¹⁹²₇₉Au₁₁₃-1

Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,1871 (2012)	15-Jun-2012

 $Q(\beta^{-})=-765\ 23;\ S(n)=7.04\times10^{3}\ 4;\ S(p)=4363\ 16;\ Q(\alpha)=3151\ 19$ 2012Wa38

Note: Current evaluation has used the following Q record -764 22 7036 40 4363 16 3151 18 2011AuZZ.

 $Q(\beta^{-})$, S(n), S(p) and Q(α) from 2003Au03 are, respectively, -765 22, 7040 40, 4368 16 and 3127 17.

 $Q(\beta^-)$: -764 22 from 2011AuZZ; $Q(\beta^-)$ =-1870 keV 70, as deduced from β^+ data in ¹⁹²Hg ε decay (1975ViZK) is inconsistent with this.

See 1985K109, 1985St10, 1988Le19, 1988Le22, 1994Pa37 for hfs and isotope shift data.

¹⁹²Au Levels

Cross Reference (XREF) Flags

		A B C	¹⁹² Hg a Ir(α,xn ⁴ ¹⁹² Pt(³)	$\begin{array}{l} \varepsilon \text{ decay} & D & {}^{192} \text{Au IT decay (160 ms)} \\ \gamma), {}^{193} \text{Ir}({}^{3}\text{He},4n\gamma) & E & {}^{186} \text{W}({}^{11}\text{B},5n\gamma) \\ \text{He,t)} \end{array}$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
0.0@	<u>1</u> -&	4.94 h 9	AB D	
31.61 [@] 5	2- &	0.69 ns 2	AB D	J^{π} : M1+E2 32 γ to 1 ⁻ g.s.; E3 γ from (5) ⁺ 135.
72.61 [@] 25	3- &		ΒD	J^{π} : M1+E2 41 γ to 2 ⁻ 32; M2 γ from (5) ⁺ 135.
120.09 19	$0^{-}, 1^{-}, 2^{-}$		Α	J^{π} : M1 120 γ to 1 ⁻ g.s.
135.41 ^{<i>a</i>} 25	(5) ⁺	29 ms	ΒD	%IT=100 J ^{π} : spin: by analogy with similar isomers in ¹⁹⁴ Au, ¹⁹⁶ Au, ¹⁹⁸ Au; parity: E3 and M2 transitions to π =- states. T _{1/2} : ce(t) in Ir(α ,xn γ), ¹⁹³ Ir(³ He,4n γ) (1976RoZE,1980RoZT).
146.06 17	$(1,2)^{-}$		Α	J^{π} : M1 115 γ to 2 ⁻ 32; M1(+E2) 146 γ to 1 ⁻ g.s.
157.28 23	$0^{-}, 1^{-}$	<0.05 ns	Α	J^{π} : M1 157 γ to 1 ⁻ g.s.; log ft=5.9 (log f ^{1u} t<8.5) from 0 ⁺ .
167.49 <i>19</i>	(1) ⁻		A	J^{π} : M1(+E2) 136 γ to 2 ⁻ 32; log <i>ft</i> =6.8 (log $f^{4u}t < 8.5$) from 0 ⁺ ; E1 139 γ from 1 ⁺ 306.
204.57 20	$0^{-}, 1^{-}, 2^{-}$		Α	J^{π} : E1 102 γ from 1 ⁺ 306.
224.9 ^{<i>a</i>} 4	$(6)^{+}$		ΒD	J^{π} : M1+E2 90 γ to (5) ⁺ 135.
242.9 ^{<i>a</i>} 4	$(7)^{+}$		ΒD	J^{π} : E2 108 γ to (5) ⁺ 135.
245.44 20	$0^{-}, 1^{-}$		Α	J^{π} : M1 245 γ to 1 ⁻ g.s.; log ft=6.1 (log f ^{1u} t<8.5) from 0 ⁺ .
262.59 19	$0^{-}, 1^{-}$		Α	J^{π} : M1 263 γ to 1 ⁻ g.s.; log ft=6.2 (log f ^{1u} t<8.5) from 0 ⁺ .
306.47 16	1+	<0.18 ns	Α	J^{π} : E1 275 γ to 2 ⁻ 32; log <i>ft</i> =5.1 from 0 ⁺ .
371.8 ^{<i>a</i>} 4	$(8)^{+}$		ΒD	J ^{π} : M1+E2 129 γ to (7) ⁺ 243; E2 147 γ to (6) ⁺ 225.
