{F}$ : M1+E2.324y to (7) 1977.           2447.2 <sup>43</sup> 8 <sup>4b</sup> B         DEF         F: E2.60y to 8* 2447; D.283y to (9) 72224,           2507.3 3         (10)*         3.6 ns 5         B         DEF         F: E2.60y to 8* 2447; D.283y to (9) 72224,           2534.27         A         F: possible 999 yo (3).         See also         2507 and 2353 levels).           2535.57         4         (12)*         11.1 ns 5         B         DE         T <sub>1/2</sub> : celty, 7y(0 in <sup>159</sup> Pf(a,4ny), <sup>159</sup> Pf(a,6ny) (1983Gha05). See also comment on T <sub>1/2</sub> for 2507 level.           2535.75         4         (12)*         B         DE         comment on T <sub>1/2</sub> for 2507 level.           2537.77         (10)*         E         comment on T <sub>1/2</sub> for 2507 level.         2507 level.           2507.74         (14)*         B         DE         comment on T <sub>1/2</sub> for 2507 level.           2619.77         10*         E         E         2507.16 (10)         2507 level.           2632.74         (14)*         B         DE         2507 level.         2507 level.           275.65         (16)*         DE         T <sub>1/2</sub> : (a)(cel(t) in <sup>192</sup> Pf(a,4ny), <sup>194</sup> Pf(a,6ny) (1978Me11).         210499 level.           2839.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E(level) <sup>†</sup>                     | $J^{\pi \ddagger}$ | $T_{1/2}^{\#}$ | XREF      | Comments                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2447 $2^{a}$ 3 $3^{a}$ (10) <sup>+</sup> 3.6 ns 5 B DEF<br>2507.3 3 (10) <sup>+</sup> 3.6 ns 5 B DEF<br>$T_{1/2}$ : ce(1), $77(1)$ in ( $\alpha$ .4ny), ( $\alpha$ .6ny) (1983Gu05). Other values: 16 ns 3<br>(1975L116). 15.9 ns 10 (1978Me11) in ( $\alpha$ .my) (superposition of $T_{1/2}$ for<br>2534.27 5 A<br>2535.57 4 (12 <sup>+</sup> ) 11.1 ns 5 B DE<br>2535.57 4 (12 <sup>+</sup> ) 11.1 ns 5 B DE<br>2553.17 4 (12 <sup>+</sup> ) B DE<br>2553.17 4 (12 <sup>+</sup> ) B DE<br>2507.17 3 (11 <sup>-</sup> ) B DE<br>2507.17 4 (12 <sup>+</sup> ) B DE<br>2507.17 4 (12 <sup>+</sup> ) B DE<br>2507.17 4 (12 <sup>+</sup> ) B DE<br>2517.67 4 (12 <sup>+</sup> ) B DE<br>2531.67 4 (12 <sup>+</sup> ) B DE<br>2536.98 4 (14 <sup>+</sup> ) B DE<br>2448.78 5 (18 <sup>+</sup> ) B DE<br>4100.5 <sup>h</sup> 4 (15 <sup>-</sup> ) B DE<br>4100.5 <sup>h</sup> 4 (15 <sup>-</sup> ) B DE<br>4110.6 <sup>h</sup> 5 (16 <sup>+</sup> ) B DE<br>4130.6 <sup>f</sup> 5 (16 <sup>+</sup> ) B DE<br>4130.6 <sup>f</sup> 5 (16 <sup>+</sup> ) B DE<br>4130.6 <sup>f</sup> 5 (16 <sup>+</sup> ) B DE<br>4130.5 <sup>f</sup> 5 (16 <sup>+</sup> ) B DE<br>4130.5 <sup>f</sup> 5 (16 <sup>+</sup> ) B DE<br>5130.7 <sup>f</sup> 5 (20 <sup>+</sup> ) B DE<br>5130.7 <sup>f</sup> 6 (22 <sup>+</sup> ) DE<br>5130.7 <sup>f</sup> 7 (21 <sup>-</sup> ) E<br>5130.7 <sup>f</sup> 6 (22 <sup>+</sup> ) DE<br>5130.7 <sup>f</sup> 6 (22 <sup>+</sup> ) DE<br>5130.7 <sup>f</sup> 7 (21 <sup>-</sup> ) E<br>5130.7 <sup>f</sup> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2300.7 3                                  | $(6,7,8)^{-}$      |                | A         | $J^{\pi}$ : M1+E2 324 $\gamma$ to (7) <sup>-</sup> 1977.                                                                                                                                                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2447.2^{a}$ 3                            | 8+ <i>b</i>        |                | AB DEF    |                                                                                                                                                                                                                                                                              |
| 2534.27 5 A (12 <sup>+</sup> ) 11.1 ns 5 B DE T <sub>1/2</sub> : c(a)(c), y(10 in <sup>192</sup> P(( $\alpha$ ,dny), 1 <sup>194</sup> P(( $\alpha$ ,dny)) (1983Gu05). See also comment on T <sub>1/2</sub> for 2507 level.<br>2632.7 <sup>d</sup> 3 (10 <sup>-</sup> ) B DE C 2756.7 <sup>2</sup> 3 (11 <sup>-</sup> ) B DE 2951.7 <sup>e</sup> 4 (14 <sup>+</sup> ) B DE 2951.7 <sup>e</sup> 5 (16 <sup>+</sup> ) B DE 2954.9 <sup>e</sup> 4 (14 <sup>+</sup> ) B DE 2954.9 <sup>e</sup> 4 (16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2507.3 3                                  | (10)+              | 3.6 ns 5       | B DEF     | J <sup>π</sup> : E2 60γ to 8 <sup>+</sup> 2447; D 283γ to (9) <sup>-</sup> 2224.<br>$T_{1/2}$ : ce(t), γγ(t) in (α,4nγ), (α,6nγ) (1983Gu05). Other values: 16 ns 3<br>(1975Li16), 15.9 ns 10 (1978Me11) in (α,xnγ) (superposition of $T_{1/2}$ for<br>2507 and 2535 levels). |
| 2535.5 <sup><i>c</i></sup> 4 (12 <sup>+</sup> ) 11.1 ns 5 B DE T <sub>1/2</sub> : ce(0, $\gamma\gamma(0)$ in <sup>192</sup> Pt( $\alpha,dn\gamma$ ). <sup>194</sup> Pt( $\alpha,dn\gamma$ ) (1983Gu05). See also comment on T <sub>1/2</sub> for 2507 level.<br>2632,7 <sup><i>d</i></sup> 3 (10 <sup>-</sup> ) B DE C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2534.2? 5                                 |                    |                | Α         | $J^{\pi}$ : possible 999 $\gamma$ to (3) <sup>+</sup> .                                                                                                                                                                                                                      |
| 2632.7 <sup>d</sup> 3 (10 <sup>-</sup> )<br>2756.7 <sup>c</sup> 3 (11 <sup>-</sup> )<br>2756.7 <sup>c</sup> 3 (11 <sup>-</sup> )<br>2756.7 <sup>c</sup> 3 (11 <sup>-</sup> )<br>2755.7 <sup>c</sup> 4 (14 <sup>+</sup> )<br>2902.3 11 (10 <sup>+</sup> )<br>291.7 <sup>d</sup> 4 (12 <sup>+</sup> )<br>291.7 <sup>d</sup> 4 (12 <sup>+</sup> )<br>291.9 <sup>d</sup> 3 (12 <sup>-</sup> )<br>291.9 <sup>d</sup> 3 (12 <sup>-</sup> )<br>292.9 <sup>d</sup> 4 (12 <sup>-</sup> )<br>292.9 <sup>d</sup> 4 (13 <sup>-</sup> )<br>292.9 <sup>d</sup> 4 (14 <sup>+</sup> )<br>292.9 <sup>d</sup> 4 (14 <sup>+</sup> )<br>292.9 <sup>d</sup> 4 (14 <sup>+</sup> )<br>292.9 <sup>d</sup> 4 (15 <sup>-</sup> )<br>293.9 <sup>d</sup> 5 (20 <sup>-</sup> )<br>294.9 <sup>d</sup> 10 (15 <sup>-</sup> )<br>293.9 <sup>d</sup> 5 (20 <sup>-</sup> )<br>294.9 <sup>d</sup> 10 (15 <sup>-</sup> )<br>293.9 <sup>d</sup> 5 (20 <sup>-</sup> )<br>295.9 <sup>d</sup> 6 (20 <sup>+</sup> )<br>295.9 <sup>d</sup> 6 (22 <sup>+</sup> )<br>295.9 <sup>d</sup> 7 (22 <sup>+</sup> ) | 2535.5 <sup>e</sup> 4                     | (12 <sup>+</sup> ) | 11.1 ns 5      | B DE      | T <sub>1/2</sub> : ce(t), $\gamma\gamma$ (t) in <sup>192</sup> Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup> Pt( $\alpha$ ,6n $\gamma$ ) (1983Gu05). See also comment on T <sub>1/2</sub> for 2507 level.                                                                      |
| 2657.17       11       C         2902.3       11       (10 <sup>+</sup> )       E         2905.17 <sup>6</sup> 4       (14 <sup>+</sup> )       B       DE         3261.9 <sup>4</sup> (12 <sup>+</sup> )       DE       3261.9 <sup>4</sup> (12 <sup>+</sup> )       DE         3261.9 <sup>4</sup> (12 <sup>+</sup> )       B       DE       3360.86 <sup>6</sup> 5       (16 <sup>+</sup> )       B       DE         3261.9 <sup>4</sup> (12 <sup>+</sup> )       DE       389.49 <sup>4</sup> (14 <sup>+</sup> )       DE       389.49 <sup>4</sup> (14 <sup>+</sup> )       B       DE         3894.9 <sup>4</sup> (14 <sup>-</sup> )       B       DE       389.49 <sup>4</sup> (15 <sup>-</sup> )       B       DE         384.9 <sup>6</sup> (16 <sup>-</sup> )       0.39 ns 4       B       DE       T <sub>1/2</sub> : (a)(cc)(t) in <sup>192</sup> Pt(a,4ny), <sup>194</sup> Pt(a,6ny) (1978Me11).         4130.6 <sup>4</sup> (17 <sup>-</sup> )       B       DE       4387.8 <sup>5</sup> (18 <sup>+</sup> )       B       DE         4216.9 <sup>4</sup> (17 <sup>-</sup> )       B       DE       4387.8 <sup>5</sup> (18 <sup>+</sup> )       B       DE         4310.6 <sup>5</sup> (18 <sup>+</sup> )       B       DE       521.60 <sup>4</sup> /10       (17 <sup>-</sup> )       E       521.60 <sup>4</sup> /10       DE       521.60 <sup>4</sup> /10       (17 <sup>-</sup> )       DE       521.60 <sup>4</sup> /10       DE       521.60 <sup>4</sup> /10       DE       521.61 <sup>4</sup> /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2632.7 <sup>d</sup> 3                     | (10 <sup>-</sup> ) |                | B DE      |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2657.1? 11                                |                    |                | С         |                                                                                                                                                                                                                                                                              |
| 2902.3 $1/1$ (10 <sup>-</sup> ) E<br>2917. $d^{4}$ (12 <sup>+</sup> ) DE<br>3047. $0^{f}$ 4 (12 <sup>+</sup> ) DE<br>3261. $9^{d}$ 3 (12 <sup>-</sup> ) B DE<br>3269. $d^{3}$ 3 (12 <sup>-</sup> ) B DE<br>3608. $d^{6}$ 5 (16 <sup>+</sup> ) B DE<br>3608. $d^{6}$ 5 (16 <sup>+</sup> ) DE<br>3894. $9^{d}$ 4 (14 <sup>-</sup> ) B DE<br>3894. $9^{d}$ 4 (14 <sup>-</sup> ) B DE<br>4089. $9^{g}$ 4 (16 <sup>-</sup> ) 0.39 ns 4 B DE<br>4130. $d^{5}$ 5 (16 <sup>+</sup> ) DE<br>4216. $g^{h}$ 4 (17 <sup>-</sup> ) B DE<br>4387. $7^{g}$ 5 (18 <sup>+</sup> ) DE<br>4387. $7^{g}$ 5 (18 <sup>+</sup> ) B DE<br>4387. $7^{g}$ 5 (18 <sup>+</sup> ) B DE<br>4388. $4^{h}$ 4 (19 <sup>-</sup> ) DE<br>4389. $4^{d}$ 5 (18 <sup>+</sup> ) B DE<br>4388. $4^{h}$ 4 (19 <sup>-</sup> ) DE<br>510. $d^{7}$ 5 (20 <sup>-</sup> ) DE<br>5221. $d^{m}$ 10 (17 <sup>-</sup> ) E<br>5216. $d^{h}$ 5 (21 <sup>-</sup> ) DE<br>5216. $d^{h}$ 5 (21 <sup>-</sup> ) DE<br>5271. $d^{6}$ 6 (20 <sup>+</sup> ) DE<br>5271. $d^{6}$ 6 (20 <sup>+</sup> ) DE<br>5316. $5^{f}$ 6 (20 <sup>+</sup> ) DE<br>5316. $5^{f}$ 6 (20 <sup>+</sup> ) DE<br>5316. $d^{h}$ 5 (21 <sup>-</sup> ) DE<br>5316. $d^{h}$ 6 (22 <sup>+</sup> ) DE<br>5316. $d^{h}$ 6 (22 <sup>+</sup> ) DE<br>5378.7 $d^{h}$ 7 (21 <sup>-</sup> ) E<br>5378.7 $d^{h}$ 7 (21 <sup>-</sup> ) DE<br>5378.7 $d^{h}$ 7 (21 <sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2756.7° 3                                 | $(11^{-})$         |                | B DE      |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2902.3 11                                 | $(10^{+})$         |                | E         |                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2951.7° 4                                 | (14')              |                | B DE      |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3047.0 <sup>J</sup> 4                     | $(12^{+})$         |                | DE        |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3261.9 <sup><i>a</i></sup> 3              | (12 <sup>-</sup> ) |                | B DE      |                                                                                                                                                                                                                                                                              |
| $3608.8^{-5} 5$ $(14^+)$ DE $3725.65$ $(14^+)$ DE $3725.65$ $(14^+)$ DE $384.9d^2 8$ $(14^-)$ B $988.9d^2 8$ $(14^-)$ B $988.9d^2 8$ $(16^-)$ DS $4000.5^h 4$ $(15^-)$ B $4089.9g^2 4$ $(16^-)$ 0.39 ns 4       B $4130.6^f 5$ $(16^+)$ DE $4216.9h^4 4$ $(17^-)$ B       DE $4387.7g^5 5$ $(18^+)$ B       DE $4389.4^d 5$ $(18^+)$ B       DE $4389.4^h 4$ $(19^-)$ DE $4741.6^f 5$ $(18^+)$ DE $4950.5^8 5$ $(20^-)$ DE $5216.6h^{-1} 5$ $(21^-)$ DE $5216.6h^{-1} 5$ $(21^-)$ DE $5316.5f^-6$ $(22^+)$ DE $5787.9f^-6$ $(22^+)$ DE $5787.9f^-6$ $(22^+)$ DE $6112.6^6 9$ $(22^+)$ E $6233.6^+12$ $(22^+)$ E <td>3449.6° 4</td> <td><math>(13^{-})</math></td> <td></td> <td>B DE</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3449.6° 4                                 | $(13^{-})$         |                | B DE      |                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3608.6° 5                                 | (16')              |                | B DE      |                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3669.8 <sup>J</sup> 4                     | $(14^+)$           |                | DE        |                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/25.05                                   | $(14^{-})$         |                |           |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2004.98 4                                 | (14)               |                | D DE      |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3984.9 <sup>d</sup> 8                     | (14)               |                | E         |                                                                                                                                                                                                                                                                              |
| 4089.95 4       (16)       0.39 ns 4       B DE $T_{1/2}$ : (a)(ce)(t) in <sup>12-</sup> Pt((a,4ny), <sup>12-</sup> Pt((a,5ny)) (19/8Mel1).         4130.6 <sup>4</sup> 5       (16 <sup>+</sup> )       DE         4216.9 <sup>h</sup> 4       (17 <sup>-</sup> )       B DE         4389.4 <sup>e</sup> 5       (18 <sup>+</sup> )       B DE         4389.4 <sup>e</sup> 5       (18 <sup>+</sup> )       DE         4519.8 <sup>m</sup> 10       (17 <sup>-</sup> )       E         4588.4 <sup>h</sup> 4       (19 <sup>-</sup> )       DE         5021.6 <sup>m</sup> 10       (19 <sup>-</sup> )       E         5130.7 <sup>i</sup> 5       (20 <sup>+</sup> )       B DE         5216.0 <sup>h</sup> 5       (21 <sup>-</sup> )       DE         5316.5 <sup>f</sup> 6       (20 <sup>+</sup> )       DE         5587.1 <sup>g</sup> 6       (22 <sup>+</sup> )       E         5652.2 <sup>g</sup> 6       (22 <sup>-</sup> )       DE         5787.9 <sup>f</sup> 6       (22 <sup>+</sup> )       DE         6012.2 <sup>h</sup> 6       (23 <sup>-</sup> )       DE         6125.5 <sup>m</sup> 8       (23 <sup>-</sup> )       E         6233.6 12       (22 <sup>+</sup> )       E         6303.3 <sup>n</sup> 9       (22 <sup>+</sup> )       E         6428.1 <sup>i</sup> 6       (24 <sup>+</sup> )       DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4010.5" 4                                 | $(15^{-})$         | 0.00 (         | B DE      | T = (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(                                                                                                                                                                                                                                 |
| $4130.6^{J} 5$ $(16^{+})$ DE $4216.9^{h} 4$ $(17^{-})$ B DE $4387.7^{g} 5$ $(18^{+})$ B DE $4389.4^{e} 5$ $(18^{+})$ B DE $4389.4^{e} 5$ $(18^{+})$ B DE $4519.8^{m} 10$ $(17^{-})$ E $4741.6^{f} 5$ $(18^{+})$ DE $4950.5^{g} 5$ $(20^{-})$ DE $5021.6^{m} 10$ $(19^{-})$ E $5130.7^{i} 5$ $(20^{+})$ DE $5216.0^{h} 5$ $(21^{-})$ DE $5343.5^{m} 7$ $(21^{-})$ DE $5545.2^{g} 6$ $(22)^{-}$ DE $5700.6^{i} 6$ $(22^{+})$ DE $6012.2^{h} 6$ $(22^{+})$ DE $6125.5^{m} 8$ $(23^{-})$ DE $6125.6^{m} 8$ $(23^{-})$ DE $6233.6 12$ $(22^{+})$ E $6233.6^{i} 6$ $(22^{+})$ E $6303.3^{i} 9$ $(22^{+})$ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4089.984                                  | (16)               | 0.39 ns 4      | B DE      | $I_{1/2}$ : ( $\alpha$ )(ce)(t) in <sup>1/2</sup> Pt( $\alpha$ ,4n $\gamma$ ), <sup>1/2</sup> Pt( $\alpha$ ,6n $\gamma$ ) (19/8Me11).                                                                                                                                        |
| $4216.9^{n} 4$ $(17^{-})$ B       DE $4387.7^{g}$ $(18^{+})$ B       DE $4389.4^{e}$ $(18^{+})$ B       DE $4519.8^{m}$ $10$ $(17^{-})$ E $4588.4^{h}$ $(19^{-})$ DE $4741.6^{f}$ $(18^{+})$ DE $4950.5^{g}$ $(20^{-})$ DE $5021.6^{m}$ $(19^{-})$ E $5130.7^{i}$ $(20^{+})$ DE $5216.0^{h}$ $(21^{-})$ DE $5216.6^{h}$ $(21^{-})$ DE $5271.6^{e}$ $(20^{+})$ DE $5316.5^{f}$ $(20^{+})$ DE $5343.5^{m}$ $(21^{-})$ DE $5587.18$ $(20^{+})$ E $5552.8^{g}$ $(22^{+})$ DE $5787.9^{f}$ $(22^{+})$ DE $6112.6^{e}$ $(22^{+})$ E $6125.5^{m}$ $(23^{-})$ E $6233.6^{12}$ $(22^{+})$ E $6303.3^{r1}$ $(22^{+})$ E $6303.3^{r1}$ $(22^{+})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4130.6 5                                  | (16 <sup>+</sup> ) |                | DE        |                                                                                                                                                                                                                                                                              |
| $4387, 1^6$ 5       (18)       B       DE $4389, 4^e$ 5       (18 <sup>+</sup> )       B       DE $4519, 8^m$ 10       (17)       E $4588, 4^h$ 4       (19 <sup>-</sup> )       DE $4741, 6^f$ 5       (18 <sup>+</sup> )       DE $950, 5^g$ 5       (20 <sup>-</sup> )       DE $5021, 6^m$ 10       (19 <sup>-</sup> )       E $5130, 7^i$ 5       (20 <sup>+</sup> )       B $5216, 0^h$ 5       (21 <sup>-</sup> )       DE $5271, 6^e$ 6       (20 <sup>+</sup> )       DE $5316, 5^f$ 6       (20 <sup>+</sup> )       DE $5543, 5^m$ 7       (21 <sup>-</sup> )       E $5587, 1.8$ (20 <sup>+</sup> )       DE $5787, 9^f$ 6       (22 <sup>+</sup> )       DE $5787, 9^f$ 6       (22 <sup>+</sup> )       DE $6012, 2^h$ 6       (22 <sup>+</sup> )       DE $6125, 5^m$ 8       (23 <sup>-</sup> )       DE $6125, 5^m$ 8       (23 <sup>-</sup> )       E $6233, 6^12$ (22 <sup>+</sup> )       E $6303, 3^n 9$ (22 <sup>+</sup> )       E $6428, 1^i$ 6       (24) <sup>+</sup> DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4216.9 <sup><i>n</i></sup> 4              | $(17^{-})$         |                | B DE      |                                                                                                                                                                                                                                                                              |
| $43694^{-7} 5$ $(18^{-7})$ E $451988^{m} 10$ $(17^{-7})$ E $45884^{h} 4$ $(19^{-7})$ DE $45876^{m} 10$ $(19^{-7})$ DE $4950.5^{g} 5$ $(20^{-7})$ DE $5021.6^{m} 10$ $(19^{-7})$ E $5130.7^{i} 5$ $(20^{+})$ DE $5216.6^{h} 5$ $(21^{-7})$ DE $5271.6^{e} 6$ $(20^{+})$ DE $5243.5^{m} 7$ $(21^{-7})$ E $5587.1 8$ $(20^{+})$ DE $5587.2^{g} 6$ $(22)^{-7}$ DE $5787.9^{f} 6$ $(22^{+})$ DE $6012.2^{h} 6$ $(22^{+})$ DE $612.5^{c} 9$ $(22^{+})$ E $6125.5^{m} 8$ $(23^{-7})$ E $6233.6 12$ $(22^{+})$ E $6303.3^{n} 9$ $(22^{+})$ E $6303.3^{n} 9$ $(22^{+})$ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4387.78 5                                 | (18)               |                | B DE      |                                                                                                                                                                                                                                                                              |
| $4518, 4^{h} 4$ $(19^{-})$ DE $4588, 4^{h} 4$ $(19^{-})$ DE $4741, 6^{f} 5$ $(18^{+})$ DE $5950, 6^{5} 5$ $(20^{-})$ DE $5021, 6^{m} 10$ $(19^{-})$ E $5130, 7^{i} 5$ $(20^{+})$ DE $5216, 0^{h} 5$ $(21^{-})$ DE $5271, 6^{e} 6$ $(20^{+})$ DE $5271, 6^{e} 6$ $(20^{+})$ DE $5271, 6^{e} 6$ $(20^{+})$ DE $5583, 5^{m} 7$ $(21^{-})$ E $5587, 1.8$ $(20^{+})$ E $5700, 6^{i} 6$ $(22)^{+}$ DE $5787, 9^{f} 6$ $(22^{+})$ DE $6112, 6^{e} 9$ $(22^{+})$ E $6122, 5^{m} 8$ $(23^{-})$ E $6233, 6.12$ $(22^{+})$ E $6303, 3^{n} 9$ $(22^{+})$ E $6303, 3^{n} 9$ $(22^{+})$ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4589.4^{\circ}$ J<br>$4510.8^{\circ}$ 10 | (10)<br>$(17^{-})$ |                | B DE<br>F |                                                                                                                                                                                                                                                                              |
| 4306.4       4       (19')       DE         4741.6       5       (18')       DE         5021.6       10       (19')       E         5021.6       10       (19')       E         5130.7       5       (20')       B       DE         5216.0       h       5       (20')       DE         5216.0       6       (20+)       DE       5271.6       6         5271.6       6       (20+)       DE       5316.5       f       (20+)       DE         5316.5       6       (20+)       DE       5587.1       8       (20+)       E         5787.9       6       (22+)       DE       5787.9       6       (22+)       DE         6012.2       h       6       (33-)       DE       6112.6       9       (22+)       E         6125.5       8       (23-)       E       6233.6       I2       (22+)       E         6233.6       I2       (22+)       E       6303.3       I9       (22+)       E         6428.1       6       (24) <sup>+</sup> DE       DE       6303.3       IP       IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4519.0 10                                 | (17)               |                | DE        |                                                                                                                                                                                                                                                                              |
| $4741.6^{-5}$ $(18^{-5})$ $DE$ $4950.5^{g}$ $(20^{-})$ $DE$ $5021.6^{m}$ $10^{-1}$ $E$ $5130.7^{i}$ $(20^{+})$ $B$ $5216.0^{h}$ $5^{-1}(21^{-})$ $DE$ $5271.6^{e}$ $(20^{+})$ $DE$ $5316.5^{f}$ $(20^{+})$ $DE$ $5316.5^{f}$ $(20^{+})$ $DE$ $5543.5^{m}$ $7^{-1}(21^{-})$ $E$ $5587.1^{-8}$ $(20^{+})$ $DE$ $5700.6^{i}$ $(22^{+})$ $DE$ $5771.9^{f}$ $(22^{+})$ $DE$ $6012.2^{h}$ $C$ $DE$ $6112.6^{e}$ $(22^{+})$ $E$ $612.5^{m}$ $8^{-1}(22^{+})$ $E$ $6233.6^{-12}$ $(22^{+})$ $E$ $6233.6^{-10}$ $(22^{+})$ $E$ $6428.1^{i}$ $(24)^{+}$ $DE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4300.4 4                                  | (19)               |                | DE        |                                                                                                                                                                                                                                                                              |
| $5021.6^m \ 10 \ (19^-)$ E $5130.7^i \ 5 \ (20^+)$ B DE $5216.0^h \ 5 \ (21^-)$ DE $5271.6^e \ 6 \ (20^+)$ DE $5316.5^f \ 6 \ (20^+)$ DE $5543.5^m \ 7 \ (21^-)$ E $5587.1 \ 8 \ (20^+)$ DE $5587.1 \ 8 \ (20^+)$ E $5552^g \ 6 \ (22)^-$ DE $5700.6^i \ 6 \ (22)^+$ DE $5770.9^f \ 6 \ (22^+)$ DE $6112.6^e \ 9 \ (22^+)$ E $6122.5^m \ 8 \ (23^-)$ E $6233.6 \ 12 \ (22^+)$ E $6233.6 \ 12 \ (22^+)$ E $6303.3^n \ 9 \ (22^+)$ E $6428.1^i \ 6 \ (24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/41.05 5                                 | (10)<br>$(20^{-})$ |                |           |                                                                                                                                                                                                                                                                              |
| $5130.7^i 5$ $(20^+)$ B       DE $5216.0^h 5$ $(21^-)$ DE $5271.6^e 6$ $(20^+)$ DE $5316.5^f 6$ $(20^+)$ DE $5543.5^m 7$ $(21^-)$ E $5587.1 8$ $(20^+)$ DE $5587.1 8$ $(20^+)$ E $5655.2^g 6$ $(22^-)$ DE $5700.6^i 6$ $(22^+)$ DE $6012.2^h 6$ $(23^-)$ DE $6112.6^e 9$ $(22^+)$ E $6125.5^m 8$ $(23^-)$ DE $6233.6 12$ $(22^+)$ E $6303.3^n 9$ $(22^+)$ E $6428.1^i 6$ $(24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5021.6^{m}$ 10                           | $(10^{-})$         |                | F         |                                                                                                                                                                                                                                                                              |
| 5116.0 <sup>h</sup> 5       (21 <sup>-</sup> )       DE         5216.0 <sup>h</sup> 5       (21 <sup>-</sup> )       DE         5271.6 <sup>e</sup> 6       (20 <sup>+</sup> )       DE         5316.5 <sup>f</sup> 6       (20 <sup>+</sup> )       DE         5543.5 <sup>m</sup> 7       (21 <sup>-</sup> )       E         5587.1 8       (20 <sup>+</sup> )       DE         5787.9 <sup>f</sup> 6       (22) <sup>+</sup> DE         5787.9 <sup>f</sup> 6       (22 <sup>+</sup> )       DE         6012.2 <sup>h</sup> 6       (23 <sup>-</sup> )       DE         6112.6 <sup>e</sup> 9       (22 <sup>+</sup> )       E         6233.6 12       (22 <sup>+</sup> )       E         6303.3 <sup>n</sup> 9       (22 <sup>+</sup> )       E         6428.1 <sup>i</sup> 6       (24) <sup>+</sup> DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5130.7^{i}$ 5                            | $(20^+)$           |                | B DE      |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5216.0^{h}.5$                            | $(20^{-})$         |                | DE        |                                                                                                                                                                                                                                                                              |
| $5316.5^f 6$ $(20^+)$ DE $5543.5^m 7$ $(21^-)$ E $5587.1 8$ $(20^+)$ E $5655.2^g 6$ $(22)^-$ DE $5700.6^i 6$ $(22)^+$ DE $5787.9^f 6$ $(22^+)$ DE $6012.2^h 6$ $(23^-)$ DE $6112.6^e 9$ $(22^+)$ E $6233.6 12$ $(22^+)$ E $6294.6 10$ $(22^+)$ E $6303.3^n 9$ $(22^+)$ E $6428.1^i 6$ $(24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5271.6 <sup>e</sup> 6                     | $(20^+)$           |                | DE        |                                                                                                                                                                                                                                                                              |
| $5543.5^m$ 7 $(21^-)$ E $5587.1\ 8$ $(20^+)$ E $5655.2^g\ 6$ $(22)^-$ DE $5700.6^i\ 6$ $(22)^+$ DE $5777.9^f\ 6$ $(22^+)$ DE $6012.2^h\ 6$ $(23^-)$ DE $6112.6^e\ 9$ $(22^+)$ E $6125.5^m\ 8$ $(23^-)$ E $6233.6\ 12$ $(22^+)$ E $6294.6\ 10$ $(22^+)$ E $6303.3^n\ 9$ $(22^+)$ E $6428.1^i\ 6$ $(24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5316.5 <sup><i>f</i></sup> 6              | $(20^{+})$         |                | DE        |                                                                                                                                                                                                                                                                              |
| $5587.1 \ 8$ $(20^+)$ E $5655.2^g \ 6$ $(22)^-$ DE $5700.6^i \ 6$ $(22)^+$ DE $5787.9^f \ 6$ $(22^+)$ DE $6012.2^h \ 6$ $(23^-)$ DE $6112.6^e \ 9$ $(22^+)$ E $6125.5^m \ 8$ $(23^-)$ E $6233.6 \ 12$ $(22^+)$ E $6294.6 \ 10$ $(22^+)$ E $6303.3^n \ 9$ $(22^+)$ E $6428.1^i \ 6$ $(24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5543.5 <sup>m</sup> 7                     | (21-)              |                | Е         |                                                                                                                                                                                                                                                                              |
| $5655.2^g \ 6$ $(22)^-$ DE $5700.6^i \ 6$ $(22)^+$ DE $5787.9^f \ 6$ $(22^+)$ DE $6012.2^h \ 6$ $(23^-)$ DE $6112.6^e \ 9$ $(22^+)$ E $6125.5^m \ 8$ $(23^-)$ E $6233.6 \ 12$ $(22^+)$ E $6303.3^n \ 9$ $(22^+)$ E $6428.1^i \ 6$ $(24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5587.1 8                                  | $(20^{+})$         |                | E         |                                                                                                                                                                                                                                                                              |
| $5700.6^{i} \ 6 \ (22)^{+}$ DE $5787.9^{f} \ 6 \ (22^{+})$ DE $6012.2^{h} \ 6 \ (23^{-})$ DE $6112.6^{e} \ 9 \ (22^{+})$ E $6125.5^{m} \ 8 \ (23^{-})$ E $6233.6 \ 12 \ (22^{+})$ E $6294.6 \ 10 \ (22^{+})$ E $6303.3^{n} \ 9 \ (22^{+})$ E $6428.1^{i} \ 6 \ (24)^{+}$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5655.2 <mark>8</mark> 6                   | (22)-              |                | DE        |                                                                                                                                                                                                                                                                              |
| $5787.9^{f} 6$ $(22^{+})$ DE $6012.2^{h} 6$ $(23^{-})$ DE $6112.6^{e} 9$ $(22^{+})$ E $6125.5^{m} 8$ $(23^{-})$ E $6233.6 12$ $(22^{+})$ E $6294.6 10$ $(22^{+})$ E $6303.3^{n} 9$ $(22^{+})$ E $6428.1^{i} 6$ $(24)^{+}$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5700.6 <sup>1</sup> 6                     | $(22)^{+}$         |                | DE        |                                                                                                                                                                                                                                                                              |
| $6012.2^h 6$ $(23^-)$ DE $6112.6^e 9$ $(22^+)$ E $6125.5^m 8$ $(23^-)$ E $6233.6 12$ $(22^+)$ E $6294.6 10$ $(22^+)$ E $6303.3^n 9$ $(22^+)$ E $6428.1^i 6$ $(24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5787.9 <sup>1</sup> 6                     | $(22^{+})$         |                | DE        |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6012.2 <sup>h</sup> 6                     | (23 <sup>-</sup> ) |                | DE        |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6112.6 <sup>e</sup> 9                     | (22 <sup>+</sup> ) |                | E         |                                                                                                                                                                                                                                                                              |
| $0233.0 \ 12$ $(22^+)$ E $6294.6 \ 10$ $(22^+)$ E $6303.3^n \ 9$ $(22^+)$ E $6428.1^i \ 6$ $(24)^+$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6125.5 <sup>m</sup> 8                     | $(23^{-})$         |                | E         |                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0233.0 <i>12</i>                          | $(22^{+})$         |                | E         |                                                                                                                                                                                                                                                                              |
| $6428.1^{i} 6 (24)^{+}$ DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $6303.3^{n}.9$                            | $(22^{+})$         |                | L<br>F    |                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $6428.1^{i}$ 6                            | $(22)^+$           |                | DE        |                                                                                                                                                                                                                                                                              |

