¹⁹¹Au $\varepsilon + \beta^+$ decay (3.18 h) 1976Pi06,1967Jo06

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023

Parent: ¹⁹¹Au: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=3.18$ h 8; $Q(\varepsilon)=1900$ 6; $\%\varepsilon+\%\beta^+$ decay=100 Others: 1954Gi04, 1955Sm42, 1957Hu89, 1961An03, 1962Di01, 1962Ma18, 1973ViZJ, 1975ViZK, 1976Pi06, 1976ViZM. 1976Pi06: ¹⁹¹Au was produced by the ¹⁹¹Ir(α ,4n) reaction, E=50 MeV, 95% enriched target. Ge(Li) (FWHM 2.0 keV for 1332

keV γ) and a low energy photon Ge(Li) (FWHM 650 eV for 122 keV γ). Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, $\alpha(K)$ (using Ice data of 1967Jo06 and normalizing to the I γ (253.95) assuming E2 character), γ -ray multipolarity.

1967Jo06: The gold activity was produced by (p,xn) reactions, E=70 MeV, with natural targets; chemical separation was done, double-focusing spectrometer, proportional counter, 10 surface barrier semiconductor detectors; Measured ce, (ce)(ce) coin; Determined internal conversion coefficients, γ-ray multipolarity. Other ICC measurements: 1954Gi04, 1955Sm42, 1957Hu89, 1961An03, 1962Di01, 1962Ma18.

¹⁹¹Pt Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		Comments
0.0	3/2-	2.83 d 2	T _{1/2} : From Adopted Levels.	
9.554 16	$(5/2)^{-}$		-1/2Fire	
30.399 9	1/23/2-			
100.668 20	$(9/2)^{-}$	$>1 \ \mu s$	T _{1/2} : From Adopted Levels.	
149.040 22	$(13/2)^+$	104 µs 4	$T_{1/2}^{1/2}$: From Adopted Levels.	
158.81 <i>3</i>	$1/2^{-}, 3/2^{-}, 5/2^{-}$	-	, –	
166.518 <i>13</i>	$(3/2)^{-}$			
173.433 24	$(11/2)^+$			
253.947 21	$(7/2, 5/2)^{-}$			
277.880 21	$(3/2, 5/2)^{-}$			
281.188 25	$(3/2, 5/2, 7/2)^{-}$			
293.457 14	$(5/2)^{-}$			
306.34 <i>3</i>	$(9/2)^+$			
399.835 19	7/2-			
451.84 <i>3</i>	$(3/2)^{-}$			
453.83 <i>3</i>	$(7/2)^+$			
487.584 18	$(7/2)^{-}$			
535.29 3	$(3/2,5/2)^{-}$			
574.66 4	$(1/2)^{-}$			
594.29 6	_			
613.15 4	$(1/2,3/2,5/2)^{-}$			
625.85 9	-			
660.23 3	(5/2) ⁺			
662.27 5	(3/2, 5/2)			
132.37 8	$\frac{1}{2}, \frac{3}{2}$			
863.93 3	$(5/2)^{+}$			
929.20 13				
960.40 /	$(5/2)^{+}$			
1074.05 5	(3/2) $(5/2)^+$			
1174 65 0	(3/2)			
1289 97 15				
1300.9.3				
1450.0.0				

[†] From a least-squares fit to adopted γ -ray energies, excluding 206.39 and 451.85 doublets.

[‡] From Adopted Levels.

¹⁹¹Au ε + β ⁺ decay (3.18 h) 1976Pi06,1967Jo06 (continued)