431.6 ^b 5	(11 ⁻)	160 ms 20	B DE	%IT=100 J^{π} : E3 60 γ to (8) ⁺ 372; analogy with similar isomers in ¹⁹⁰ Au, ¹⁹⁴ Au.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁹²Au Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XR	EF	Comments
					T _{1/2} : γ-ray timing spectra in Ir(α ,xnγ), ¹⁹³ Ir(³ He,4nγ) (1982Ne05). Other value: 167 ms (ce(t), 1976RoZE,1980RoZT).
436.59 24	0-,1-		Α		J ^{π} : M1 279 γ to 0 ⁻ ,1 ⁻ 157 level; log <i>ft</i> =6.4 (log <i>f</i> ^{1<i>u</i>} <i>t</i> <8.5) from 0 ⁺ .
659.3 [°] 6	(12 ⁻)		В	Ε	
839.3 <mark>b</mark> 6	(13 ⁻)		В	Е	
1099.1 ^C 6	(14 ⁻)		В	Ε	
1547.3 <mark>b</mark> 6	(15 ⁻)		В	Е	
1819.6 ^C 6	(16 ⁻)		В	Ε	
1962.9 <mark>d</mark> 6	(15 ⁺)		В	Е	
2176.2 ^d 7	(17^{+})		В	Е	
2316.4 ^b 7	(17 ⁻)		В	Е	
2431.4 7	(18+)		В	Ε	J^{π} : M1 255 γ to (17 ⁺) 2176.
2516.3 8	(18 ⁺)		В	Ε	
2582.6 ^e 8	(20+)	5.4 ns <i>3</i>	В	E	Likely configuration: $\pi(h_{11/2}^{-1})\nu(i_{3/2}^{-2})\nu(h_{9/2}^{-1})$. T _{1/2} : from 341(ce(K))- γ (2001Gu29) in (¹¹ B,5n γ).
2608.0 ^C 7	(18 ⁻)		В	Е	
2642.1 11	$(17^+, 18^+, 19^+)$			Ε	J^{π} : M1 211 γ to (18 ⁺) 2431.
2977.5 9	(20^{+})		В		J^{π} : (E2) 461 γ to (18 ⁺) 2516.
3008.9 11	19-			Е	
3013.3 10	(20)		В	_	
3043.6° 13	(22)		_	E	
3316.7 10	(22)		В		
3524.5 9	(22)		В	F	
3390.0 13 3783 5 ⁶ 15				E F	
4635 5 ^e 18				E	
14124 <i>16</i>	0^{+}	108 keV 9	С	-	J^{π} : IAS(¹⁹² Pt g.s.).

[†] From least-squares fit to adopted $E\gamma$ data, assigning 1 keV uncertainty to $E\gamma$ for which uncertainty is unknown.

[‡] From γ -ray multipolarities, coincidence data, and band structure in Ir(α ,xn γ), ¹⁹³Ir(³He,4n γ), except where noted; continuing J^{π} patterns established.

- [#] From (ce)(ce)(t) in ¹⁹²Hg ε decay (1971Ho04), except as noted.
- [@] Band(A): π =- g.s. sequence.
- & Based on smooth progression of level energies and independently established $J^{\pi}(g.s.)=1^{-}$ and mult(32 γ), definite J^{π} has been assigned to all members of the g.s. sequence.
- ^{*a*} Band(B): π =+ sequence. Built on (5)⁺ 29 ms, 135-keV level.
- ^b Band(c): $\alpha = 1$ rotation-aligned band. (configuration= $((\pi h_{11/2})^{-1} \otimes (\nu i_{13/2})^{-1})$. Built on 160 ms (11⁻) isomer.
- ^c Band(C): $\alpha = 0$ rotation-aligned band. (configuration= $((\pi h_{11/2})^{-1} \otimes (\nu i_{13/2})^{-1})$. Signature partner of band built on 160 ms (11⁻) isomer.