| E(level) <sup>†</sup>                        | $J^{\pi \ddagger}$ | T <sub>1/2</sub> # | XREF | Comments                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|--------------------|--------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6432.8 <sup>n</sup> 11                       | $(23^{+})$         | 10 ps +4 -3        | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 6437.6 <sup>g</sup> 7                        | (24 <sup>-</sup> ) |                    | DE   |                                                                                                                                                                                                                                                                                                                                                     |
| 6709.4 <sup>n</sup> 11                       | (24 <sup>+</sup> ) | 14 ps +3-4         | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 6855.0 <sup>h</sup> 6                        | (25 <sup>-</sup> ) |                    | DE   |                                                                                                                                                                                                                                                                                                                                                     |
| 6878.4 <mark>0</mark> 11                     | (23 <sup>-</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 6949.2 <sup>m</sup> 10                       | (25 <sup>-</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7035.3 <mark>0</mark> 10                     | (24 <sup>-</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| $7043.3^{n}$ 12                              | $(25^{+})$         | 0.7 ps +7-11       | E    | $T_{1/2}$ : this value appears to have been misprinted.                                                                                                                                                                                                                                                                                             |
| 7267.6 <sup>8</sup> 12                       | (26 <sup>-</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7272.50 8                                    | (25 <sup>-</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7320.1 <sup>1</sup> 12                       | (26 <sup>+</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7434.9" 13                                   | $(26^+)$           | 2.5 ps $+13-7$     | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7516.10 9                                    | (26)               |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| /684.9 9                                     | (25,26)            |                    | Ł    | $J^{*}: Q \ 124/\gamma \text{ to } (24) \ 6438; \ 413\gamma \text{ to } (25) \ 72/3; \ 103\gamma \text{ from } (27) \ 7788.$                                                                                                                                                                                                                        |
| 7722.0 <sup>h</sup> 12                       | (27 <sup>-</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7787.8 <mark>0</mark> 8                      | (27 <sup>-</sup> ) |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7819.6 <sup>m</sup> 10                       | (27-)              |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 7838.4 11                                    | $(27^{-})$         |                    | E    | $J^{n}$ : Q 889 $\gamma$ to (25 <sup>-</sup> ) 6949; $\gamma$ from (28 <sup>-</sup> ).                                                                                                                                                                                                                                                              |
| 7926.70 10                                   | (28)               | 1.0 10             | E    |                                                                                                                                                                                                                                                                                                                                                     |
| /959.0* 14                                   | $(27^{+})$         | 1.2 ps 10          | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 8101.6 <mark>8</mark> 16                     | $(28^{-})$         |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 8207.6.16                                    | $(28^{-})$         |                    | F    |                                                                                                                                                                                                                                                                                                                                                     |
| 8224.3 11                                    | $(28^{-})$         |                    | Ē    |                                                                                                                                                                                                                                                                                                                                                     |
| 8263.5° 11                                   | (29 <sup>-</sup> ) |                    | Е    |                                                                                                                                                                                                                                                                                                                                                     |
| 8302.6 <sup>n</sup> 14                       | (28 <sup>+</sup> ) | 0.5 ps 5           | Е    |                                                                                                                                                                                                                                                                                                                                                     |
| 8331.1 <sup>i</sup> 16                       | $(28^{+})$         |                    | Е    |                                                                                                                                                                                                                                                                                                                                                     |
| 8543.2 <sup>0</sup> 12                       | (30 <sup>-</sup> ) |                    | Е    |                                                                                                                                                                                                                                                                                                                                                     |
| 8631.0 <sup>h</sup> 16                       | $(29^{-})$         |                    | Е    |                                                                                                                                                                                                                                                                                                                                                     |
| 8693.0 16                                    | (29 <sup>-</sup> ) |                    | Е    |                                                                                                                                                                                                                                                                                                                                                     |
| 8712.6 <sup>n</sup> 15                       | (29 <sup>+</sup> ) | 0.14 ps +49-14     | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 8961.3 <sup>n</sup> 15                       | (30 <sup>+</sup> ) | 0.9 ps 4           | Е    |                                                                                                                                                                                                                                                                                                                                                     |
| 8990.2 <sup>0</sup> 13                       | (31-)              |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 9196.0 <sup>n</sup> 16                       | (31 <sup>+</sup> ) | 2.4 ps +4-3        | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 9375.9 <sup>n</sup> 17                       | (32 <sup>+</sup> ) | 1.5 ps <i>3</i>    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 9443.4° <i>13</i>                            | $(32^{-})$         |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 9666.0" 18                                   | $(33^{+})$         |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 9932.8° 14                                   | (33)               |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| $10058.0^{\circ} 20$<br>$10464 4^{\circ} 17$ | $(34^{-})$         |                    | E    |                                                                                                                                                                                                                                                                                                                                                     |
| 10404.4 <i>17</i>                            | (34)               |                    |      | $E(1,\dots,1)$ , $\pi = 559(-500)$ (see semicont for $214.4$ to $1,\dots,1$ )                                                                                                                                                                                                                                                                       |
| x <sup>j</sup>                               | $J \approx (8) $   |                    | r    | E(level): x=5580, 500  (see comment for 214.4+x level).                                                                                                                                                                                                                                                                                             |
| 214.4+x <sup>J</sup> 3                       | J+2                | <77 ps             | F    | <ul> <li>E(level),J<sup><i>i</i></sup>: From the study of quasi-continuum γ-ray spectra,<br/>2000La31 estimate level energy as 5800 500 and J=9.7 10 using<br/>data for <sup>194</sup>Hg SD-1 band as a reference.</li> <li>T<sub>1/2</sub>: from RDDS (1994Wi06) in (HI,xnγ):SD.</li> <li>Q(transition)&gt;6 (1994Wi06) in (HI,xnγ):SD.</li> </ul> |
| 472.2+x <sup>j</sup> 4                       | J+4 <sup>@</sup>   | 3.7 ps +8-6        | F    | T <sub>1/2</sub> : RDDS (1994Wi06). Others: 3.1 ps $+10-6$ (RDDS, 1994Le24);<br>3.1 ps 10 (RDDS, 1993De35). From (HI,xnγ):SD.<br>Q(transition)=18.3 16 (1994Wi06), 19.3 $+50-25$ (1993De35) in (HI,xnγ):SD.                                                                                                                                         |