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ ‡	$I\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(447.6)	1453.3		≈0.1	≈7.6	≈0.1	εK=0.7665 10; εL=0.1753 7; εM+=0.0581 3
(599 6)	1300.9		≈0.1	≈7.9	≈0.1	εK=0.7827 5; εL=0.1637 4; εM+=0.05360 13
(610 6)	1289.97		≈0.3	≈7.5	≈0.3	εK=0.7835 5; εL=0.1632 4; εM+=0.05338 13
(725 6)	1174.65		≈0.7	≈7.3	≈0.7	εK=0.7902 3; εL=0.15829 21; εM+=0.05149 9
(787 6)	1113.49		≈3	≈6.7	≈3	εK=0.7929 3; εL=0.15635 18; εM+=0.05074 7
(826 6)	1074.03		≈30	≈5.8	≈30	εK=0.7944 3; εL=0.15526 16; εM+=0.05032 6
(914 6)	986.46		≈0.4	≈7.7	≈0.4	εK=0.7972 2; εL=0.1532 2; εM+=0.04954 5
(971 6)	929.20		≈0.2	≈8.1	≈0.2	εK=0.7988 2; εL=0.1521 1; εM+=0.04911 5
(1168 6)	732.37		≈0.6	≈7.8	≈0.6	ε K=0.8028 <i>I</i> ; ε L=0.14918 <i>8</i> ; ε M+=0.04798 <i>3</i>
(1240 6)	660.23		≈1	≈7.6	≈1	εK=0.80396 9; εL=0.14836 7; εM+=0.04767 3
(1274 6)	625.85		≈0.7	≈7.8	≈0.7	εK=0.80443 8; εL=0.14799 7; εM+=0.04753 3
(1287 6)	613.15		≈0.1	≈8.7	≈0.1	εK=0.8046; εL=0.14787 6; εM+=0.04748 3
(1306 6)	594.29		≈0.1	≈8.7	≈0.1	εK=0.8048; εL=0.14768 6; εM+=0.04741 3
(1325 6)	574.66		≈1	≈7.7	≈1	εK=0.8051; εL=0.14749 6; εM+=0.04734 3
(1365 6)	535.29		≈1	≈7.7	≈1	εK=0.8055; εL=0.14712 6; εM+=0.04720 2
(1412 6)	487.584		≤2	$\geq 8.3^{1u}$	≤2	εK=0.7884 2; εL=0.1595 2; εM+=0.05205 5
(1446 6)	453.83		≤2	≥7.5	≤ 2	εK=0.8062; εL=0.14642 5; εM+=0.04693 2
(1448 6)	451.84	≈0.002	≈5	≈7.1	≈5	av E β =212.1 28; ε K=0.8062; ε L=0.14640 5; ε M+=0.04692 2
(1500 6)	399.835	≤0.001	≤2	≥7.5	≤2	av E β =235.5 27; ε K=0.8065; ε L=0.14597 5; ε M+=0.04676 2
(1607 6)	293.457	≈0.01	≈ 8	≈7.0	≈8	av E β =283.0 27; ε K=0.8067; ε L=0.14513 5; ε M+=0.04645 2
(1619 6)	281.188	≤0.004	≤2	≥7.6	≤ 2	av E β =288.4 27; ε K=0.8067; ε L=0.14503 5; ε M+=0.04641 2
(1622 6)	277.880	≈0.021	≈11	≈6.8	≈11	av E β =289.9 27; ε K=0.8067; ε L=0.14501 5; ε M+=0.04640 2
						$E\beta + = 425 \text{ keV } 61 \text{ (1976ViZM)}.$
(1646 6)	253.947	≈0.007	≈3	≈7.4	≈3	av Eβ=300.5 27; εK=0.8067; εL=0.14482 5; εM+=0.04633 2
(1734 6)	166.518	≈0.03	≈ 7	≈7.1	≈7	av Eβ=339.4 27; εK=0.8062; εL=0.14413 5; εM+=0.04608 2
(1741 6)	158.81	≈0.008	≈ 2	≈7.6	≈ 2	av E β =342.8 27; ε K=0.8061; ε L=0.14406 5; ε M+=0.04606 2
(1870 6)	30.399	≤0.01	≤2	≥7.7	≤ 2	av $E\beta$ =399.0 27; ε K=0.8044 1; ε L=0.14299 6; ε M+=0.04568 2
						I($\varepsilon + \beta^+$): I $\varepsilon \approx 5\%$ given by 1976Pi06 is not consistent with
						experimental I γ =269 40 and theoretical α =40.4 for 30.4 γ .
(1890 6)	9.554	0.091	12	6.9	12.	av Eβ=408.1 27; εK=0.8040 2; εL=0.14280 6; εM+=0.04561 2
						I($\varepsilon + \beta^+$): calculated by assuming log ft=6.9 (as for ¹⁹³ Au ε
						decay).
(1900 6)	0.0	0.095	12	6.9	12.	av E β =412.3 27; ε K=0.8038 2; ε L=0.14272 6; ε M+=0.04558 2
						I($\varepsilon + \beta^+$): calculated by assuming log ft=6.9 (as for ¹⁹³ Au ε
						decay to 14 keV $5/2^{-}$ level).
						$E\beta +=808 \text{ keV } 50 \text{ (1976ViZM)}$. Others: 1973ViZJ, 1975ViZK.