^{*d*} Band(D): Band fragment. Side cascade to rotation-aligned band (possible configuration= $((\pi h_{11/2})^{-1}(\nu i_{13/2})^{-2}(\nu j))$ (with $j=p_{1/2}, p_{3/2} \text{ or } f_{5/2})$ (15⁺ and 17⁺ members)).

^{*e*} Band(E): π =+ band built on (20⁺) isomer. 2-quasiparticle excitation from 11⁻ isomer; likely high-spin 4-quasiparticle configurations are $(\pi h_{11/2})^{-1} \otimes (\nu i_{13/2}^{-2} h_{9/2}^{-1})$ and $(\pi h_{11/2})^{-1} \otimes (\nu i_{13/2}^{-2} f_{7/2}^{-1})$, probably the former (2001Gu29).

					Adopted Le	vels, Gammas ((continued)	
						$\gamma(^{192}\mathrm{Au})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α@	Comments
31.61	2-	31.61 5	100	0.0 1-	M1+E2	0.084 3	46.2 9	B(M1)(W.u.)=0.0213 8; B(E2)(W.u.)=59 5
72.61	3-	41.0 [#] 3	100	31.61 2-	M1+E2 [#]	0.063 [#]	18.9 5	
120.09	$0^{-}, 1^{-}, 2^{-}$	88.5 6		31.61 2-				
		120.1 3		0.0 1-	M1		4.30 7	
135.41	$(5)^{+}$	62.8 [#] 3		72.61 3-	M2 [#]		157 4	
		103.8 [#] 3		31.61 2-	E3 [#]		103.3 23	
146.06	$(1,2)^{-}$	114.5 3	76 17	31.61 2-	M1		4.92 8	
		146.0 <i>3</i>	100 21	$0.0 1^{-}$	M1(+E2)	0.6 +11-6	2.1 7	
157.28	$0^{-}, 1^{-}$	157.2 <i>3</i>	100	0.0 1-	M1		2.00	B(M1)(W.u.)>0.037
167.49	$(1)^{-}$	135.9 3		31.61 2-	M1(+E2)	0.3 + 9 - 3	2.9 8	
204.57	0- 1- 0-	167.5 3	100	$0.0 1^{-1}$			0.054	
204.57	0,1,2	204.6 3	100	0.0 1	(M1)	#	0.954	
224.9	(6)+	89.5 [#] 3	100	135.41 (5)+	M1+E2"	0.18"	9.91 17	
242.9	$(7)^{+}$	(18.0 [#] 7)		224.9 $(6)^+$				
		107.5 # 3		135.41 (5)+	E2 #		3.86 7	
245.44	$0^{-}, 1^{-}$	40.9 3		204.57 0-,1-,2-				
		99.4 3	39 10	$146.06 (1,2)^{-1}$	M1(+E2)	0.4 + 10 - 4	7.1 11	