| E(level) <sup>†</sup>      | J <sup>π</sup> ‡         | $T_{1/2}^{\#}$            | XREF | Comments                                                                                                                                                                                                                                                                                                                 |
|----------------------------|--------------------------|---------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                          |                           |      | Q(transition)=18.3 <i>16</i> (1994Wi06), 19.3 +50-25 (1993De35) in (HI,xny):SD.                                                                                                                                                                                                                                          |
| 772.3+x <sup>j</sup> 4     | J+6 <sup>@</sup>         | 1.74 ps +22-17            | F    | $\begin{array}{l} T_{1/2}: \mbox{ RDDS (1994Wi06). Others: 2.0 ps +8-6 (RDDS, 1994Le24);} \\ 2.1 \mbox{ ps } 12 \mbox{ (RDDS, 1993De35). From (HI,xn\gamma):SD.} \\ Q(\mbox{transition}) = 18.5 \ 10 \ (1994Wi06), \ 17.5 \ +35-25 \ (1994Le24), \ 17 \\ \ +11-3 \ (1993De35) \ \mbox{in (HI,xn\gamma):SD.} \end{array}$ |
| 1113.7+x <sup>j</sup> 4    | J+8 <sup>@</sup>         | 0.84 ps +22-20            | F    | $T_{1/2}$ : from RDDS (1994Wi06) in (HI,xn $\gamma$ ):SD.<br>Q(transition)=19.2 +24-21 (1994Wi06) in (HI,xn $\gamma$ ):SD.                                                                                                                                                                                               |
| 1495.3+x <sup>j</sup> 4    | J+10 <sup>@</sup>        | 0.48 ps +62-13            | F    | $T_{1/2}$ : from RDDS (1994Wi06) in (HI,xn $\gamma$ ):SD.<br>Q(transition)=20 +4-7 (1994Wi06) in (HI,xn $\gamma$ ):SD.                                                                                                                                                                                                   |
| 1916.4+x <sup>j</sup> 5    | J+12 <sup>@</sup>        |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| 2375.2+x <sup>j</sup> 5    | J+14 <sup>@</sup>        | 0.18 ps +5-4              | F    | $T_{1/2}$ : DSAM (1994Wi06). Other: 0.16 ps 5 (1990Mo16). From (HI,xny):SD.                                                                                                                                                                                                                                              |
| $2871.2 + \pi \frac{1}{5}$ | L 16 <sup>0</sup>        | $0.127 m_{\odot} + 17.21$ | F    | Q((Iranshon)=20.7 + 51 - 25 (1994 W100)  III (H1, XIIY):SD                                                                                                                                                                                                                                                               |
| 2071.2+x3 5                | <b>J</b> +10             | 0.137 ps +17-21           | г    | $1_{1/2}$ . DSAW (1994W100). Others: 0.13 ps 5 (1990W010), 0.19 5<br>(1998Bu03). From (HI,xn $\gamma$ ):SD.<br>Q(transition)=19.3 +17-11 (1994Wi06), 19.9 +31-25 (1998Bu03).<br>From (HI,xn $\gamma$ ):SD.                                                                                                               |
| 3403.3+x <sup>j</sup> 6    | J+18 <sup>@</sup>        | 0.093 ps +10-14           | F    | T <sub>1/2</sub> : DSAM (1994Wi06). Others: 0.089 ps 31 (1990Mo16); 0.13<br>+2-3 (1998Bu03). From (HI,xn $\gamma$ ):SD.<br>Q(transition)=19.6 +17-11 (1994Wi06), 20.3 +31-21 (1998Bu03).<br>From (HI,xn $\gamma$ ):SD.                                                                                                   |
| 3970.7+x <sup>j</sup> 6    | J+20 <sup>@</sup>        | 0.068 ps +10-11           | F    | T <sub>1/2</sub> : DSAM (1994Wi06). Other: 0.058 ps <i>17</i> (1990Mo16). From (HI,xny):SD.<br>O(transition)=19.6 + <i>19</i> - <i>13</i> (1994Wi06) in (HI,xny):SD.                                                                                                                                                     |
| 4572.4+x <sup>j</sup> 6    | J+22 <sup>@</sup>        | 0.062 ps +10-7            | F    | $T_{1/2}$ : DSAM (1994Wi06). Other: 0.055 ps <i>14</i> (1990Mo16). From (HI,xny):SD.<br>O(transition)=17.7 <i>12</i> (1994Wi06) in (HI,xny):SD.                                                                                                                                                                          |
| 5207.3+x <sup>j</sup> 7    | J+24 <sup>@</sup>        | 0.050 ps +10-12           | F    | $T_{1/2}$ : DSAM (1994Wi06). Other: 0.042 ps 17 (1990Mo16). From (HI,xny):SD.<br>O(transition)=17.4 +24-15 (1994Wi06) in (HI,xny):SD.                                                                                                                                                                                    |
| 5875.4+x <sup>j</sup> 7    | J+26 <sup>@</sup>        | 0.031 ps +9-8             | F    | $T_{1/2}$ : DSAM (1994Wi06). Other: 0.034 ps 9 (1990Mo16). From (HI,xny):SD.<br>O(transition)=19.3 +29-23 (1994Wi06) in (HI xny):SD.                                                                                                                                                                                     |
| 6575.5+x <sup>j</sup> 7    | J+28 <sup>@</sup>        | 0.032 ps +9-8             | F    | $T_{1/2}$ : DSAM (1994Wi06). Other: 0.032 ps 14 (1990Mo16). From (HI,xny):SD.<br>Q(transition)=16.9 +15-20 (1994Wi06) in (HI,xny):SD.                                                                                                                                                                                    |
| 7307.0+x <sup>j</sup> 8    | J+30 <sup>@</sup>        | 0.021 ps +11-21           | F    | T <sub>1/2</sub> : from DSAM (1994Wi06) in (HI,xn $\gamma$ ):SD.<br>Q(transition)=19 + $\infty$ -4 (1994Wi06) in (HI,xn $\gamma$ ):SD.                                                                                                                                                                                   |
| 8069.3+x <sup>j</sup> 8    | J+32 <sup>@</sup>        | 0.019 ps +18-19           | F    | $T_{1/2}$ : DSAM (1994Wi06). Other: <0.03 ps (1990Mo16). From (HI,xnγ):SD.<br>Q(transition)=18 +∞-6 (1994Wi06) in (HI,xnγ):SD.                                                                                                                                                                                           |
| 8862.0+x <sup>j</sup> 9    | J+34 <sup>@</sup>        |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| 9684.9+x <sup>j</sup> 10   | J+36 <sup>@</sup>        |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| 10538.0+x <sup>j</sup> 11  | J+38 <sup>@</sup>        |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| 11426.7+x? <sup>j</sup> 13 | J+40 <sup>@</sup>        |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| у <sup><b>k</b></sup>      | J1≈(10) <sup>&amp;</sup> |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| 241.2+y <sup>k</sup> 10    | J1+2 <sup>&amp;</sup>    |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| 523.6+y <sup>k</sup> 11    | J1+4 <sup>&amp;</sup>    |                           | F    |                                                                                                                                                                                                                                                                                                                          |
| 845.7+y <sup>k</sup> 11    | J1+6 <sup>&amp;</sup>    |                           | F    |                                                                                                                                                                                                                                                                                                                          |

