187 **Re**(136 **Xe**,**X** γ) **2016Re02**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023					

Includes ${}^{186}W({}^{136}Xe,X\gamma)$ and ${}^{192}Os({}^{136}Xe,X\gamma)$.

Adapted/Edited the XUNDL dataset compiled by B. Singh (McMaster), Dec 7, 2015.

2016Re02: ¹³⁶Xe beam at E \approx 6 MeV/nucleon from ATLAS-ANL facility. Measured E γ , I γ , triple-fold $\gamma\gamma$ -coin and (x ray) γ -coin, $\gamma(t)$, $\gamma\gamma(t)$, angular correlations using Gammasphere array. In-beam and out-of-beam experiments using pulsed beam. For investigation of longer-lived isomers, chopped beam was used. Deduced high-spin levels, J, π , bands, E2/M1 mixing ratios, configurations, 3qp-isomers.

As stated in 2016Re02 (see reference 29 in paper), details of this work would be published.

¹⁹¹Re Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
145 [#] 3	9/2-		E(level): from Adopted Levels. Additional information 1.
285.1 [#]	$11/2^{-}$		
413.6 [@]	$11/2^{-}$		
509.9 [#]	13/2-		
553.2 [@]	$13/2^{-}$		
621.1 ^{&}	(13/2 ⁻)		J^{π} : γ to (11/2 ⁻) and (9/2 ⁻). Bandhead assignment in comparison with that in ¹⁸⁷ Re and ¹⁸⁹ Re (2016Re02).
644.8 [#]	$15/2^{-}$		
883.1 <mark>&</mark>	$(15/2^{-})$		
889.5 [@]	$15/2^{-}$		
952.8 [#]	$17/2^{-}$		
977.1 [@]	$17/2^{-}$		
1088.6 [#]	19/2-		
1349.8 [@]	19/2-		
1485.8 [#]	21/2-		
1507.6	$21/2^+$	70 ns 40	$T_{1/2}$: from $\tau = 101$ ns 58 $\gamma\gamma(t)$ (2016Re02).
1601.6 1678.7	23/2 23/2 ⁺	30.6 µs 33 33.3 ns 28	$T_{1/2}$: from $\tau = 75 \ \mu s \ 5 \ (2016 \text{ReO2}) - \gamma(t)$. $T_{1/2}$: from $\tau = 48 \ \text{ns} \ 4 \ (2016 \text{ReO2}) - \gamma(t)$.

[†] From least-squares fit to $E\gamma$ values, assuming equal uncertainty for all γ -ray energies.

[‡] From 2016Re02, based on multipolarities of γ transitions from $\gamma\gamma(\theta)$ and conversion coefficients deduced from intensity balance arguments, and band structures (2016Re02).

[#] Band(A): π9/2[514].

[@] Band(B): *π*11/2[505].

[&] Band(C): $\pi 9/2[514] \otimes 2+_{\gamma}$.

 $\gamma(^{191}\text{Re})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α@	Comments
87.6	977.1	$17/2^{-}$	889.5 15/2-			
93.8	1601.6	25/2-	1507.6 21/2+	(M2)	58.9 8	α (K)=40.1 6; α (L)=14.27 20; α (M)=3.57 5 α (N)=0.874 12; α (O)=0.1425 20; α (P)=0.00871 12
115.9	1601.6	25/2-	1485.8 21/2-	(E2)	2.301 32	α (K)=0.642 9; α (L)=1.254 18; α (M)=0.318 4 α (N)=0.0757 11; α (O)=0.01082 15; α (P)=5.47×10 ⁻⁵ 8

Continued on next page (footnotes at end of table)

187 **Re**(136 **Xe**,**X** γ) **2016Re02** (continued)

$\gamma(^{191}\text{Re})$ (continued)