[†] from γ -ray intensity balance and assuming 12% ε feeding for both g.s. $(J^{\pi}=3/2^{-})$ and 9.55 $(J^{\pi}=(5/2)^{-})$ levels (resultant log *ft*=6.9), as for the 14.3 $(J^{\pi}=5/2^{-})$ state populated in ¹⁹³Au ε decay (2017Ba21). [‡] Absolute intensity per 100 decays.

$\gamma(^{191}\text{Pt})$

I γ normalization: Calculated by assuming 12% ε feeding for both the g.s. and 9.56 levels (resultant log *ft*=6.9, as for ¹⁹³Au ε decay (2017Ba21)), and I(γ +ce)(g.s. + 9.55) \approx 76%.

ce: From 1967Jo06. For subshell data with an upper limit are noted for coincidence with other lines.

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	$I_{\gamma} \overset{\& e}{}$	E_i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^{d}	Comments
(9.56)		9.554	(5/2)-	0.0	3/2-				E_{γ} : deduced from $E\gamma$'s (cascade and crossover). Placed via $\gamma\gamma$ -coin about initial states.
24.39 ^{‡#} 1	1.9 ^{<i>a</i>} 4	173.433	(11/2)+	149.040	(13/2)+	M1+E2	0.158 29	1.7×10 ² 4	α(L)=129 28; α(M)=32 7 α(N)=7.7 17; α(O)=1.27 26; α(P)=0.0394 6 Mult.,δ: from ce data fit: Mult(24.39γ): from ce(L1):ce(L2):ce(L3):ce(M1):ce(M2):ce(M3):ce(N1): ce(N23) exp: 95 25:56 25:86 30:20 4:14 3:19 3:10 3:12 3 (1967Jo06). 1967Jo06 assigned an E1 multipolarity to this transition based on the L subshell ratios; however, M1 + 2% E2 gives a best fit and is consistent with the placement of the 24.39-keV transition on the level scheme given in 1976Pi06. L1/L2=1.7 9, L1/L3=1.1 5, M1/M2=1.4 4, M1/M3=1.1 3.
30.40 [‡] <i>I</i>	15.0 ^{<i>a</i>} 11	30.399	1/2 ⁻ ,3/2 ⁻	0.0	3/2-	M1+E2	0.034 17	40.4 20	$\begin{array}{l} \alpha(L)=31.0 \ 15; \ \alpha(M)=7.2 \ 4 \\ \alpha(N)=1.78 \ 9; \ \alpha(O)=0.319 \ 14; \ \alpha(P)=0.02070 \ 29 \\ E_{\gamma}: \ Other: \ 30.27 \ 6 \ (1976Pi06). \\ I_{\gamma}: \ Other: \ 269 \ 40 \ (1976Pi06). \\ Mult.,\delta: \ from \ ce(L1):ce(L2):ce(L3):ce(M1):ce(M2):ce(N1) \\ exp=403 \ 40:50 \ 11:14 \ 5: \ 88 \ 7:10 \ 3:28 \ 5 \ (1967Jo06). \\ L1/L2=8.1 \ 19, \ L1/L3=29 \ 11, \ M1/M2=8.8 \ 27. \end{array}$
48.37 ^{‡#} 1	0.96 ^{<i>a</i>} 5	149.040	(13/2)+	100.668	(9/2)-	M2		455 6	$\begin{array}{l} \alpha(L) = 339 \ 5; \ \alpha(M) = 89.2 \ 13 \\ \alpha(N) = 22.43 \ 31; \ \alpha(O) = 3.88 \ 5; \ \alpha(P) = 0.2032 \ 29 \\ \text{Mult.: from ce(L1):ce(L2):ce(L3):ce(M1):ce(M2):ce(M3): } \\ \text{ce(N1):ce(N3): ce(O1) exp = 205 \ 15:20 \ 5:95 \ 15:52 \ 5:5.3 \\ 15:23 \ 4: \ 18 \ 3: \ 10 \ 4: \ 4.0 \ 15 \ (1967Jo06). \end{array}$
87.74 [‡] 2	4.4 ^{<i>a</i>} 6	487.584	(7/2) ⁻	399.835	7/2-	M1+E2	0.27 +7-5	9.61 <i>14</i>	$\begin{aligned} &\alpha(\text{K})=7.47\ 28;\ \alpha(\text{L})=1.64\ 16;\ \alpha(\text{M})=0.39\ 4\\ &\alpha(\text{N})=0.096\ 10;\ \alpha(\text{O})=0.0166\ 16;\ \alpha(\text{P})=0.000869\ 31\\ \text{E}_{\gamma}:\ \text{Other:}\ :\ 87.55\ 6\ (1976\text{Pi06}).\\ &\text{I}_{\gamma}:\ \text{Other:}\ :\ 2\ 1\ (1976\text{Pi06}).\\ &\text{Mult.,}\delta:\ \text{from ce}(\text{L}1):\text{ce}(\text{L}2):\text{ce}(\text{L}3):\text{ce}(\text{M}1)\ \text{exp=4.4}\ 6:1.5\\ &\ 6:0.55\ 22:0.8\ 2\ (1967\text{Jo06}).\ \text{L1/L2}=2.9\ 12,\ \text{L1/L3}=8.0\\ &\ 34. \end{aligned}$
91.11 [‡] 2	99 7	100.668	(9/2)-	9.554	(5/2)-	E2		7.23 10	α (K)=0.754 <i>11</i> ; α (L)=4.86 <i>7</i> ; α (M)=1.259 <i>18</i> α (N)=0.307 <i>4</i> ; α (O)=0.0477 <i>7</i> ; α (P)=0.0001103 <i>15</i>