#### <sup>192</sup>Hg Levels (continued)

| E(level) <sup>†</sup>     | Jπ‡                      | T <sub>1/2</sub> # | XREF | Comments                                                                                                                      |
|---------------------------|--------------------------|--------------------|------|-------------------------------------------------------------------------------------------------------------------------------|
| 1207.0+y <sup>k</sup> 11  | J1+8 <sup>&amp;</sup>    |                    | F    |                                                                                                                               |
| 1607.2+y <sup>k</sup> 11  | J1+10 <sup>&amp;</sup>   |                    | F    |                                                                                                                               |
| 2045.2+y <sup>k</sup> 11  | J1+12 <sup>&amp;</sup>   |                    | F    |                                                                                                                               |
| 2520.4+y <sup>k</sup> 12  | J1+14 <sup>&amp;</sup>   | 0.14 ps 4          | F    | $T_{1/2}$ : from DSAM (1995Ko17) in (HI,xn $\gamma$ ):SD.<br>O(transition)=22.1 +29-30 (1995Ko17) in (HI,xn $\gamma$ ):SD.    |
| 3031.4+y <sup>k</sup> 12  | J1+16 <sup>&amp;</sup>   | 0.15 ps +5-3       | F    | $T_{1/2}$ : from DSAM (1995Ko17) in (HI,xn $\gamma$ ):SD.<br>O(transition)=17.8 +28-20 (1995Ko17) in (HI,xn $\gamma$ ):SD.    |
| 3578.1+y <sup>k</sup> 12  | J1+18 <sup>&amp;</sup>   | 0.100 ps 14        | F    | $T_{1/2}$ : from DSAM (1995Ko17) in (HI,xn $\gamma$ ):SD.<br>O(transition)=18.2 <i>13</i> (1995Ko17) in (HI.xn $\gamma$ ):SD. |
| 4156.9+y <sup>k</sup> 12  | J1+20 <sup>&amp;</sup>   | 0.064 ps 8         | F    | $T_{1/2}$ : from DSAM (1995Ko17) in (HI,xn $\gamma$ ):SD.<br>O(transition)=19.4 <i>13</i> (1995Ko17) in (HI,xn $\gamma$ ):SD. |
| 4761.3+y <sup>k</sup> 12  | J1+22 <sup>&amp;</sup>   | 0.052 ps +6-7      | F    | $T_{1/2}$ : from DSAM (1995Ko17) in (HI,xn $\gamma$ ):SD.<br>O(transition)=19.4 <i>13</i> (1995Ko17) in (HI,xn $\gamma$ ):SD. |
| 5385.5+y <sup>k</sup> 13  | J1+24 <sup>&amp;</sup>   | 0.044 ps 6         | F    | $T_{1/2}$ : from DSAM (1995Ko17) in (HI,xn $\gamma$ ):SD.<br>O(transition)=19.5 <i>13</i> (1995Ko17) in (HI,xn $\gamma$ ):SD. |
| 6037.7+y <sup>k</sup> 13  | J1+26 <sup>&amp;</sup>   |                    | F    |                                                                                                                               |
| $6722.0 + y^{k}$ 13       | J1+28 <sup>&amp;</sup>   |                    | F    |                                                                                                                               |
| 7439.7+y <sup>k</sup> 14  | J1+30 <sup>&amp;</sup>   |                    | F    |                                                                                                                               |
| 8189.5+y <sup>k</sup> 14  | J1+32 <sup>&amp;</sup>   |                    | F    |                                                                                                                               |
| 8972.6+y <sup>k</sup> 15  | J1+34 <sup>&amp;</sup>   |                    | F    |                                                                                                                               |
| 9791.6+y? <sup>k</sup> 18 | J1+36 <mark>&amp;</mark> |                    | F    |                                                                                                                               |
| zl                        | J2                       |                    | F    |                                                                                                                               |
| 333.1+z <sup>l</sup> 3    | J2+2                     |                    | F    |                                                                                                                               |
| $705.9 + z^l 4$           | J2+4                     |                    | F    |                                                                                                                               |
| $1118.0+z^{l}$ 5          | J2+6                     |                    | F    |                                                                                                                               |
| $1568.6 + z^l 5$          | J2+8                     |                    | F    |                                                                                                                               |
| $2056.9 + z^l 6$          | J2+10                    |                    | F    |                                                                                                                               |
| $2582.4 + z^l 8$          | J2+12                    |                    | F    |                                                                                                                               |
| 3144.1+z <sup>l</sup> 9   | J2+14                    |                    | F    |                                                                                                                               |
| 3741.4+z <sup>l</sup> 10  | J2+16                    |                    | F    |                                                                                                                               |
| 4371.5+z <sup>l</sup> 11  | J2+18                    |                    | F    |                                                                                                                               |
| 5030.5+z <sup>l</sup> 14  | J2+20                    |                    | F    |                                                                                                                               |
| 5711.5+z <sup>l</sup> 20  | J2+22                    |                    | F    |                                                                                                                               |

<sup>†</sup> From least-squares fit to adopted  $E_{\gamma}$ , allowing  $\Delta E_{\gamma}=1$  keV whenever authors failed to state the uncertainty in  $E_{\gamma}$ .

<sup>‡</sup> From  $\gamma$ -ray multipolarities, coincidence data, and band structure in (HI,xn $\gamma$ ) and <sup>192</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup>Pt( $\alpha$ ,6n $\gamma$ ), except where noted; continuing  $J^{\pi}$  patterns established.

<sup>#</sup> For SD bands, values are from recoil distance Doppler shift (RDDS) and/or DSAM data in (HI,xn $\gamma$ ):SD. Values for other levels are from Doppler-shift recoil distance in <sup>160</sup>Gd(<sup>36</sup>S,4n $\gamma$ ), unless noted to the contrary.

<sup>@</sup> From fit to expansions relating second moment of inertia and angular frequency (1990Be01).

& From fit to expansions relating second moment of inertia and angular frequency (1995Ko17),  $J\approx(10)$  for E(level)=y.

<sup>*a*</sup> Band(A): g.s. band,  $\pi = +, \alpha = 0$ .

<sup>b</sup> Based on smooth progression of level energies and independently established  $J^{\pi}(g.s.)$  and mult(423 $\gamma$ ), definite  $J^{\pi}$  has been assigned to all members of the g.s. band.

<sup>c</sup> Band(B): Band AE,  $\pi = -, \alpha = 1$ . 2-quasineutron band involving 1/2[660] and 1/2[521] Nilsson orbitals (1986Hu02).

- <sup>*d*</sup> Band(C): Band AF,  $\pi = -, \alpha = 0$ . 2-quasineutron band involving 1/2[660] and 1/2[521] Nilsson orbitals (1986Hu02).
- <sup>*e*</sup> Band(D): Band AB,  $\pi$ =+, $\alpha$ =0. 2-quasineutron band involving 1/2[660] Nilsson orbital (1986Hu02).
- <sup>*f*</sup> Band(E):  $\pi$ =+, $\alpha$ =0 vibrational band (1986Hu02,1994Le08). Quasivibrational terminating band.
- <sup>g</sup> Band(F): Band ABCF,  $\pi$ =-, $\alpha$ =0. 4-quasineutron band involving 1/2[660], 3/2[651], 1/2[521] Nilsson orbitals (1986Hu02).
- <sup>h</sup> Band(G): Band ABCE,  $\pi = -, \alpha = 1$ . 4-quasineutron band involving 1/2[660], 3/2[651], 1/2[521] Nilsson orbitals (1986Hu02).
- <sup>*i*</sup> Band(H): Band ABCD,  $\pi$ =+, $\alpha$ =0 (1995Le33). 4-quasineutron band involving 1/2[660] and 3/2[651] Nilsson orbitals (1986Hu02).
- <sup>*j*</sup> Band(I): SD-1 band (1992La07,1994Ga07,1995Fa03,1997Mo12,1998Bu03). Percent population  $\approx 2.0$  (1992La07, 1995Fa03),  $\approx 1.6$  (1995Ko17). Average Q(transition)=20 2 (DSAM data, 1990Mo16), 18.6 *14* (1994Wi06, low-J states), 17.6 *10* (1997Mo12 text; 10%–15% uncertainty in stopping power not included), 20.2 *12* (1998Bu03). From experimental data, the bandhead (J=0 state) is estimated to lie at 5.2-6.2 MeV (1992La19); 1997Mo22 estimate that band lies 4.3 MeV 9 above yrast line at point of decay and that the average number of steps from SD states to yrast line is 3.2 *6*. Band exhibits integer alignment relative to SD-1 and SD-3 bands of <sup>194</sup>Hg for  $\hbar\omega\approx 0.2$  MeV (1990St12) (identical bands). From the study of quasi-continuum  $\gamma$ -ray spectra, 2000La31 estimate level energy of 5800 *500* for the second member and J=9.7 *10*.
- <sup>*k*</sup> Band(J): SD-2 band (1995Fa03,1995Ko17). Percent population=0.11 (1995Ko17), 0.2 (1995Fa03). Average Q(transition)=19.5 *15* (1995Ko17). Transition energies in this band are within 3 keV of those for the SD-2 band of <sup>194</sup>Hg for  $E\gamma \le 550$ ; a band crossing occurs near  $\hbar\omega$ =0.3.
- <sup>*l*</sup> Band(K): SD-3 band (1995Fa03). Percent population=0.1 (1995Fa03). Note that transition energies in this band lie within 0.3 keV of those for transitions in the SD-2 band of <sup>191</sup>Hg for  $\hbar\omega \le 0.31$ .
- <sup>*m*</sup> Band(L): Band ABDE (1994Le08,1995Le33). Possibly (( $\nu i_{13/2}$ )<sup>3</sup>( $\nu p_{3/2}$ )).
- <sup>*n*</sup> Band(M):  $\pi = (+)$  dipole band (1994Le08,1995Le33). Possibly  $((\pi h_{9/2})^2)K=8$  coupled with  $((\nu i_{13/2})^4)J=20$  or with  $(((\nu i_{13/2})^2)J=12)((\pi h_{11/2})^2)J=10)$ .
- <sup>o</sup> Band(N):  $\pi = (-)$  dipole band (1994Le08,1995Le33). Possibly ( $(\pi h_{11/2})(\pi i_{13/2})$ )K=11 coupled with ( $(\nu i_{13/2})^4$ )J=20 or with ( $((\nu i_{13/2})^2)$ J=12( $(\pi h_{11/2})^2$ )J=10).

|                        |                      |                        |                         |                  |                      | Adopted Le         | vels, Gammas (c           | ontinued)    |                                                                                                                                                                                             |
|------------------------|----------------------|------------------------|-------------------------|------------------|----------------------|--------------------|---------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                        |                         |                  |                      |                    | $\gamma(^{192}\text{Hg})$ |              |                                                                                                                                                                                             |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | $\delta^{\dagger}$        | $\alpha^{i}$ | Comments                                                                                                                                                                                    |
| 422.79                 | 2+                   | 422.8 1                | 100                     | 0.0              | 0+                   | E2                 |                           | 0.0410       | Mult.: stretched Q from $\gamma(\theta)$ in (HI,xn $\gamma$ ):SD; not M2 from K/L in (p.6n $\gamma$ ) and <sup>192</sup> Tl $\varepsilon$ decay.                                            |
| 1057.58                | 4+                   | 634.8 <i>1</i>         | 100                     | 422.79           | 2+                   | E2                 |                           | 0.01550      |                                                                                                                                                                                             |
| 1113.60                | $(2)^{+}$            | 690.8 <i>1</i>         | 100 6                   | 422.79           | $2^{+}$              | M1+E2              | 1.7 +5-3                  | 0.0197 23    |                                                                                                                                                                                             |
|                        |                      | 1113.0 <sup>j</sup> 2  | ≈24 <b>j</b>            | 0.0              | $0^{+}$              | (E2)               |                           |              |                                                                                                                                                                                             |
| 1535.2                 | $(3)^{+}$            | 477.6 <i>3</i>         | ≈23                     | 1057.58          | 4+                   | M1(+E2)            | 0.4 + 5 - 4               | 0.093 23     |                                                                                                                                                                                             |
|                        |                      | 1113.0 <sup>j</sup> 2  | ≈100 <sup>j</sup>       | 422.79           | $2^{+}$              | M1.E2              |                           |              |                                                                                                                                                                                             |
| 1732.98                | $(4)^+$              | 619.4 2                | 80 12                   | 1113.60          | $(2)^{+}$            | E2                 |                           | 0.01637      |                                                                                                                                                                                             |
|                        |                      | 675.4 1                | 100 6                   | 1057.58          | 4 <sup>+</sup>       | M1+E2              | 0.7 + 3 - 2               | 0.032 5      |                                                                                                                                                                                             |
| 1803.05                | 6+                   | 745.5 <i>1</i>         | 100                     | 1057.58          | $4^{+}$              | E2                 |                           | 0.01095      |                                                                                                                                                                                             |
| 1831.62                | $(2^+, 3, 4^+)$      | 717.9 <i>3</i>         | 100.0 <sup>e</sup> 14   | 1113.60          | $(2)^{+}$            |                    |                           |              |                                                                                                                                                                                             |
|                        |                      | 774.1 2                | 71 <sup>e</sup> 6       | 1057.58          | 4+                   |                    |                           |              | Other I $\gamma$ (774)/I $\gamma$ (718): 82 <i>12</i> from high-J <sup>192</sup> Tl $\varepsilon$ decay.                                                                                    |
| 1843.90                | (5)-                 | 786.3 <i>1</i>         | 100                     | 1057.58          | 4+                   | E1                 |                           |              | 5                                                                                                                                                                                           |
| 1844.59                | (3,4)                | 1421.8 2               | 100                     | 422.79           | $2^{+}$              |                    |                           |              |                                                                                                                                                                                             |
| 1908.58                | 1,2+                 | 1486.1 <i>4</i>        | 67 <sup>e</sup> 8       | 422.79           | 2+                   |                    |                           |              | Other I $\gamma$ (1486):I $\gamma$ (1908)=104 20:100 16 from <sup>192</sup> Tl $\varepsilon$ decay.                                                                                         |
|                        |                      | 1908.4 <i>3</i>        | 100 <sup>e</sup> 8      | 0.0              | $0^{+}$              |                    |                           |              |                                                                                                                                                                                             |
| 1977.03                | $(7)^{-}$            | 133.1 <i>1</i>         | 42.4 27                 | 1843.90          | $(5)^{-}$            | E2                 |                           | 1.740        | B(E2)(W.u.)≈84                                                                                                                                                                              |
|                        |                      | 174.0 <i>1</i>         | 100 4                   | 1803.05          | 6+                   | E1                 |                           | 0.1048       | $B(E1)(W.u.) \approx 3.7 \times 10^{-5}$                                                                                                                                                    |
| 1986.9?                | (6 <sup>-</sup> )    | 143 <mark>8k</mark>    | 100 <mark>8</mark>      | 1843.90          | $(5)^{-}$            | (M1) <sup>g</sup>  |                           | 2.84         |                                                                                                                                                                                             |
| 2056.29                | $(1,2^+)$            | 1633.5 2               | 100 <sup>e</sup> 8      | 422.79           | 2+                   |                    |                           |              |                                                                                                                                                                                             |
|                        |                      | 2056.0 <sup>k</sup> 6  | <58 <sup>e</sup>        | 0.0              | $0^{+}$              |                    |                           |              |                                                                                                                                                                                             |
| 2081.69                | $(1,2^{+})$          | 1658.9 2               | 100 <sup>e</sup> 8      | 422.79           | $2^{+}$              |                    |                           |              |                                                                                                                                                                                             |
|                        |                      | 2081.9 <sup>k</sup> 6  | 3.5 <sup>e</sup> 13     | 0.0              | $0^{+}$              |                    |                           |              |                                                                                                                                                                                             |
| 2186.98                | $(6)^{-}$            | 343.1 2                | 35 <sup>e</sup> 13      | 1843.90          | $(5)^{-}$            | M1                 |                           | 0.251        |                                                                                                                                                                                             |
|                        | (-)                  | 383.9 2                | 100 <sup>e</sup> 13     | 1803.05          | 6+                   | E1                 |                           | 0.01579      | Mult.: E1,M1 from K/L in $(\alpha, 4n\gamma)$ ; E1,E2 from                                                                                                                                  |
|                        |                      |                        |                         |                  |                      |                    |                           |              | $\alpha(K)$ exp in $\varepsilon$ decay.                                                                                                                                                     |
| 2216.20                | $(8)^{-}$            | 239.2 2                | 100                     | 1977.03          | $(7)^{-}$            | M1+E2              | 0.64 11                   | 0.54 4       | B(M1)(W.u.)=0.00081 10; B(E2)(W.u.)=2.3 6                                                                                                                                                   |
|                        |                      |                        |                         |                  |                      |                    |                           |              | δ: weighted average of 0.81 <i>15</i> , 1.1 <i>3</i> from <sup>192</sup> Tl ε decay (9.6 min+10.8 min) and 0.88 <i>16</i> , 0.50 8 from <sup>192</sup> Pt(α,4nγ), <sup>194</sup> Pt(α,6nγ). |
| 2223.85                | (9)-                 | 246.8 2                | 100                     | 1977.03          | $(7)^{-}$            | E2                 |                           | 0.194        |                                                                                                                                                                                             |
| 2276.9                 | 1,2+                 | 1854.0 4               | 100 9                   | 422.79           | $2^+$                |                    |                           |              |                                                                                                                                                                                             |
|                        |                      | 2277.0 6               | 56 9                    | 0.0              | $0^{+}$              |                    |                           |              |                                                                                                                                                                                             |
| 2284.7                 |                      | 1171.1 4               | 100                     | 1113.60          | $(2)^{+}$            |                    |                           |              |                                                                                                                                                                                             |
| 2300.7                 | $(6,7,8)^{-}$        | 323.7 2                | 100                     | 1977.03          | $(7)^{-}$            | M1+E2              | 0.75 +17-16               | 0.218 22     |                                                                                                                                                                                             |
| 2447.2                 | 8+                   | 470 <mark>h</mark>     |                         | 1977.03          | $(7)^{-}$            |                    |                           |              | Not observed in $\varepsilon$ decay.                                                                                                                                                        |