262.50	0- 1-	245.4 3	100 17	0.0 I	MI M1		0.576	
202.39	0,1	105.4 0	23 0 12 1	$137.28 \ 0 \ ,1$ $146.06 \ (1.2)^{-1}$	$M1(\pm E2)$	< 0.2	0.24 14	
		142 5 3	100 19	140.00 (1,2) $120.09 0^{-} 1^{-} 2^{-}$	$M1(\pm L2)$ M1	<0.2	2 64	
		262.6 3	100 32	$0.0 1^{-}$	M1		0.478	
306.47	1+	101.9.3	2.4.6	204.57 012-	E1		0.396 7	$B(E1)(W.u.) > 2.0 \times 10^{-5}$
		139.0 3	1.9 8	167.49 (1)	E1		0.180	$B(E1)(W.u.) > 6.3 \times 10^{-6}$
		186.4 <i>3</i>	6.5 11	120.09 0-,1-,2-	E1		0.0859	$B(E1)(W.u.) > 8.9 \times 10^{-6}$
		274.8 <i>3</i>	100 4	31.61 2-	E1		0.0331	$B(E1)(W.u.) > 4.3 \times 10^{-5}$
		306.5 <i>3</i>	10.7 11	0.0 1-	E1		0.0256	$B(E1)(W.u.) > 3.3 \times 10^{-6}$
371.8	$(8)^{+}$	128.9 [#] 3		242.9 (7) ⁺	M1+E2 [#]	1.0 [#]	2.69 5	
		146.9 [#] 3		224.9 (6) ⁺	E2 #		1.133 19	
431.6	(11^{-})	59.8 [#] 3	100	$371.8 (8)^+$	E3#		$2.44 \times 10^{3} 8$	$B(F3)(W_{11}) = 0.52.7$
436.59	$0^{-}.1^{-}$	279.2 3	63 8	157.28 01-	M1		0.404	B(E3)(11.0.)=0.527
	- ,	436.7 3	100 16	0.0 1-	(M1)		0.1209	
659.3	(12 ⁻)	227.7 3	100	431.6 (11 ⁻)	M1+E2	+0.09 4	0.705 11	$E_{\gamma}, I_{\gamma}, \delta$: from ($\alpha, xn\gamma$).
								Mult.: M1 from α (L)exp in (¹¹ B,5n γ), D+Q from
								$(\alpha, \mathbf{xn}\gamma).$
839.3	(13-)	180.1 <i>3</i>	30 4	659.3 (12 ⁻)	M1(+E2)	-0.03 7	1.362 22	$E_{\gamma}, I_{\gamma}, \delta$: from $(\alpha, xn\gamma)$.
								Mult.: M1 from α (K)exp in (¹¹ B,5n γ), D(+Q) from
		107 5 3	100 7		50		0.0422	$(\alpha, xn\gamma)$.
		407.73	100 7	431.6 (11 ⁻)	E2		0.0433	E_{γ},I_{γ} : trom (α ,xn γ), (³ He,4n γ).
								Mult.: from $({}^{11}B,5n\gamma)$.