					¹⁹¹ Au ε + β ⁺	decay (3.18	8 h) 1976Pi06	,1967Jo06 (continued)
						<u>γ(</u>	¹⁹¹ Pt) (continued	<u>l)</u>	
E_{γ}^{\dagger}	Ιγ ^{&} ε	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^b	δ^{c}	α^{d}	Comments
									Iγ=85 <i>16</i> from ce data, considering ce(M2)<230 as 115 <i>115</i> . Mult.: from ce(L1):ce(L2):ce(L3):ce(M2):ce(M3):ce(O) exp=9.0 <i>15</i> :210 <i>20</i> :185 <i>20</i> : <230:54 <i>6</i> :4.0 <i>14</i> (1967Jo06); discarded ce(K) exp=17 <i>4</i> , outlier in ce data fit, and ce(N2) exp=28 <i>5</i> .
106.36 [@] 5	31	399.835	7/2-	293.457	(5/2)-	M1+E2	1.0 6	4.7 6	$\begin{array}{l} \alpha({\rm K}){=}2.6 \ 14; \ \alpha({\rm L}){=}1.6 \ 6; \ \alpha({\rm M}){=}0.39 \ 16 \\ \alpha({\rm N}){=}0.10 \ 4; \ \alpha({\rm O}){=}0.016 \ 6; \ \alpha({\rm P}){=}3.0{\times}10^{-4} \ 16 \\ {\rm Mult.,} \delta: \ {\rm from} \ \alpha({\rm K}){\rm exp}{=}2.7 \ 11, \ {\rm obtained} \ {\rm from} \ 29.97 \ {\rm keV} \ {\rm ce} \\ {\rm line} \ {\rm observed} \ {\rm by} \ 1967{\rm Jo06} \ {\rm with} \ {\rm Ice{=}8} \ 2 \ {\rm and} \ {\rm assigning} \ {\rm it} \\ {\rm to} \ {\rm K} \ {\rm conversion}. \end{array}$
x122.71 5 126.92 2	3 <i>1</i> 8.5 <i>14</i>	293.457	(5/2)-	166.518	(3/2)-	M1+E2	0.56 +24-25	3.02 23	$\alpha(K)=2.23 \ 35; \ \alpha(L)=0.60 \ 9; \ \alpha(M)=0.145 \ 25$ $\alpha(N)=0.036 \ 6; \ \alpha(O)=0.0061 \ 9; \ \alpha(P)=0.00025 \ 4$ Mult., δ : From ce(K):ce(L1):ce(L2) exp=16 2:3.9 5: <0.50 (mix with other lines) (1967Jo06). $\alpha(K)=1.9 \ 4$, $\alpha(L1)=0.46 \ 10$. I _y : From ce data of 1967Jo06, considering ce(L2)<0.5 as 0.25 25 Other: 9 I from 1976Pi06