 $^{192}_{80} Hg_{112}$ -7

From ENSDF

|                        |                      |                            |                         |                  |                        | Ado                      | pted Levels, Gamm               | has (continued)                                                                                                                                                                                                                                                                                       |
|------------------------|----------------------|----------------------------|-------------------------|------------------|------------------------|--------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                            |                         |                  |                        |                          | $\gamma(^{192}\text{Hg})$ (cont | inued)                                                                                                                                                                                                                                                                                                |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$     | $I_{\gamma}^{\ddagger}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup>       | $\alpha^{i}$                    | Comments                                                                                                                                                                                                                                                                                              |
| 2447.2                 | 8+                   | 644.1 2                    | 100 18                  | 1803.05          | 6+                     | (E2)                     | 0.01501                         | Mult.: M1 from $\alpha(K)$ exp in <sup>192</sup> Tl $\varepsilon$ decay, but stretched Q from $\gamma(\theta)$ in <sup>170</sup> Er(Mg,xn $\gamma$ ); establishes $\Delta \pi$ =no.                                                                                                                   |
| 2507.3                 | (10)+                | 60.1                       | ≤3                      | 2447.2           | 8+                     | E2                       | 55.7                            | <ul> <li>B(E2)(W.u.)=24 +27-24</li> <li>E<sub>γ</sub>: from (α,xnγ). ΔE<sub>γ</sub> unstated by authors; uncertainty in level energy difference is ≈0.4 keV.</li> <li>I<sub>γ</sub>: from I(γ+ce) and α in <sup>192</sup>Pt(α,4nγ), <sup>194</sup>Pt(α,6nγ).</li> <li>Mult.: from (α,xnγ).</li> </ul> |
|                        |                      | 283.4 <sup>b</sup> 2       | 100° 20                 | 2223.85          | (9)-                   | (E1) <sup>d</sup>        | 0.0318                          | $B(E1)(W.u.)=1.3\times10^{-6}$ 7                                                                                                                                                                                                                                                                      |
| 2534.2?                | (12+)                | 999.0 <sup>k</sup> 3       | 100                     | 1535.2           | $(3)^+$                |                          | <b>2 2 3 1 3</b>                |                                                                                                                                                                                                                                                                                                       |
| 2535.5                 | (12)                 | 28.4                       | 100                     | 2507.3           | (10)                   | (E2)                     | 2.20×10 <sup>3</sup>            | B(E2)(W.u.)=19 4<br>$E_{\gamma}$ ,Mult.: from <sup>192</sup> Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup> Pt( $\alpha$ ,6n $\gamma$ ).<br>$E_{\gamma}$ : uncertainty unstated by authors; $E\gamma$ =28.2 5 from level energy<br>difference.                                                           |
| 2632.7                 | (10 <sup>-</sup> )   | 408.8 <sup>b</sup> 2       | 38 <mark>&amp;</mark>   | 2223.85          | (9)-                   | D <sup>@</sup>           |                                 |                                                                                                                                                                                                                                                                                                       |
|                        |                      | 416.5 <sup>b</sup> 2       | 100 <b>&amp;</b>        | 2216.20          | (8)-                   |                          |                                 |                                                                                                                                                                                                                                                                                                       |
| 2657.1?                |                      | 854 <sup>k</sup>           | 100                     | 1803.05          | 6+                     |                          |                                 | $E_{\gamma}$ : from (p,6n $\gamma$ ).                                                                                                                                                                                                                                                                 |
| 2756.7                 | (11 <sup>-</sup> )   | 532.9 <mark>b</mark> 2     | 100                     | 2223.85          | (9)-                   | (E2) <sup><i>a</i></sup> | 0.0231                          |                                                                                                                                                                                                                                                                                                       |
| 2902.3                 | $(10^{+})$           | 395 <mark>h</mark>         |                         | 2507.3           | $(10)^{+}$             |                          |                                 |                                                                                                                                                                                                                                                                                                       |
| 2951.7                 | $(14^{+})$           | 416.3 <sup>b</sup> 2       | 100                     | 2535.5           | $(12^{+})$             | (E2) <sup><i>a</i></sup> | 0.0427                          |                                                                                                                                                                                                                                                                                                       |
| 3047.0                 | $(12^{+})$           | 144 <sup>h</sup>           |                         | 2902.3           | $(10^{+})$             |                          |                                 |                                                                                                                                                                                                                                                                                                       |
|                        |                      | 511.3 <sup>&amp;</sup> 3   |                         | 2535.5           | $(12^{+})$             |                          |                                 | $E_{\gamma}$ : complex peak (wider than normal).                                                                                                                                                                                                                                                      |
|                        |                      | 539.7 <mark>&amp;</mark> 3 |                         | 2507.3           | $(10)^{+}$             | (E2) <mark>&amp;</mark>  | 0.0224                          |                                                                                                                                                                                                                                                                                                       |
| 3261.9                 | $(12^{-})$           | 505.2 <sup>&amp;</sup> 3   | 3.8 <mark>&amp;</mark>  | 2756.7           | $(11^{-})$             |                          |                                 |                                                                                                                                                                                                                                                                                                       |
|                        |                      | 629.2 2                    | 100                     | 2632.7           | (10-)                  | (E2)                     | 0.01581                         | $E_{\gamma}$ : Complex peak (wider than normal).<br>Order of 629γ and 633γ in (α,4nγ) is the reverse of that adopted here.                                                                                                                                                                            |
| 3449.6                 | (13 <sup>-</sup> )   | 692.9 <sup>b</sup> 2       | 100                     | 2756.7           | (11 <sup>-</sup> )     | (E2) <sup><i>a</i></sup> | 0.01280                         |                                                                                                                                                                                                                                                                                                       |
| 3608.6                 | $(16^{+})$           | 656.8 <sup>b</sup> 2       | 100                     | 2951.7           | $(14^{+})$             | (E2) <sup><i>a</i></sup> | 0.01438                         |                                                                                                                                                                                                                                                                                                       |
| 3669.8                 | $(14^{+})$           | 622.7 3                    | 100                     | 3047.0           | $(12^{+})$             | (E2)                     | 0.01618                         | $E_{\gamma}$ , $I_{\gamma}$ ,Mult.: from <sup>170</sup> Er(Mg,xn $\gamma$ ); complex peak (wider than normal).                                                                                                                                                                                        |
|                        |                      | 718.4 <sup>&amp;</sup> 3   | 63 <mark>&amp;</mark>   | 2951.7           | $(14^{+})$             |                          |                                 |                                                                                                                                                                                                                                                                                                       |
|                        |                      | 1134 <sup>h</sup>          |                         | 2535.5           | $(12^{+})$             | Q <sup>@</sup>           |                                 |                                                                                                                                                                                                                                                                                                       |
| 3725.6                 | $(14^{+})$           | 678.7 <sup>&amp;</sup> 3   | 100                     | 3047.0           | $(12^{+})$             | (E2) <sup>&amp;</sup>    | 0.01339                         |                                                                                                                                                                                                                                                                                                       |
|                        |                      | 1190 <mark>h</mark>        |                         | 2535.5           | $(12^{+})$             | Q <sup>@</sup>           |                                 |                                                                                                                                                                                                                                                                                                       |
| 3894.9                 | (14 <sup>-</sup> )   | 445.2 <b>&amp;</b> 3       | 3.8 <mark>&amp;</mark>  | 3449.6           | (13-)                  | D <sup>@</sup>           |                                 |                                                                                                                                                                                                                                                                                                       |
|                        |                      | 633.0 <sup>b</sup> 2       | 100 <mark>&amp;</mark>  | 3261.9           | $(12^{-})$             | (E2) <sup><i>a</i></sup> | 0.01560                         | Order of 629 $\gamma$ and 633 $\gamma$ in ( $\alpha$ ,4n $\gamma$ ) is the reverse of that adopted here.                                                                                                                                                                                              |
| 3984.9                 | (14 <sup>-</sup> )   | 723 <sup>8</sup>           | 100 <sup>g</sup>        | 3261.9           | (12-)                  | (E2) <sup>g</sup>        | 0.01169                         |                                                                                                                                                                                                                                                                                                       |

 $\infty$ 

 $^{192}_{80} \rm Hg_{112} \text{--}8$ 

~

From ENSDF

 $^{192}_{80} Hg_{112}$ -8

| Adopted Levels, Gammas (continued)       |                      |                                   |                         |                  |                        |                                    |              |                                                                                                                            |  |
|------------------------------------------|----------------------|-----------------------------------|-------------------------|------------------|------------------------|------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(192</sup> Hg) (continued) |                      |                                   |                         |                  |                        |                                    |              |                                                                                                                            |  |
| E <sub>i</sub> (level)                   | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{\ddagger}$ | $E_f$            | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup>                 | $\alpha^{i}$ | Comments                                                                                                                   |  |
| 4010.5                                   | (15 <sup>-</sup> )   | 560.9 <sup>b</sup> 2              | 100 <mark>&amp;</mark>  | 3449.6           | (13 <sup>-</sup> )     | (E2) <sup><i>a</i></sup>           | 0.0205       |                                                                                                                            |  |
|                                          |                      | 1058.7 <mark>&amp;</mark> 3       | 24 <mark>&amp;</mark>   | 2951.7           | (14+)                  | D                                  |              | Mult.: from $\gamma(\theta)$ in (HI,xn $\gamma$ ).                                                                         |  |
| 4089.9                                   | (16 <sup>-</sup> )   | 105 <sup>h</sup>                  |                         | 3984.9           | (14 <sup>-</sup> )     |                                    |              |                                                                                                                            |  |
|                                          |                      | 195.0 <sup>b</sup> 2              |                         | 3894.9           | (14 <sup>-</sup> )     | E2 <sup>a</sup>                    | 0.427        |                                                                                                                            |  |
| 4130.6                                   | $(16^{+})$           | 405.0 <i>3</i>                    | 26                      | 3725.6           | (14 <sup>+</sup> )     | (E2)                               | 0.0459       | $E_{\gamma}, I_{\gamma}, Mult.$ : from $\frac{170}{170}$ Er(Mg, xn $\gamma$ ).                                             |  |
|                                          |                      | 460.9 3                           | 100                     | 3669.8           | (14 <sup>+</sup> )     | (E2)                               | 0.0329       | $E_{\gamma}, I_{\gamma}, Mult.:$ from <sup>1/0</sup> Er(Mg, xn $\gamma$ ).                                                 |  |
|                                          |                      | 521.9 <sup>cc</sup> 3             | 30 <b>°</b>             | 3608.6           | $(16^{+})$             | . @                                |              |                                                                                                                            |  |
| 10110                                    |                      | 1179"                             | 2 2 <b>8</b> 7          | 2951.7           | (14 <sup>+</sup> )     | Qe                                 |              |                                                                                                                            |  |
| 4216.9                                   | $(17^{-})$           | $126.9 \times 3$                  | 330                     | 4089.9           | (16 <sup>-</sup> )     | D                                  | 0.050        | Mult.: from $\gamma(\theta)$ in (HI,xn $\gamma$ ).                                                                         |  |
| 4207 7                                   | (10-)                | $206.5^{\circ} 2$                 | 100                     | 4010.5           | (15)                   | $(E2)^{\alpha}$                    | 0.350        |                                                                                                                            |  |
| 4387.7                                   | (18)                 | $297.1^{\circ}$ Z                 | 100                     | 4089.9           | (10)                   | $(E2)^{e}$                         | 0.1089       |                                                                                                                            |  |
| 4589.4                                   | $(18^{-})$           | $780.8^{\circ} 2$                 | 100                     | 3008.0<br>4216.0 | $(10^{-})$             | (E2)**                             |              |                                                                                                                            |  |
| 4519.8                                   | (17)                 | $200.7 \frac{\%}{2}$              | <u>ه م 8</u>            | 4210.9           | (17)                   | (M1)                               | 1.005        | Mult : D from $\alpha(0)$ in $170 \text{Er}(Mg \text{ ym})$                                                                |  |
| 4300.4                                   | (19)                 | $200.7 \ 3$                       | 0.2<br>100              | 4307.7           | (10)                   | $(\mathbf{W}\mathbf{I}\mathbf{I})$ | 0.0570       | Mult: O from $\alpha(\theta)$ in $EI(Mg, xhy)$ .<br>Mult: O from $\alpha(\theta)$ in $170$ Er(Mg xhy) for cascade $\alpha$ |  |
| 4741.6                                   | $(18^{+})$           | $611.0^{\circ}$ 2                 | 100                     | 4210.9           | (17)<br>$(16^+)$       | (E2)                               | 0.0379       | Mult.: Q from $\gamma(\sigma)$ in $Er(Mig, xir \gamma)$ for cascade $\gamma$ .                                             |  |
| 4950 5                                   | $(10^{-})$           | $562.8^{\circ}$ 3                 | 100                     | 4387.7           | $(10^{-})$             | (F2)                               | 0.0204       | Mult : O from $\gamma(\theta)$ in <sup>170</sup> Er(Mg xn $\gamma$ ) for cascade $\gamma$                                  |  |
| 5021.6                                   | $(19^{-})$           | 502.0 5                           | 100 <sup>8</sup>        | 4519.8           | $(10^{-})$             | $(E2)^{g}$                         | 0.0267       |                                                                                                                            |  |
| 5130.7                                   | $(20^{+})$           | 741.3 <mark>b</mark> 2            | 100                     | 4389.4           | (18 <sup>+</sup> )     | (E2) <sup><i>a</i></sup>           | 0.01108      |                                                                                                                            |  |
| 5216.0                                   | (21 <sup>-</sup> )   | 627.6 <sup>&amp;</sup> 2          | 100                     | 4588.4           | (19 <sup>-</sup> )     |                                    |              |                                                                                                                            |  |
| 5271.6                                   | $(20^{+})$           | 882.2 <mark>&amp;</mark> <i>3</i> | 100                     | 4389.4           | (18+)                  | (E2) <sup>@</sup>                  |              |                                                                                                                            |  |
| 5316.5                                   | $(20^{+})$           | 574.8 <mark>&amp;</mark> <i>3</i> | 100                     | 4741.6           | (18 <sup>+</sup> )     | (E2) <mark>&amp;</mark>            | 0.0194       |                                                                                                                            |  |
| 5543.5                                   | (21 <sup>-</sup> )   | 522 <sup>h</sup>                  |                         | 5021.6           | (19 <sup>-</sup> )     | [E2]                               | 0.0243       |                                                                                                                            |  |
|                                          |                      | 593 <sup>h</sup>                  |                         | 4950.5           | $(20^{-})$             |                                    |              |                                                                                                                            |  |
|                                          |                      | 955 <mark>h</mark>                |                         | 4588.4           | (19 <sup>-</sup> )     |                                    |              |                                                                                                                            |  |
| 5587.1                                   | $(20^{+})$           | 270 <sup>h</sup>                  |                         | 5316.5           | $(20^{+})$             | 0                                  |              |                                                                                                                            |  |
|                                          |                      | 846 <sup>h</sup>                  |                         | 4741.6           | $(18^{+})$             | Q <sup>@</sup>                     |              |                                                                                                                            |  |
| 5655.2                                   | $(22)^{-}$           | 704.7 <sup>&amp;</sup> 3          | 100                     | 4950.5           | $(20^{-})$             | (E2) <sup>&amp;</sup>              | 0.01234      |                                                                                                                            |  |
| 5700.6                                   | $(22)^{+}$           | 569.9 <sup>&amp;</sup> 2          | 100                     | 5130.7           | $(20^{+})$             | (E2) <sup>&amp;</sup>              | 0.0198       |                                                                                                                            |  |
| 5787.9                                   | $(22^{+})$           | 471.4 <sup>&amp;</sup> 3          | 100                     | 5316.5           | $(20^{+})$             | (E2) <sup>@</sup>                  | 0.0311       |                                                                                                                            |  |
| 6012.2                                   | (23 <sup>-</sup> )   | 796.2 <sup>°</sup> 3              | 100                     | 5216.0           | (21 <sup>-</sup> )     | (E2) <sup>&amp;</sup>              |              |                                                                                                                            |  |
| 6112.6                                   | $(22^{+})$           | 841 <sup><i>n</i></sup>           |                         | 5271.6           | (20+)                  | (E2) <sup>w</sup>                  |              |                                                                                                                            |  |
|                                          |                      | 982 <sup>"</sup>                  |                         | 5130.7           | (20 <sup>+</sup> )     | Q <sup>w</sup>                     |              |                                                                                                                            |  |

