¹⁹²Au IT decay (160 ms)

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 113, 1871 (2012)	15-Jun-2012				

Parent: ¹⁹²Au: E=431.6 5; J^{π} =(11⁻); T_{1/2}=160 ms 20; %IT decay=100.0 All data are from Adopted Levels, unless noted to the contrary.

¹⁹²Au Levels

E(level) [†]	J ^{π‡}	T _{1/2} ‡	Comments
0.0	1-	4.94 h 9	
31.61 5	2-	0.69 ns 2	
72.6 <i>3</i>	3-		
135.4 <i>3</i>	$(5)^{+}$	29 ms	
224.9 4	$(6)^{+}$		
242.9 <i>4</i>	$(7)^{+}$		
371.8 4	$(8)^{+}$		
431.6 5	(11^{-})	160 ms 20	%IT=100

[†] From least-squares fit to $E\gamma$. [‡] From Adopted Levels.

$\gamma(^{192}\mathrm{Au})$

E_{γ} [‡]	E_i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	$I_{(\gamma+ce)}$ #&	Comments
(18.0 [@] 6) 31.61 5	242.9 31.61	(7) ⁺ 2 ⁻	224.9 0.0	(6) ⁺ 1 ⁻	M1+E2	0.084 3	46.2 9	100	$ce(L)/(\gamma+ce)=0.749 \ 10;ce(M)/(\gamma+ce)=0.177 \ 5;ce(N+)/(\gamma+ce)=0.0524 \ 14$
41.0 3	72.6	3-	31.61	2-	M1+E2	0.063	18.9 5		$ce(N)/(\gamma+ce)=0.0440 \ I2;ce(O)/(\gamma+ce)=0.00788 \ 22;ce(P)/(\gamma+ce)=0.000443 \ I1\alpha(L)=14.5 \ 4; \ \alpha(M)=3.40 \ I0;\alpha(N+)=1.01 \ 3\alpha(N)=0.845 \ 23; \ \alpha(O)=0.154 \ 5;$
59.8 <i>3</i>	431.6	(11 ⁻)	371.8	(8)+	E3		2.44×10 ³ 8	100	$\alpha(P)=0.0097 3$ $ce(L)/(\gamma+ce)=0.724 18;$ $ce(M)/(\gamma+ce)=0.214 9;$ $ce(N+)/(\gamma+ce)=0.062 3$ $ce(N)/(\gamma+ce)=0.0537 25;$ $ce(O)/(\gamma+ce)=0.0084 4;$
62.8 <i>3</i>	135.4	(5)+	72.6	3-	M2		157 4		ce(P)/(γ +ce)=1.07×10 ⁻⁵ 5 %I γ =0.0410 13 from %(I(γ +ce))=100 and α . α (L)=117 3; α (M)=30.6 8; α (N+)=9.20 24 α (N)=7.75 20; α (O)=1.38 4;
89.5 <i>3</i>	224.9	(6)+	135.4	(5)+	M1+E2	0.18	9.91 17		$\alpha(P)=0.0741 \ I9$ $\alpha(K)=7.93 \ I4; \ \alpha(L)=1.52 \ 3; \ \alpha(M)=0.357 \ 7; \ \alpha(N+)=0.1059 \ I9$ $\alpha(N)=0.0889 \ I6; \ \alpha(O)=0.0161$
103.8 <i>3</i>	135.4	(5)+	31.61	2-	E3		103.3 23		3; α (P)=0.000964 17 α (K)=0.977 15; α (L)=75.2 17; α (M)=21.0 5; α (N+)=6.08 14

Continued on next page (footnotes at end of table)

¹⁹²Au IT decay (160 ms) (continued)

$\gamma(^{192}Au)$ (continued)

Ε _γ ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
107.5 3	242.9	(7)+	135.4	(5)+	E2		3.86 7	$ \frac{\alpha(N)=5.24 \ 12; \ \alpha(O)=0.834 \ 19; \ \alpha(P)=0.00162 \ 4}{\alpha(K)=0.617 \ 9; \ \alpha(L)=2.43 \ 5; \ \alpha(M)=0.632 \ 13;} \\ \alpha(N+)=0.180 \ 4 $
128.9 <i>3</i>	371.8	(8)+	242.9	(7)+	M1+E2	1.0	2.69 5	α (N)=0.155 3; α (O)=0.0249 5; α (P)=7.86×10 ⁻⁵ 13 α (K)=1.67 3; α (L)=0.770 13; α (M)=0.193 4; α (N+)=0.0559 10
146.9 <i>3</i>	371.8	(8)+	224.9	(6)+	E2		1.133 <i>19</i>	$\alpha(N)=0.0477 \ 8; \ \alpha(O)=0.00800 \ 14; \ \alpha(P)=0.000198 \ 3$ $\alpha(K)=0.351 \ 6; \ \alpha(L)=0.587 \ 10; \ \alpha(M)=0.152 \ 3;$ $\alpha(N+)=0.0435 \ 8$ $\alpha(N)=0.0374 \ 7; \ \alpha(O)=0.00604 \ 11; \ \alpha(P)=3.65\times10^{-5} \ 6$

[†] Additional information 1.
[‡] From Adopted Gammas.
[#] From %IT=100.
[@] From level energy difference.
[&] Absolute intensity per 100 decays.

¹⁹²₇₉Au₁₁₃