x132.00 [@] 5 132.89 [‡] 2	21 2 72 6	306.34	(9/2)+	173.433	(11/2)+	M1+E2	0.25 4	2.88 5	$\begin{aligned} &\alpha(\text{K})=2.32\ 5;\ \alpha(\text{L})=0.429\ 10;\ \alpha(\text{M})=0.1006\ 28\\ &\alpha(\text{N})=0.0248\ 7;\ \alpha(\text{O})=0.00440\ 10;\ \alpha(\text{P})=0.000265\ 6\\ &\text{E}_{\gamma}:\ \text{Other:}\ 132.98\ 4\ (1976\text{Pi06}).\\ &\text{Mult.,}\delta:\ \text{from ce}(\text{K}):\text{ce}(\text{L1}):\text{ce}(\text{L2}):\text{ce}(\text{L3}):\text{ce}(\text{M})\ \text{exp}=151\\ &10:25.4\ 15:3.5\ 5:2.1\ 5:\ 4.9\ 7\ (1967\text{Jo06}).\ \alpha(\text{K})\text{exp}=0.18\\ &3,\ \text{L1/L2}=7.3\ 11,\ \text{L1/L3}=12\ 3. \end{aligned}$
133.70 5 136.09 [‡] 2	16 2 40 <i>4</i>	166.518	(3/2)-	30.399	1/2 ⁻ ,3/2 ⁻	M1+E2	0.42 8	2.56 8	$\begin{aligned} &\alpha(\mathrm{K}) = 2.00 \ 10; \ \alpha(\mathrm{L}) = 0.435 \ 20; \ \alpha(\mathrm{M}) = 0.104 \ 6 \\ &\alpha(\mathrm{N}) = 0.0255 \ 14; \ \alpha(\mathrm{O}) = 0.00442 \ 19; \ \alpha(\mathrm{P}) = 0.000228 \ 11 \\ &\mathrm{E}_{\gamma}: \ \text{Other:}: \ 136.16 \ 4 \ (1976\text{Pi06}). \\ &\mathrm{Mult.}_{,\delta}: \ \text{from ce}(\mathrm{K}): \text{ce}(\mathrm{L1}): \text{ce}(\mathrm{L2}): \text{ce}(\mathrm{L3}): \text{ce}(\mathrm{M}): \text{ce}(\mathrm{N}) \\ &\exp = 66 \ 5:10.2 \ 10: \ 3.1 \ 4: \ 1.4 \ 3:5.8 \ 8:1.8 \ 4 \ (1967\text{Jo06}). \\ &\alpha(\mathrm{K}) = 1.65 \ 21, \ \mathrm{L1/L2} = 3.3 \ 5, \ \mathrm{L1/L3} = 7.3 \ 17. \end{aligned}$
*142.51 ^w 5 145.95 [@] 5	14 <i>1</i> 6 <i>1</i>	399.835	7/2-	253.947	(7/2,5/2)-	(M1)		2.265 32	$\alpha(K)=1.865\ 26;\ \alpha(L)=0.308\ 4;\ \alpha(M)=0.0713\ 10$ $\alpha(N)=0.01764\ 25;\ \alpha(O)=0.00317\ 4;\ \alpha(P)=0.0002138\ 30$ Mult.: from $\alpha(K)\exp=2.0\ 11$, obtained from 67.47 keV ce line observed by 1967Jo06 with Ice=12 4 and assigning it to K conversion.
147.49 [@] 4	51 <i>3</i>	453.83	$(7/2)^+$	306.34	$(9/2)^+$	M1,E2		1.6 6	$\alpha(K)=1.1$ 7; $\alpha(L)=0.42$ 12; $\alpha(M)=0.103$ 34