9

 $^{192}_{80} Hg_{112} \textbf{-} 9$ 

L

|                        |                    |                             |                          |                                                | Adopted                   | Levels, Ga                   | mmas (continued)                                                                 |
|------------------------|--------------------|-----------------------------|--------------------------|------------------------------------------------|---------------------------|------------------------------|----------------------------------------------------------------------------------|
|                        |                    |                             |                          |                                                |                           | $\gamma(^{192}\text{Hg})$ (c | ontinued)                                                                        |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$  | $E_f \qquad J_f^{\pi}$                         | Mult. <sup>†</sup>        | $\alpha^{i}$                 | Comments                                                                         |
| 6125.5                 | (23 <sup>-</sup> ) | 582 <sup>h</sup>            |                          | 5543.5 (21 <sup>-</sup> )                      | (E2) <sup>@</sup>         | 0.0188                       |                                                                                  |
|                        |                    | 910 <sup>h</sup>            |                          | 5216.0 (21-)                                   | (E2) <sup>@</sup>         |                              |                                                                                  |
| 6233.6                 | $(22^{+})$         | 962 <mark>8</mark>          | 100 <mark>8</mark>       | 5271.6 (20 <sup>+</sup> )                      | (Q) <sup>g</sup>          |                              |                                                                                  |
| 6294.6                 | (22 <sup>+</sup> ) | 978 <mark>8</mark>          | 1008                     | 5316.5 (20+)                                   | (E2) <sup>8</sup>         |                              |                                                                                  |
| 6303.3                 | $(22^{+})$         | 716                         |                          | 5587.1 (20 <sup>+</sup> )                      | 0                         |                              |                                                                                  |
|                        |                    | 987 <mark>/</mark>          |                          | 5316.5 (20 <sup>+</sup> )                      | Q <sup>@</sup>            |                              |                                                                                  |
| 6428.1                 | $(24)^+$           | 640 <sup>h</sup>            |                          | 5787.9 (22+)                                   |                           |                              |                                                                                  |
|                        |                    | 727.5 <sup>&amp;</sup> 3    | 100                      | 5700.6 (22)+                                   | (E2) <sup>&amp;</sup>     | 0.01153                      |                                                                                  |
| 6432.8                 | (23 <sup>+</sup> ) | 129.8 <sup>h</sup>          |                          | 6303.3 (22+)                                   | (M1) <sup>@</sup>         | 3.75                         |                                                                                  |
|                        |                    | 138 <sup>h</sup>            |                          | 6294.6 (22+)                                   |                           |                              |                                                                                  |
| 6437.6                 | (24 <sup>-</sup> ) | 782.3 <sup>&amp;</sup> 3    | 100                      | 5655.2 (22)-                                   |                           |                              |                                                                                  |
| 6709.4                 | (24+)              | 276.3 <mark>8</mark>        | 1008                     | 6432.8 (23+)                                   | (M1) <sup>g</sup>         | 0.452                        | B(M1)(W.u.)=0.042 + 13 - 10                                                      |
|                        |                    | 405.9 <mark>8</mark>        | 29 <mark>8</mark>        | 6303.3 (22+)                                   | E28                       | 0.0456                       | B(E2)(W.u.)=9.2 +27-20                                                           |
| 6855.0                 | (25 <sup>-</sup> ) | 842.8 <sup>°</sup> 3        | 100                      | 6012.2 (23 <sup>-</sup> )                      | (E2) <sup>@</sup>         |                              | $E_{\gamma}$ : complex peak (wider than normal) in $^{1/0}$ Er(Mg,xn $\gamma$ ). |
| 6949.2                 | (25 <sup>-</sup> ) | 823 <sup>8</sup>            | 1008                     | 6125.5 (23 <sup>-</sup> )                      | (E2) <sup>8</sup>         |                              |                                                                                  |
| 7035.3                 | $(24^{-})$         | 157"                        | 100                      | $6878.4 (23^{-})$                              | (M1)                      | 2.18                         | $\mathbf{D}(\mathbf{A}(1)(\mathbf{W}_{1})) = 0.20 + 22 - 20$                     |
| 7043.3                 | $(25^{+})$         | 333.0 <sup>8</sup>          | 338<br>1008              | $6/09.4 (24^{+})$                              | (M1) <sup>8</sup>         | 0.270                        | B(M1)(W.u.)=0.20+32-20<br>$B(F2)(W.u.)=1.0(10^2+16-10)$                          |
| 7267.6                 | $(26^{-})$         | 8308                        | 1008                     | 6432.8 (23+)<br>6437.6 (24-)                   | $(E2)^{\circ}$            | 0.01088                      | $B(E2)(W.U.) = 1.0 \times 10^{-10} + 10 - 10^{-10}$                              |
| 7207.0                 | $(25^{-})$         | 237h                        | 100-                     | $7035.3 (24^{-})$                              | $(L2)^{-}$                |                              |                                                                                  |
| 1212.3                 | (23)               | $\frac{237}{304h}$          |                          | $6878 4 (23^{-})$                              |                           |                              |                                                                                  |
|                        |                    | 1149h                       |                          | 6125.5 (22 <sup>-</sup> )                      |                           |                              |                                                                                  |
|                        |                    | 1140                        |                          | (123.3 (23))                                   | (E2) <mark>@</mark>       |                              |                                                                                  |
| 7220 1                 | $(26^{+})$         | 1200 °                      | 100                      | 6012.2 (23)                                    | (E2)                      |                              |                                                                                  |
| 7320.1                 | $(26^{+})$         | 892 <sup>10</sup><br>301 08 | 100<br>80 <mark>8</mark> | $0428.1 (24)^{+}$<br>7043 3 (25 <sup>+</sup> ) | (E2)<br>(M1) <sup>8</sup> | 0 1752                       | $B(M1)(W_{11}) = 0.063 \pm 18 - 33$                                              |
| 74,7                   | (20)               | 725.3 <sup>8</sup>          | 100 <mark>8</mark>       | $6709.4 (24^+)$                                | [E2] <sup>8</sup>         | 0.01161                      | B(R1)(W.u.)=0.005 + 10-55<br>B(E2)(W.u.)=8.3 + 24-44                             |
| 7516.1                 | $(26^{-})$         | $244^{h}$                   | 100                      | $7272.5 (25^{-})$                              | $(M1)^{@}$                | 0.636                        |                                                                                  |
| /01011                 | (20)               | $_{481}^{h}$                |                          | $7035.3(24^{-})$                               | $(F2)^{@}$                | 0.0296                       |                                                                                  |
| 7684 0                 | $(25^{-}, 26^{-})$ | $_{A13}h$                   |                          | 7033.3 (2+)                                    | (L2)                      | 0.0270                       |                                                                                  |
| /004.7                 | (23,20)            | $\frac{+13}{1247h}$         |                          | $6/37.6 (2)^{-}$                               | 0@                        |                              |                                                                                  |
| 7722.0                 | (27-)              | 067h                        |                          | (24)                                           | Q a                       |                              |                                                                                  |
| 7727.0                 | (27)               | 102h                        |                          | 00000 (20)                                     | - \                       |                              |                                                                                  |
| //8/.8                 | (27)               | 103 <sup>th</sup>           |                          | 7084.9 (25,26                                  | )                         | 0.470                        |                                                                                  |
|                        |                    | 272"<br>515h                |                          | /516.1 (26)                                    | (M1)                      | 0.4/2                        |                                                                                  |
|                        |                    | 515"                        |                          | 1212.5 (25 <sup>-</sup> )                      |                           |                              |                                                                                  |

|                        |                      |                                        |                         |                                                |                                        | Adopted        | Levels, Gammas (continued)                                         |
|------------------------|----------------------|----------------------------------------|-------------------------|------------------------------------------------|----------------------------------------|----------------|--------------------------------------------------------------------|
|                        |                      |                                        |                         |                                                |                                        | <u>-</u>       | y( <sup>192</sup> Hg) (continued)                                  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                 | $I_{\gamma}^{\ddagger}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$             | Mult. <sup>†</sup>                     | α <sup>i</sup> | Comments                                                           |
| 7787.8                 | (27 <sup>-</sup> )   | 933 <mark>h</mark>                     |                         | 6855.0 (25 <sup>-</sup> )                      | Q <sup>@</sup>                         |                |                                                                    |
| 7819.6                 | (27 <sup>-</sup> )   | 304 <sup>h</sup>                       |                         | 7516.1 (26 <sup>-</sup> )                      |                                        |                |                                                                    |
|                        |                      | 870 <mark>h</mark>                     |                         | 6949.2 (25-)                                   | (E2) <sup>@</sup>                      |                |                                                                    |
| 7838.4                 | (27 <sup>-</sup> )   | 889 <mark>8</mark>                     | 100 <mark>8</mark>      | 6949.2 (25 <sup>-</sup> )                      | Q <mark>8</mark>                       |                |                                                                    |
| 7926.7                 | (28 <sup>-</sup> )   | 88 <mark>h</mark>                      |                         | 7838.4 (27-)                                   | _                                      |                |                                                                    |
|                        |                      | 107 <mark>/</mark>                     |                         | 7819.6 (27 <sup>-</sup> )                      | D <sup>@</sup>                         |                |                                                                    |
|                        |                      | 139 <sup>h</sup>                       |                         | 7787.8 (27 <sup>-</sup> )                      |                                        |                |                                                                    |
|                        |                      | 410 <sup><i>hk</i></sup>               | ~                       | 7516.1 (26 <sup>-</sup> )                      |                                        |                |                                                                    |
| 7959.0                 | $(27^{+})$           | 524.4 <sup>8</sup>                     | 1008                    | 7434.9 (26 <sup>+</sup> )                      | $(M1)^{g}$                             | 0.0809         | B(M1)(W.u.)=0.08 7                                                 |
| 0100 5                 |                      | 915.68                                 | 608                     | 7043.3 (251)                                   | (E2) <sup>8</sup>                      |                | B(E2)(W.u.)=4.4                                                    |
| 8180.7                 | $(28^{-})$           | 222 <sup>n</sup><br>027 <mark>8</mark> | 1008                    | $7959.0 (27^{+})$                              | (E2)                                   |                |                                                                    |
| 8207.6                 | $(28^{-})$           | 9278<br>940 <mark>8</mark>             | 1008                    | $7207.0 (20^{-})$<br>$7267.6 (26^{-})$         | $\left( \frac{E2}{8} \right)^{8}$      |                |                                                                    |
| 8224 3                 | $(28^{-})$           | 386 <sup>h</sup>                       | 100                     | $78384(27^{-})$                                | ×                                      |                |                                                                    |
| 0221.3                 | (20)                 | $405^{h}$                              |                         | $7819.6 (27^{-})$                              | D <sup>@</sup>                         |                |                                                                    |
|                        |                      | 708 <sup>h</sup>                       |                         | $7516.1 (26^{-})$                              | D                                      |                |                                                                    |
| 8263 5                 | $(29^{-})$           | 337 <mark>h</mark>                     |                         | $7926.7 (28^{-})$                              |                                        |                |                                                                    |
| 0205.5                 | (2))                 | 476 <sup>h</sup>                       |                         | $7787.8(27^{-})$                               | $(F2)^{\textcircled{0}}$               | 0.0304         |                                                                    |
| 8302.6                 | $(28^{+})$           | 343.4 <mark>8</mark>                   | 59 <mark>8</mark>       | 7959.0 (27 <sup>+</sup> )                      | $(M1)^{g}$                             | 0.250          | B(M1)(W.u.)=0.4 4                                                  |
|                        | . ,                  | 867.6 <mark>8</mark>                   | 100 <mark>8</mark>      | 7434.9 (26 <sup>+</sup> )                      | [E2] <sup>8</sup>                      |                | B(E2)(W.u.)=20 + 21 - 20                                           |
| 8331.1                 | $(28^{+})$           | 1011 <mark>8</mark>                    | 100 <mark>8</mark>      | 7320.1 (26 <sup>+</sup> )                      | (E2) <sup>g</sup>                      |                |                                                                    |
| 8543.2                 | (30 <sup>-</sup> )   | 280 <sup>n</sup>                       |                         | 8263.5 (29 <sup>-</sup> )                      | (M1) <sup>@</sup>                      | 0.436          |                                                                    |
|                        |                      | 616 <sup>n</sup>                       |                         | 7926.7 (28 <sup>-</sup> )                      | (E2) <sup>@</sup>                      | 0.01657        |                                                                    |
| 8631.0                 | (29-)                | 909 <sup>h</sup>                       |                         | 7722.0 (27-)                                   |                                        |                |                                                                    |
| 8693.0                 | $(29^{-})$           | 9718<br>400.18                         | 1008                    | $7722.0 (27^{-})$                              | $(\mathbf{Q})^{\mathbf{g}}$            | 0 15(2         | $D(M1)(W_{rr}) = 1,2,12$                                           |
| 8/12.0                 | $(29^{+})$           | 409.18<br>753 7 <mark>8</mark>         | 100°<br>668             | $8302.0 (28^{+})$<br>7959 0 (27 <sup>+</sup> ) | $(M1)^{\circ}$<br>(F2) <sup>8</sup>    | 0.1562         | B(M1)(W.u.)=1.5 I S<br>B(F2)(W.u.)=9 F+1 + 10-9                    |
| 8961.3                 | $(30^{+})$           | 248.1 <sup>8</sup>                     | 100 <sup>g</sup>        | 8712.6 (29 <sup>+</sup> )                      | [M1] <sup>8</sup>                      | 0.607          | $B(M1)(W.u.)=0.6 \ 3 \ \text{if } 781 \ \text{branch negligible.}$ |
|                        | . ,                  | 659.2 <mark>8</mark>                   | 90 <mark>8</mark>       | 8302.6 (28+)                                   | [E2] <sup>8</sup>                      | 0.01426        | B(E2)(W.u.)=27 13 if 781 branch negligible.                        |
|                        |                      | 781 <sup>h</sup>                       |                         | 8180.7 (28 <sup>+</sup> )                      |                                        |                |                                                                    |
| 8990.2                 | (31 <sup>-</sup> )   | 447 <mark>h</mark>                     |                         | 8543.2 (30-)                                   | (M1) <sup>@</sup>                      | 0.1234         |                                                                    |
|                        |                      | 727 <mark>h</mark>                     |                         | 8263.5 (29-)                                   |                                        |                |                                                                    |
| 9196.0                 | (31 <sup>+</sup> )   | 234.8 <mark>8</mark>                   | 100 <mark>8</mark>      | 8961.3 (30 <sup>+</sup> )                      | (M1) <sup>g</sup>                      | 0.707          | B(M1)(W.u.)=0.38+5-7                                               |
| 0275 0                 | $(22^{+})$           | 483.28                                 | 168                     | $8/12.6 (29^+)$                                | (E2) <sup>8</sup><br>(M1) <sup>8</sup> | 0.0293         | B(E2)(W.u.)=11.6 + 15 - 20<br>P(M1)(W.u.)=0.04 + 10                |
| 7313.7                 | (32)                 | 1/7.00                                 | 1000                    | 5190.0 (SI <sup>+</sup> )                      |                                        | 1.407          | D(1V11)(VV.u.) = 0.74 17                                           |