ω

 $^{192}_{79}\mathrm{Au}_{113}$ -3

L

 $^{192}_{79}\mathrm{Au}_{113}$ -3

From ENSDF

				Adopted	Levels, Gamm	<mark>as</mark> (continued	d)	
					$\gamma(^{192}\text{Au})$ (conti	nued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α [@]	Comments
1099.1	(14 ⁻)	259.7 3	100 8	839.3 (13 ⁻)	M1+E2	+0.09 4	0.490 8	E _γ ,I _γ ,δ: from (α ,xnγ). Mult.: M1 from α (K)exp in (¹¹ B,5nγ), D+Q from (α ,xnγ).
		439.8 [#] 3	28 [#] 8	659.3 (12 ⁻)	(E2) [#]		0.0356	
1547.3	(15 ⁻)	448.2 ^{#} 3	50 [#] 14	1099.1 (14-)	(M1+E2) [#]	+0.05 [#] 4	0.1127 17	
		708.0 [#] 3	100 [#] 14	839.3 (13 ⁻)	(E2) [#]		0.01167	
1819.6	(16 ⁻)	272.2 [#] 3	33 [#] 11	1547.3 (15 ⁻)	$(M1+E2)^{\#}$	+0.08 [#] 4	0.431 7	
	. ,	720.8 [#] 3	100 [#] 22	1099.1 (14-)	(E2) [#]		0.01123	
1962.9	(15^{+})	415.9 [#] 3	7 [#] 3	1547.3 (15 ⁻)	D [#]			
		863.5 [#] 3	100 [#] 10	1099.1 (14 ⁻)	D [#]			Mult.: $\gamma(\theta)$ consistent with pure D, $\Delta J=1$; 1982Ne05 favor E1, but evaluator considers this highly tentative.
2176.2	(17 ⁺)	213.2 3	100 12	1962.9 (15 ⁺)	E2		0.302	E_{γ},I_{γ} : from (α ,xn γ), (³ He,4n γ). Mult.: from (¹¹ B,5n γ).
		356.6 [#] 3	18 [#] 6	1819.6 (16 ⁻)	D [#]			
2316.4	(17 ⁻)	496.6 [#] 5	50 25	1819.6 (16 ⁻)				I_{γ} : from (α ,xn γ), (³ He,4n γ).
		769.0 [#] 3	100 [#] 25	1547.3 (15 ⁻)	(E2) [#]			
2431.4	(18 ⁺)	255.1 [#] 3	100	2176.2 (17 ⁺)	M1		0.518	Mult.: from $(^{11}B,5n\gamma)$.
2516.3	(18 ⁺)	340.7 [#] 5	100	2176.2 (17 ⁺)	M1		0.235	Mult.: from $(^{11}B,5n\gamma)$.
2582.6	(20 ⁺)	68.5	100 5	2516.3 (18+)	E2		27.3	B(E2)(W.u.)=35 5
		151.0 <i>3</i>	79 16	2431.4 (18+)	E2		1.022 17	E_{γ} ,Mult., I_{γ} : from (¹¹ B,5n γ). B(E2)(W.u.)=0.54 <i>12</i>
								I_{γ} ,Mult.: from (¹¹ B,5nγ). Other Eγ: 153.6 in (¹¹ B,5nγ).
2608.0	(18 ⁻)	291.4 [#] 3	75 [#] 25	2316.4 (17 ⁻)	$(M1(+E2))^{#}$	+0.04 [#] 5	0.359 6	
		788.5 [#] 3	100 [#] 25	1819.6 (16 ⁻)	(E2) [#]			
2642.1	$(17^+, 18^+, 19^+)$	211.0	100	2431.4 (18 ⁺)	M1		0.875	E_{γ} ,Mult.: from (¹¹ B,5n γ).
2977.5	(20^{+})	461.2 [#] 3	100	2516.3 (18 ⁺)	(E2) [#]		0.0315	11
3008.9	19-	367		$2642.1 (17^+, 18^+, 19^+)$	2.61		0.1522	E_{γ} : from (¹¹ B,5n γ).
	(20)	400.6	100	2608.0 (18 ⁻)	MI		0.1522	E_{γ} ,Mult.: from (11B,Sn γ).
3013.3	(20)	497.0" 5 461	100	$2516.3 (18^{+})$ $2582.6 (20^{+})$				
3316.7	(22)	339.2 5	100	2977.5 (20 ⁺)	(Q)		0.0716	E_{γ} : from (¹¹ B,5nγ). Mult.: from (<i>α</i> ,xnγ).

4

From ENSDF

 $^{192}_{79}\mathrm{Au}_{113}$ -4

L

1	
	92 79
	ų,
	11
	ω
	Ú

							$\gamma(^{192}\text{Au})$ (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α [@]	Comments
3524.3	(22)	546.8 [#] 3	100	2977.5 (20 ⁺)	(Q) [#]		
3590.8		547	100	3043.6			E_{γ} : from (¹¹ B,5n γ).
3783.5		192.6		3590.8	M1	1.129	E_{γ} ,Mult.: from (¹¹ B,5n γ).
		740		3043.6			E_{γ} : from (¹¹ B,5n γ).
4635.5		852	100	3783.5			E_{γ} : from (¹¹ B,5n γ).

Adopted Levels, Gammas (continued)

[†] From ¹⁹²Hg ε decay, except where noted. [‡] Relative photon branching from each level; values are from ¹⁹²Hg ε decay, except where noted. [#] From Ir(α ,xn γ), ¹⁹³Ir(³He,4n γ).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁹²₇₉Au₁₁₃

Adopted Levels, Gammas

¹⁹²₇₉Au₁₁₃

Adopted Levels, Gammas (continued)