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α [@]	Comments
134.8	644.8	15/2-	509.9	13/2-	M1+E2 [#]	0.17 9	2.18 4	$\alpha(K)=1.79 5; \alpha(L)=0.302 13;\alpha(M)=0.0695 34\alpha(N)=0.0168 8; \alpha(O)=0.00280 10;\alpha(P)=0.000194 6$
136.0 139.7	1088.6 553.2	19/2 ⁻ 13/2 ⁻	952.8 413.6	17/2 ⁻ 11/2 ⁻				
140.0	285.1	11/2-	145	9/2-	M1+E2 [#]	0.28 +14-12	1.92 7	$\alpha(K)=1.55\ 10;\ \alpha(L)=0.282\ 21;\ \alpha(M)=0.065\ 6$ $\alpha(N)=0.0158\ 14;\ \alpha(O)=0.00260\ 17;\ \alpha(P)=0.000168\ 11$ δ : From text in 2016Re02.
157.9	1507.6	21/2+	1349.8	19/2-	(E1)		0.1179 <i>17</i>	$\begin{array}{l} \alpha({\rm K}) = 0.0971 \ 14; \ \alpha({\rm L}) = 0.01608 \ 23; \\ \alpha({\rm M}) = 0.00367 \ 5 \\ \alpha({\rm N}) = 0.000878 \ 12; \ \alpha({\rm O}) = 0.0001404 \ 20; \\ \alpha({\rm P}) = 7.93 \times 10^{-6} \ 11 \end{array}$
171.1 192.8	1678.7 1678.7	23/2 ⁺ 23/2 ⁺	1507.6 1485.8	21/2 ⁺ 21/2 ⁻	(E1)		0.0707 10	α (K)=0.0585 8; α (L)=0.00947 13; α (M)=0.002161 30 α (N)=0.000518 7; α (O)=8.34×10 ⁻⁵ 12; α (P)=4.91×10 ⁻⁶ 7
224.9	509.9	13/2-	285.1	11/2-	M1+E2 [#]	0.20 10	0.512 15	$\begin{aligned} &\alpha(\mathbf{K}) = 0.423 \ 15; \ \alpha(\mathbf{L}) = 0.0691 \ 10; \\ &\alpha(\mathbf{M}) = 0.01585 \ 24 \\ &\alpha(\mathbf{N}) = 0.00384 \ 6; \ \alpha(\mathbf{O}) = 0.000642 \ 9; \\ &\alpha(\mathbf{P}) = 4.57 \times 10^{-5} \ 17 \end{aligned}$
261.7 262.0 267.6 268.7	1349.8 883.1 553.2 413.6	19/2 ⁻ (15/2 ⁻) 13/2 ⁻ 11/2 ⁻	1088.6 621.1 285.1 145	19/2 ⁻ (13/2 ⁻) 11/2 ⁻ 9/2 ⁻				
307.9	952.8	17/2-	644.8	15/2-	M1+E2#	0.32 +20-15	0.209 17	$\begin{aligned} &\alpha(\mathbf{K}) = 0.172 \ 16; \ \alpha(\mathbf{L}) = 0.0283 \ 11; \\ &\alpha(\mathbf{M}) = 0.00650 \ 21 \\ &\alpha(\mathbf{N}) = 0.00157 \ 5; \ \alpha(\mathbf{O}) = 0.000263 \ 11; \\ &\alpha(\mathbf{P}) = 1.85 \times 10^{-5} \ 18 \end{aligned}$
336.0 336.0 359.9	621.1 889.5 644.8	(13/2 ⁻) 15/2 ⁻ 15/2 ⁻	285.1 553.2 285.1	11/2 ⁻ 13/2 ⁻ 11/2 ⁻	E2		0.0520 7	α (K)=0.0365 5; α (L)=0.01186 17; α (M)=0.00289 4 α (N)=0.000691 10; α (O)=0.0001056 15; α (P)=3.50×10 ⁻⁶ 5
								Mult.: $A_2=0.054$ 42, $A_4=0.071$ 56 for 359.9 γ -140.0 γ cascade (data in Fig. 5).
364.9 372.8 379.7 396.8 397.0	509.9 1349.8 889.5 1349.8 1485.8	13/2 ⁻ 19/2 ⁻ 15/2 ⁻ 19/2 ⁻ 21/2 ⁻	145 977.1 509.9 952.8 1088.6	9/2 ⁻ 17/2 ⁻ 13/2 ⁻ 17/2 ⁻ 19/2 ⁻				
418.9	1507.6	21/2+	1088.6	19/2 ⁻	(E1)		0.01089 <i>15</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00911 \ 13; \ \alpha(\mathbf{L}) = 0.001381 \ 19; \\ &\alpha(\mathbf{M}) = 0.000313 \ 4 \\ &\alpha(\mathbf{N}) = 7.54 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) = 1.243 \times 10^{-5} \\ &17; \ \alpha(\mathbf{P}) = 8.28 \times 10^{-7} \ 12 \\ &\text{Mult.: } \ \mathbf{A}_2 = 0.058 \ 35, \ \mathbf{A}_4 = -0.015 \ 52 \ \text{for} \\ &418.9\gamma - 359.9\gamma \ \text{cascade} \ (\text{data in Fig.} 5). \end{aligned}$
423 ^{&}	977.1	17/2-	553.2	13/2-				``

Continued on next page (footnotes at end of table)

¹⁸⁷**Re**(¹³⁶**Xe,X** γ) 2016Re02 (continued)

$\gamma(^{191}\text{Re})$ (continued)

Eγ	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	E_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
442.9 443.9	952.8 1088.6	17/2 ⁻ 19/2 ⁻	509.9 644.8	13/2 ⁻ 15/2 ⁻	476 <mark>&</mark> 476.0	621.1 889.5	(13/2 ⁻) 15/2 ⁻	145 413.6	9/2 ⁻ 11/2 ⁻
460.1 466.8	1349.8 1349.8	19/2 ⁻ 19/2 ⁻	889.5 883.1	$15/2^{-}$ (15/2 ⁻)	533.2	1485.8	21/2-	952.8	17/2-

[†] From conversion coefficients deduced from intensity balances, except where noted. [‡] From $\gamma\gamma(\theta)$ data. Values of mixing ratios estimated from plot shown in the right panel of Figure 6 in 2016Re02, except where noted. # From $\gamma\gamma(\theta)$ data in 2016Re02. @ Additional information 2. & Placement of transition in the level scheme is uncertain.

187 Re(136 Xe,X γ) 2016Re02

¹⁹¹₇₅Re₁₁₆