From ENSDF

 $^{192}_{80} {\rm Hg}_{112} {\rm -11}$ 

L

|                        | Adopted Levels, Gammas (continued)       |                             |                         |                |                        |                                   |              |                        |                                                                                                     |
|------------------------|------------------------------------------|-----------------------------|-------------------------|----------------|------------------------|-----------------------------------|--------------|------------------------|-----------------------------------------------------------------------------------------------------|
|                        | $\gamma$ <sup>(192</sup> Hg) (continued) |                             |                         |                |                        |                                   |              |                        |                                                                                                     |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                     | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$ | $E_f$          | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup>                | $\alpha^{i}$ | $I_{(\gamma+ce)}^{\#}$ | Comments                                                                                            |
| 9375.9                 | (32 <sup>+</sup> )                       | 414.6 <mark>8</mark>        | 18 <mark>8</mark>       | 8961.3         | (30 <sup>+</sup> )     | [E2] <sup>g</sup>                 | 0.0431       |                        | B(E2)(W.u.)=31 7                                                                                    |
| 9443.4                 | (32 <sup>-</sup> )                       | 454 <sup>h</sup>            |                         |                |                        | (M1) <sup>@</sup>                 | 0.1184       |                        |                                                                                                     |
|                        |                                          | 900 <sup>h</sup>            |                         | 8543.2         | (30 <sup>-</sup> )     | (E2) <sup>@</sup>                 |              |                        |                                                                                                     |
| 9666.0                 | (33+)                                    | 290 <sup>h</sup>            |                         | 9375.9         | $(32^{+})$             | (M1) <sup>@</sup>                 | 0.396        |                        |                                                                                                     |
|                        |                                          | 470 <sup>h</sup>            |                         | 9196.0         | (31+)                  | 0                                 |              |                        |                                                                                                     |
| 9932.8                 | (33 <sup>-</sup> )                       | 490 <sup>n</sup>            |                         | 9443.4         | (32 <sup>-</sup> )     | (M1) <sup>@</sup>                 | 0.0967       |                        |                                                                                                     |
| 100000                 | (2.14)                                   | 942"                        |                         | 8990.2         | (31 <sup>-</sup> )     | (E2)                              |              |                        |                                                                                                     |
| 10038.0                | (34')                                    | 372"                        |                         | 9666.0         | $(33^{+})$             |                                   |              |                        |                                                                                                     |
| 10464.4                | (34)                                     | $532^{h}$                   |                         | 9932.8         | (33)                   | $(\mathbf{F2})^{\textcircled{0}}$ |              |                        |                                                                                                     |
| 214 4+v                | I+2                                      | 214 4f 3                    |                         | y443.4         | (32)<br>I $\sim$ (8)   | (E2)<br>(E2)                      | 0.309        | 0.08.2                 | $R(F2)(W_{11}) > 190$                                                                               |
| 217.717                | <b>J</b>   2                             | 217.7 3                     |                         | л              | <b>J</b> ~(0)          | $(L2)^{2}$                        | 0.507        | 0.00 2                 | $E_{\gamma}$ : 214.9 2 (1994Ga07) in (HI,xn $\gamma$ ):SD.                                          |
| 472.2+x                | J+4                                      | 257.8 <sup>f</sup> 1        |                         | 214.4+x        | J+2                    | (E2) <b>f</b>                     | 0.1693       | 0.88 5                 | $B(E2)(W.u.)=1.7\times10^3 + 3-4$                                                                   |
|                        |                                          | £                           |                         |                |                        | £                                 |              |                        | $E_{\gamma}$ : 258.2 <i>l</i> (1994Ga07) in (HI,xn $\gamma$ ):SD.                                   |
| 772.3+x                | J+6                                      | 300.1 <sup>J</sup> 1        |                         | 472.2+x        | J+4                    | (E2) <b>J</b>                     | 0.1063       | 1.01 5                 | $B(E2)(W.u.)=1.84\times10^{3}+18-24$                                                                |
| 1113 7±x               | I+8                                      | 341  4f  I                  |                         | 772 3±x        | I+6                    | $(F2)^{f}$                        | 0.0732       | 1 07 6                 | B(F2)(W n) $-2.1 \times 10^3 \pm 5-6$                                                               |
| 1115./ 1 X             | 310                                      | 5-1 1                       |                         | //2.J   A      | 310                    | $(L2)^{2}$                        | 0.0752       | 1.07 0                 | Other Ey: $341.7 I$ (1994Ga07) in (HI,xny):SD.                                                      |
| 1495.3+x               | J+10                                     | 381.6 <sup>f</sup> 1        |                         | 1113.7+x       | J+8                    | (E2) <b>f</b>                     | 0.0538       | 1.04 5                 | $B(E2)(W.u.)=2.1\times10^3 +6-21$                                                                   |
|                        |                                          | £                           |                         |                |                        | £                                 |              |                        | Other Ey: 382.0 1 (1994Ga07) in (HI,xny):SD.                                                        |
| 1916.4+x               | J+12                                     | $421.1^{J}_{f}$ 2           |                         | 1495.3+x       | J+10                   | $(E2)_{f}^{J}$                    | 0.0414       |                        | Other E $\gamma$ : 421.2 <i>1</i> (1994Ga07) in (HI,xn $\gamma$ ):SD.                               |
| 2375.2+x               | J+14                                     | 458.8 <sup>J</sup> 2        |                         | 1916.4+x       | J+12                   | (E2) <b>J</b>                     | 0.0333       | 1.08 6                 | $B(E2)(W.u.)=2.3\times10^3 + 5 - 7$<br>Other Eq. (1994Ga07) in (HI ypa):SD                          |
| 2871 2±v               | I+16                                     | $496 0 \int 2$              |                         | $2375.2 \pm x$ | I+14                   | $(F2)^{f}$                        | 0.0275       | 0.94.6                 | $B(F2)(Wu) = 20 \times 10^3 \pm 4 - 3$                                                              |
| 2071.21X               | <b>J</b> +10                             | 470.0 2                     |                         | 2373.21X       | J   17                 | $(L2)^{2}$                        | 0.0275       | 0.74 0                 | Other E $\gamma$ : 496.8 <i>I</i> (1994Ga07) in (HI,xn $\gamma$ ):SD.                               |
| 3403.3+x               | J+18                                     | 532.1 <sup><i>f</i></sup> 2 |                         | 2871.2+x       | J+16                   | (E2) <b></b> <i>f</i>             | 0.0232       | 0.88 5                 | $B(E2)(W.u.)=2.12\times10^3+32-23$                                                                  |
|                        |                                          | £                           |                         |                |                        | £                                 |              |                        | Other Ey: 532.8 1 (1994Ga07) in (HI, $xny$ ):SD.                                                    |
| 3970.7+x               | J+20                                     | 567.4 <sup>J</sup> 2        |                         | 3403.3+x       | J+18                   | (E2) <b>/</b>                     | 0.0200       | 0.69 4                 | $B(E2)(W.u.)=2.1\times10^{3} 4$                                                                     |
| /572 /⊥v               | 1+22                                     | $601.7f^{2}$                |                         | 3070 7±v       | I <b>⊥</b> 20          | $(F2)^{f}$                        | 0.01747      | 0.71.4                 | Other Ey: 508.07 (19940a07) III ( $\Pi$ , xiry):5D.<br>B(E2)(Wu) = 1.73×10 <sup>3</sup> + 20=28     |
| 4J72.4TX               | J+22                                     | 001.75 2                    |                         | J710.7±X       | J+20                   | $(\mathbf{E}\mathbf{Z})^{o}$      | 0.01747      | 0.714                  | Other Ey: $602.5 l$ (1994Ga07) in (HI,xny):SD.                                                      |
| 5207.3+x               | J+24                                     | 634.9 <sup>f</sup> 2        |                         | 4572.4+x       | J+22                   | (E2) <b>f</b>                     | 0.01549      |                        | $B(E2)(W.u.)=1.6\times10^3 4$                                                                       |
|                        |                                          | c                           |                         |                |                        | C                                 |              |                        | Other E <sub><math>\gamma</math></sub> : 636.1 <i>1</i> (1994Ga07) in (HI,xn $\gamma$ ):SD.         |
| 5875.4+x               | J+26                                     | 668.1 <sup><i>J</i></sup> 2 |                         | 5207.3+x       | J+24                   | (E2) <b></b>                      | 0.01385      | 0.55 5                 | B(E2)(W.u.)= $2.1 \times 10^3 6$                                                                    |
| 6575 5                 | 1-20                                     | $700.1f_{2}$                |                         | 5075 4         | 1-24                   | $(E2)^{f}$                        | 0.01252      | 0.40.6                 | Other EY: $009.0 \neq (1994Ga07)$ in (HI, $xn\gamma$ ):SD.<br>P(E2)(Wu) = 1.6 $\times 10^3 \pm 4.5$ |
| 0373.3+X               | J+∠ð                                     | /00.15 2                    |                         | 3873.4+X       | J+20                   | (E2) <sup>2</sup>                 | 0.01232      | 0.49 0                 | Other Ey: 700.9 2 (1994Ga07) in (HI,xny):SD.                                                        |

12

 $^{192}_{80} \rm Hg_{112} \text{--} 12$ 

 $^{192}_{80}\text{Hg}_{112}$ -12

From ENSDF

# $\gamma(^{192}\text{Hg})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$      | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup>       | $\alpha^{i}$ | $I_{(\gamma+ce)}^{\#}$ | Comments                                                                                 |
|------------------------|--------------------|-----------------------------|------------------|----------------------|--------------------------|--------------|------------------------|------------------------------------------------------------------------------------------|
| 7307.0+x               | J+30               | 731.5 <sup><i>f</i></sup> 2 | 6575.5+x         | J+28                 | (E2) <b>f</b>            | 0.01140      | 0.42 6                 | B(E2)(W.u.)= $1.9 \times 10^3 + 20 - 11$<br>Other Ey: 732.2 1 (1994Ga07) in (HI,xny):SD. |
| 8069.3+x               | J+32               | 762.3 <sup><i>f</i></sup> 3 | 7307.0+x         | J+30                 | (E2) <sup><i>f</i></sup> | 0.01045      | 0.31 5                 | B(E2)(W.u.)= $1.7 \times 10^3 + 18 - 17$<br>Other Ey: 762.8 4 (1994Ga07) in (HI,xny):SD. |
| 8862.0+x               | J+34               | 792.7 <mark>5</mark> 4      | 8069.3+x         | J+32                 | (E2) <b>f</b>            |              | 0.29 4                 | Other Ey: 793.0 3 (1994Ga07) in (HI,xny):SD.                                             |
| 9684.9+x               | J+36               | 822.9 <sup><i>f</i></sup> 4 | 8862.0+x         | J+34                 | (E2) <b>f</b>            |              | 0.06 2                 | Other E <sub>Y</sub> : 822.5 4 (1994Ga07) in (HI,xny):SD.                                |
| 10538.0+x              | J+38               | 853.1 <sup>f</sup> 5        | 9684.9+x         | J+36                 |                          |              | 0.03 1                 | Other E <sub>Y</sub> : 852.1 6 (1994Ga07) in (HI,xn <sub>y</sub> ):SD.                   |
| 11426.7+x?             | J+40               | 888.7 <sup>fk</sup> 7       | 10538.0+x        | J+38                 |                          |              | ≤0.05                  | Other Ey: 882 (1994Ga07) in (HI,xny):SD.                                                 |
| 241.2+y                | J1+2               | 241.2 <sup><i>f</i></sup>   | У                | J1≈(10)              |                          |              |                        | $E_{\gamma}$ : from 1995Ko17 only in (HI,xn $\gamma$ ):SD.                               |
| 523.6+y                | J1+4               | 282.4 <sup>f</sup> 2        | 241.2+y          | J1+2                 | [E2]                     | 0.1277       | 0.71 8                 |                                                                                          |
| 845.7+y                | J1+6               | $322.1^{f} 2$               | 523.6+y          | J1+4                 |                          |              | 1.03 8                 |                                                                                          |
| 1207.0+y               | J1+8               | 361.3 <sup><i>f</i></sup> 2 | 845.7+y          | J1+6                 |                          |              | 1.00 7                 |                                                                                          |
| 1607.2+y               | J1+10              | 400.2 <sup><i>f</i></sup> 2 | 1207.0+y         | J1+8                 |                          |              | 0.99 6                 |                                                                                          |
| 2045.2+y               | J1+12              | 438.0 <sup><i>f</i></sup> 2 | 1607.2+y         | J1+10                |                          |              | 0.96 6                 |                                                                                          |
| 2520.4+y               | J1+14              | 475.2 <sup><i>f</i></sup> 2 | 2045.2+y         | J1+12                | [E2]                     | 0.0305       | 0.97 7                 | B(E2)(W.u.)=2500 700                                                                     |
| 3031.4+y               | J1+16              | 511.0 <sup>f</sup> 2        | 2520.4+y         | J1+14                | [E2]                     | 0.0256       | 1.08 7                 | $B(E2)(W.u.)=1.6\times10^3 + 4-6$                                                        |
| 3578.1+y               | J1+18              | 546.7 <sup><i>f</i></sup> 2 | 3031.4+y         | J1+16                | [E2]                     | 0.0218       | 1.03 6                 | B(E2)(W.u.)=1720 250<br>Other Εγ: 547.5 (1995Ko17) in (HI,xnγ):SD.                       |
| 4156.9+y               | J1+20              | 578.8 <sup>f</sup> 2        | 3578.1+y         | J1+18                | [E2]                     | 0.0191       | 0.91 7                 | B(E2)(W.u.)=2000 <i>300</i><br>Other Εγ: 579.9 (1995Ko17) in (HI,xnγ):SD.                |
| 4761.3+y               | J1+22              | 604.4 <sup><i>f</i></sup> 2 | 4156.9+y         | J1+20                | [E2]                     | 0.01730      | 0.82 7                 | $B(E2)(W.u.)=2.02\times10^3+28-24$                                                       |
| 5385.5+y               | J1+24              | 624.2 <sup><i>f</i></sup> 3 | 4761.3+y         | J1+22                | [E2]                     | 0.01609      | 0.55 8                 | B(E2)(W.u.)=2000 300                                                                     |
| 6037.7+y               | J1+26              | 652.2 <sup><i>f</i></sup> 3 | 5385.5+y         | J1+24                |                          |              | 0.65 8                 |                                                                                          |
| 6722.0+y               | J1+28              | 684.3 <sup>f</sup> 3        | 6037.7+y         | J1+26                |                          |              | 0.50 8                 | Other E <sub>Y</sub> : 685.5 (1995Ko17) in (HI,xn <sub>Y</sub> ):SD.                     |
| 7439.7+y               | J1+30              | 717.7 <mark>5</mark> 3      | 6722.0+y         | J1+28                |                          |              | 0.30 7                 |                                                                                          |
| 8189.5+y               | J1+32              | 749.8 <sup>f</sup> 4        | 7439.7+y         | J1+30                |                          |              | 0.19 4                 | Other E <sub>2</sub> : 750.7 (1995Ko17) in (HI,xn <sub>2</sub> ):SD.                     |
| 8972.6+y               | J1+34              | 783.1 <sup>f</sup> 5        | 8189.5+y         | J1+32                |                          |              | 0.12 3                 | Other E <sub>Y</sub> : 782 (1995Ko17) in (HI,xn <sub>Y</sub> ):SD.                       |
| 9791.6+y?              | J1+36              | 819 <sup>fk</sup> 1         | 8972.6+y         | J1+34                |                          |              |                        | $E_{\gamma}$ : not reported by 1995Ko17 in (HI,xn $\gamma$ ):SD.                         |
| 333.1+z                | J2+2               | 333.1 <sup>f</sup> 3        | Z                | J2                   |                          |              | 0.66 7                 |                                                                                          |
| 705.9+z                | J2+4               | 372.8 <sup>f</sup> 2        | 333.1+z          | J2+2                 |                          |              | 1.13 8                 |                                                                                          |
| 1118.0+z               | J2+6               | 412.1 <sup><i>f</i></sup> 2 | 705.9+z          | J2+4                 |                          |              | 0.90 9                 |                                                                                          |
| 1568.6+z               | J2+8               | 450.6 <sup><i>f</i></sup> 3 | 1118.0+z         | J2+6                 |                          |              | 0.95 8                 |                                                                                          |
| 2056.9+z               | J2+10              | 488.3 <sup><i>f</i></sup> 3 | 1568.6+z         | J2+8                 |                          |              | 0.97 8                 |                                                                                          |
| 2582.4+z               | J2+12              | 525.5 <sup>f</sup> 4        | 2056.9+z         | J2+10                |                          |              | 0.80 8                 |                                                                                          |

#### $\gamma$ (<sup>192</sup>Hg) (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$      | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$ | $I_{(\gamma+ce)}^{\#}$ |
|------------------------|----------------------|-----------------------------|------------------------------------------|------------------------|
| 3144.1+z               | J2+14                | 561.7 <sup>f</sup> 4        | 2582.4+z J2+12                           | 0.44 7                 |
| 3741.4+z               | J2+16                | 597.3 <sup>ƒ</sup> 4        | 3144.1+z J2+14                           | 0.50 7                 |
| 4371.5+z               | J2+18                | 630.1 <sup><i>f</i></sup> 5 | 3741.4+z J2+16                           |                        |
| 5030.5+z               | J2+20                | 659.0 <sup>f</sup> 8        | 4371.5+z J2+18                           | 0.20 4                 |
| 5711.5+z               | J2+22                | 681.0 <sup>f</sup> 15       | 5030.5+z J2+20                           | 0.15 8                 |

<sup>†</sup> From <sup>192</sup>Tl  $\varepsilon$  decay (9.6 min+10.8 min), except where noted.

<sup>‡</sup> Relative photon branching from each level; values are weighted averages from the two mixtures of <sup>192</sup>Tl isomers in <sup>192</sup>Tl  $\varepsilon$  decay (9.6 min+10.8 min), except as noted.

<sup>#</sup> Relative intensities within a given SD band are given; data are from (HI,xn $\gamma$ ):SD and are for the <sup>160</sup>Gd(<sup>36</sup>S,4n $\gamma$ ) reaction at E(<sup>36</sup>S)=159 MeV.

<sup>@</sup> From  $\gamma$  asymmetry in (<sup>36</sup>S,4n $\gamma$ ), assigning  $\Delta \pi$ =(no) for intraband transitions.

<sup>&</sup> From <sup>170</sup>Er(Mg,xn $\gamma$ ).

<sup>*a*</sup> From <sup>192</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup>Pt( $\alpha$ ,6n $\gamma$ ) and <sup>170</sup>Er(Mg,xn $\gamma$ ).

<sup>b</sup> Weighted average from <sup>192</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup>Pt( $\alpha$ ,6n $\gamma$ ) and <sup>170</sup>Er(Mg,xn $\gamma$ ), rounded to the nearest tenth of a keV.

<sup>c</sup> Deduced from I( $\gamma$ +ce) in <sup>192</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup>Pt( $\alpha$ ,6n $\gamma$ ) and  $\alpha$ .

<sup>*d*</sup> From ce data in <sup>192</sup>Pt( $\alpha$ ,4n $\gamma$ ), <sup>194</sup>Pt( $\alpha$ ,6n $\gamma$ ).

<sup>e</sup> From <sup>192</sup>Tl  $\varepsilon$  decay using source enhanced in (2<sup>-</sup>) <sup>192</sup>Tl.

<sup>*f*</sup> From (HI,xn $\gamma$ ):SD.

14

<sup>g</sup> From <sup>160</sup>Gd(<sup>36</sup>S,4n $\gamma$ ). Authors do not state uncertainties in E $\gamma$  or I $\gamma$ . Multipolarity is based on  $\gamma$  anisotropy assigning  $\Delta \pi$ =(no) for intraband transitions.

<sup>*h*</sup> From <sup>160</sup>Gd(<sup>36</sup>S,4n $\gamma$ );  $\Delta E_{\gamma}$  unstated by authors.

<sup>*i*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>*j*</sup> Multiply placed with intensity suitably divided.

<sup>*k*</sup> Placement of transition in the level scheme is uncertain.

Legend

## Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



Legend

# Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)

| J1+30                      | 7439.7+y                                |                                             |
|----------------------------|-----------------------------------------|---------------------------------------------|
| J1+28                      | ?<br>6722.0+у                           |                                             |
| J1+26                      | 6037.7+y                                |                                             |
| J1+24                      | 5385.5+y                                | 0.044 ps 6                                  |
| J1+22                      | 4761.3+y                                | 0.052 ps +6-7                               |
| <u>J1+20</u>               | 4156.9+y                                | 0.064 ps 8                                  |
| <u>J1+18</u>               | × × × × × × × × × × × × × × × ×         | 0.100 ps 14                                 |
| <u>J1+16</u>               | <u>3031.4+y</u>                         | 0.15 ps +5-3                                |
| <u>J1+14</u>               | X 2520.4+y                              | 0.14 ps 4                                   |
| <u>J1+12</u>               | 2045.2+y                                |                                             |
| <u>J1+10</u>               | 160/.2+y                                |                                             |
| <u>J1+8</u>                |                                         |                                             |
| J1+6<br>I1+4               | → · · · · · · · · · · · · · · · · · · · |                                             |
| <u>J1+4</u><br>I1+2        | 241.2+y                                 |                                             |
| $\frac{J1}{J1\approx(10)}$ | · · · · · · · · · · · · · · · · · · ·   |                                             |
| <u>J+40</u> /              | ~ <u></u>                               |                                             |
| J+38                       | + € ⊃ 10538.0+x                         |                                             |
|                            |                                         |                                             |
| 1+36                       |                                         |                                             |
| <u>J+30</u>                |                                         |                                             |
| 1+34                       | - A                                     |                                             |
| <u>J+J+</u>                | <u> </u>                                |                                             |
| 1.22                       | ₩                                       | $0.010 \text{ m} \pm 18 - 10$               |
| J+32                       | <u> </u>                                | 0.019 ps +10-19                             |
| J+30                       | ▼ <sup>∞</sup>                          | 0.021 ps +11-21                             |
| J+28                       | €                                       | 0.032 ps +9-8                               |
| 1.20                       |                                         | 0.021 + 0 - 8                               |
| <u>J+26</u>                | <u>∀ ⊂ ⊂</u>                            | 0.031 ps +9-8                               |
| J+24                       | ♥ ♥ ♥ 5207.3+x                          | 0.050 ps +10-12                             |
| J+22                       | <u></u>                                 | 0.062 ps +10-7                              |
| <u>J+20</u>                | <u>→ ∽ &amp; </u> <u>3970.7+x</u>       | 0.068 ps +10-11                             |
| <u>J+18</u>                | ♥ ♡ <u></u> 3403.3+x                    | 0.093 ps +10-14                             |
| J+16                       | \$                                      | 0.137 ps +17-21                             |
| J+14                       | ▼ <sup>6</sup>                          | 0.18  ps + 5 - 4                            |
| I+12                       |                                         |                                             |
| J+12                       | ¥\$\$1910.4+x                           | 0.49                                        |
| <u>J+1U</u>                | ¥¥1495.3+x                              | 0.46  ps + 02 - 13                          |
| <u>J+ð</u><br>I+6          | II13./+x<br>↓  770.2                    | 0.64  ps + 22 - 20<br>1 74 ps $\pm 22 - 17$ |
| JTU                        | //2.3+x                                 | 1.1+ ps +22-1/                              |
| 0+                         | 0.0                                     | 4.85 h 20                                   |

 $^{192}_{80}\text{Hg}_{112}$ 



 $^{192}_{\ 80}Hg_{112}$ 

Level Scheme (continued)
Intensities: Relative photon branching from each level

Legend

 $--- \rightarrow \gamma$  Decay (Uncertain)



<sup>192</sup><sub>80</sub>Hg<sub>112</sub>

#### Level Scheme (continued)

Intensities: Relative photon branching from each level



**Adopted Levels, Gammas** Legend Level Scheme (continued) Intensities: Relative photon branching from each level  $--- \rightarrow \gamma$  Decay (Uncertain) ⊣ 55<sub>6,8</sub> (2) 100 ط هرام الم  $(16^{+})$ 3608.6 1 202, 201 305, 2, 3, 8, 100 -(13-) 3449.6 (12-) 3261.9 100 (B) 539, 511,3 (E2) 144  $(12^{+})$ 3047.0 ×163 9  $(14^{+})$ 2951.7  $(10^{+})$ 2902.3 1<sub>6.5</sub>6 00 100 0,38 Ş (11<sup>-</sup>) 2756.7 5 Ð 2657.1 2632.7 .8. (10-) 8 â  $(12^{+})$ 2535.5 11.1 ns 5 ŝ -\$ 6 2534.2 - Q. 8 3 (10)+ 2507.3 3.6 ns 5 6 6 ñ 8 2447.2 2300.7 <u>8+</u> (6,7,8) 12 Ð -2 8 \* 2284.7 5 in  $\frac{1,2^+}{(9)^-}$ 2276.9 S 2223.85 (8) 2216.20 0.92 ns 5 (6) 2186.98 133.  $(1,2^+)$ 8 2081.69 8-.I... (1,2<sup>+</sup>) 8'1251 1900 ¥ ¥ 0.001 2056.29 4  $\begin{array}{c} (1,2^{-}) \\ (6^{-}) \\ (7)^{-} \\ \hline 1,2^{+} \\ (3,4) \\ \hline (5)^{-} \\ (2^{+},3,4^{+}) \\ c^{+} \end{array}$ -07 1986.9 -~ -1-1-1-60 -2) 1977.03 1.04 ns 6 245 ¥ 1908.58 1844.59 1843.90 1831.62  $\frac{6^+}{(3)^+}$ 1803.05 1535.2 1  $(2)^+$ 1113.60 4+ 1057.58 \* \* 422.79  $2^{+}$ 0.0 4.85 h 20  $0^+$ 

## Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided



 $^{192}_{80}\text{Hg}_{112}$ 



<sup>192</sup><sub>80</sub>Hg<sub>112</sub>

<u>J+40</u>

J+38

J+36

J+34

|                              | Band(J): SD-2 band<br>(1995Fa03,1995Ko17)                       |
|------------------------------|-----------------------------------------------------------------|
|                              | <u>J1+36</u> 9791.6+y                                           |
|                              | J1+34 <sup>819</sup> 8972.6+y                                   |
|                              | J1+32 <sup>783</sup> 8189.5+y                                   |
|                              | J1+30 <sup>750</sup> 7439.7+y                                   |
|                              | J1+28 <sup>718</sup> 6722.0+y                                   |
|                              | J1+26 684 6037.7+y                                              |
|                              | J1+24 652 5385.5+y                                              |
|                              | J1+22 624 4761.3+y                                              |
|                              | <u>J1+20</u> 604 4156.9+y                                       |
|                              | $\frac{J1+18}{J1+16} = \frac{579}{3578.1+y} = \frac{3031}{4+y}$ |
|                              | $\frac{J1+10}{11+14}$ $\frac{547}{2520.4+v}$                    |
|                              | $\frac{31}{11+12}$ $\frac{511}{2045.2+y}$                       |
| Band(I): SD-1 band           | $\frac{3}{11+10}$ $\frac{475}{7}$ 1607.2+y                      |
| (1992La07.1994Ga07.          | $\frac{31}{11+8}$ $\frac{438}{1207.0+y}$                        |
| 1995Fa03.1997Mo12.           | $\frac{11+6}{400}$ /845.7+v                                     |
| 1998Bu03)                    | <u>11+4</u> <u>361</u> / <del>523.6+y</del>                     |
|                              | $\frac{321}{11+2}$ $\frac{322}{241\cdot2+y}$                    |
| J+40 11426.7+x               | $\frac{J1\approx}{J1\approx}\frac{282}{y}$                      |
|                              | 241                                                             |
| J+38 10538.0+x               |                                                                 |
| J+36 853 9684.9+x            |                                                                 |
| J+34 823<br>8862.0+x         |                                                                 |
| J+32 <sup>793</sup> 8069.3+x |                                                                 |

|                                     |                                     |                | J+32       | 793 | 8069.3+x        |
|-------------------------------------|-------------------------------------|----------------|------------|-----|-----------------|
|                                     |                                     |                | J+30       | 762 | 7307.0+x        |
|                                     |                                     |                | J+28       | 732 | 6575.5+x        |
|                                     |                                     |                | J+26       | 700 | 5875.4+x        |
|                                     |                                     |                | J+24       | 668 | 5207.3+x        |
| D d(C): D d ADCE                    | _                                   |                | J+22       | 635 | 4572.4+x        |
| Band(G): Band ABCE,<br>$\alpha = 1$ | $\pi = -,$<br>Band(H): Band         | ABCD. $\pi$ =+ | J+20       | 602 | 3970.7+x        |
| <i>u</i> =1                         | <b>α=0</b> (1995                    | 5Le33)         | J+18       | 567 | 3403.3+x        |
| (29 <sup>-</sup> ) 8631.            | )                                   |                | J+16       | 522 | 2871.2+x        |
|                                     | (28+)                               | 8331.1         | J+14       | 552 | 2375.2+x        |
| $(27^{-})$ 909 7722                 |                                     |                | J+12       | 496 | <u>1916.4+x</u> |
| (27) 1722.                          | $\frac{1011}{(26^+)}$               | 7220 1         | J+10       | 459 | 1495.3+x        |
| (25-) 867                           | (20)                                | 7320.1         | J+8        | 421 | 1113.7+x        |
| (23) 0855.                          | <b>9</b><br>(24)+ <b>89</b> 2       |                | J+6        | 382 | <u>772.3+x</u>  |
| 843                                 | (24)                                | 6428.1         | <u>J+4</u> | 341 | /472.2+x        |
| (23) 6012.2                         | $\frac{2}{2}$ (22) <sup>+</sup> 728 | 5700 6         | <u>J+2</u> | 300 | <u>/214.4+x</u> |
| (21-) 796 5216.0                    | (22) (20 <sup>+</sup> ) 570         | 5130.7         | J≈(8)∖-    | ŧ   | <u> </u>        |
| (19-) 628 4588.4                    | 4                                   | •              |            |     |                 |
| (17-) 4216.                         | <del>)</del>                        |                |            |     |                 |
| $(15^{-})^{-}\frac{372}{206}$ 4010. | 5                                   |                |            |     |                 |

# $^{192}_{80}\text{Hg}_{112}$

| Band(K): SD-3 band<br>(1995Fa03) |                        |  |  |  |  |
|----------------------------------|------------------------|--|--|--|--|
| J2+22                            | 5711.5+z               |  |  |  |  |
| J2+20                            | 681<br>5030.5+z        |  |  |  |  |
| J2+18                            | 659<br>4371.5+z        |  |  |  |  |
| J2+16                            | 630<br>3741.4+z        |  |  |  |  |
| J2+14                            | 597<br>3144.1+z        |  |  |  |  |
| J2+12                            | 562<br>2582.4+z        |  |  |  |  |
| J2+10                            | 526<br>2056.9+z        |  |  |  |  |
| J2+8                             | 488<br>1568.6+z        |  |  |  |  |
| J2+6                             | 451<br>1118.0+z        |  |  |  |  |
| J2+4                             | <sup>412</sup> 705.9+z |  |  |  |  |
| J2+2                             | <sup>373</sup> 333.1+z |  |  |  |  |
| J2                               | 333 z                  |  |  |  |  |

| <b>Band(N):</b> $\pi$ =(-) dipole band |
|----------------------------------------|
| (1994Le08,1995Le33)                    |

 (33+

 (32+

 (31+

 (30+

 (29+

 (1994Le08,1995Le33)

 (28+



| (34+)                 |                 | 10038.0 |
|-----------------------|-----------------|---------|
| (33+)                 | 372             | 9666.0  |
| (32+)                 | 290 470         | 9375.9  |
| (31 <sup>+</sup> )    | 180             | 9196.0  |
| (30 <sup>+</sup> ) 41 | 5 235           | 8961.3  |
| (29+)                 | 248 483         | 8712.6  |
| (28 <sup>+</sup> ) 65 | 9<br>409<br>754 | 8302.6  |
| (27 <sup>+</sup> )    | 343             | 7959.0  |
| 86                    | 8               |         |
| (26+)                 | 524<br>916      | 7434.9  |
| (25 <sup>+</sup> ) 72 | 392<br>5        | 7043.3  |
| (24 <sup>+</sup> )    | 334             | 6709.4  |
| (23+)                 | 011             | 6432.8  |
| (22 <sup>+</sup> )    | - 130           | 6303.3  |

Band(M): π=(+) dipole band (1994Le08,1995Le33)

| (34-)                                   |           | 10464.4 |
|-----------------------------------------|-----------|---------|
| (33-)                                   | 532       | 9932.8  |
| <u>(32<sup>-</sup>)</u> 9               | 490<br>42 | 9443.4  |
| (31-)                                   | 9         | 8990.2  |
| ( <b>30</b> <sup>-</sup> ) <sub>7</sub> | 447<br>27 | 8543.2  |
| (29-)                                   | 280       | 8263.5  |
| $\frac{(28^{-})}{(27^{-})}$ 4           | 766       | 7926.7  |
| (26 <sup>-</sup> )                      | 15        | 7516.1  |
| (25-) 5                                 | 244       | 7272.5  |
| $\frac{(24^{-})}{(23^{-})}$             | 48        | 6878.4  |

<sup>192</sup><sub>80</sub>Hg<sub>112</sub>