From ENSDF

 $^{191}_{78}\text{Pt}_{113}\text{-}4$

 $^{191}_{78}\text{Pt}_{113}\text{-}4$

				¹⁹¹ Αu ε	+ β^+ decay	y (3.18 h)	1976Pi06,190	67Jo06 (con	tinued)
						$\gamma(^{191}\text{Pt})$	(continued)		
E_{γ}^{\dagger}	Ι _γ & <i>e</i>	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult. ^b	δ^{c}	α^{d}	Comments
156.97 5	29 4	166.518	(3/2)-	9.554	(5/2)-	[M1,E2]		1.3 5	$\alpha(N)=0.025 \ 8; \ \alpha(O)=0.0042 \ 11; \ \alpha(P)=1.2\times10^{-4} \ 9$ Mult.: from $\alpha(K)$ exp=1.3 7, obtained from 69.00 keV ce line observed by 1967Jo06 with Ice=65 20 and assigning it to K conversion. $\alpha(K)=0.9 \ 6; \ \alpha(L)=0.33 \ 8; \ \alpha(M)=0.081 \ 23 \ \alpha(N)=0.020 \ 6; \ \alpha(Q)=0.0033 \ 7; \ \alpha(P)=1.0\times10^{-4} \ 7$
157.33 [@] 5	40 6	306.34	$(9/2)^+$	149.040	$(13/2)^+$	[E2]		0.838 12	$\alpha(K)=0.305 4; \ \alpha(L)=0.401 6; \ \alpha(M)=0.1030 14$
158.86 <i>3</i>	87 6	158.81	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	0.0	3/2-	M1+E2	0.59 22	1.53 14	 α(N)=0.02515 35; α(O)=0.00396 6; α(P)=2.89×10⁻⁵ 4 α(K)=1.17 16; α(L)=0.279 20; α(M)=0.067 6 α(N)=0.0165 14; α(O)=0.00283 18; α(P)=0.000132 19 E_γ: Weighted average of 158.89 4 (1976Pi06) and 158.83 4 (1967Jo06). Mult.,δ: from ce(K):ce(L1):ce(L2):ce(M):ce(N) exp=80 20:21 2:6.9 14 (coin with lines of other isotope):9.7 15: 1.4 2 (1967Jo06). α(K)=0.92 24, L1/L2=3.0 7, α(M)=0.11 2, α(N)=0.016 3.
166.50 [‡] 2	195 <i>14</i>	166.518	(3/2)-	0.0	3/2-	M1+E2	0.53 8	1.37 5	$\begin{array}{l} \alpha(\text{K}) = 1.06 \ 5; \ \alpha(\text{L}) = 0.234 \ 6; \ \alpha(\text{M}) = 0.0559 \ 18 \\ \alpha(\text{N}) = 0.0138 \ 4; \ \alpha(\text{O}) = 0.00238 \ 6; \ \alpha(\text{P}) = 0.000120 \ 7 \\ \text{E}_{\gamma}: \ \text{Other:}: \ 166.56 \ 3 \ (1976\text{Pi06}). \\ \text{Mult.,} \delta: \ \text{from ce}(\text{K}):\text{ce}(\text{L1}):\text{ce}(\text{L2}):\text{ce}(\text{L3}):\text{ce}(\text{M}):\text{ce}(\text{N}) \\ \text{exp} = <230 \ (\text{coin with other lines}): 29 \ 3:9.4 \ 15: \ 5.1 \ 10: \\ 10 \ 2:<24 \ (\text{coin with other lines}) \ (1967\text{Jo06}). \ \text{L1/L2}=3.1 \\ 6, \ \text{L1/L3}=5.7 \ 13, \ \alpha(\text{M})=0.051 \ 11. \end{array}$
192.82 [@] 4	15 2	293.457	(5/2)-	100.668	(9/2)-	E2		0.407 6	$\alpha(K)=0.1862\ 26;\ \alpha(L)=0.1664\ 23;\ \alpha(M)=0.0425\ 6$ $\alpha(N)=0.01039\ 15;\ \alpha(O)=0.001651\ 23;\ \alpha(P)=1.773\times10^{-5}\ 25$ Mult.: from $\alpha(K)exp=0.13\ 5$, obtained from 114.37 keV ce line observed by 1967Jo06 with Ice=2.0 5 and assigning it to K conversion.
194.14 <i>3</i>	161 <i>11</i>	487.584	(7/2)-	293.457	(5/2)-	M1+E2	0.41 +8-6	0.926 <i>33</i>	α(K)=0.742 34; α(L)=0.1410 23; α(M)=0.0332 7 α(N)=0.00819 16; α(O)=0.001443 22; α(P)=8.4×10-5 4 Weighted average of 194.17 3 (1976Pi06) and 194.11 3 (1967Jo06). Mult.,δ: From ce(K):ce(L1):ce(L2):ce(L3):ce(M) exp=93 10 (coin with other lines):18.8 15:2.3 4 (coin with other lines):1.6 3: 4.7 8 (1967Jo06). α(K)=0.58 7, L1/L2=8.2 16, L1/L3=11.8 24.
^x 202.43 [@] 4	61								

From ENSDF

				19	91 Au ε + β^+ deca	y (3.18 h)	1976Pi06,1967	Jo06 (contin	nued)
						$\gamma(^{191}\text{Pt})$	(continued)		
${\rm E_{\gamma}}^{\dagger}$	Ιγ ^{&} ε	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{c}	α^{d}	Comments
206.39 [‡] 3	48 20	487.584	(7/2)-	281.188	(3/2,5/2,7/2) ⁻	[M1,E2]		0.59 27	$\alpha(K)=0.43\ 27;\ \alpha(L)=0.120\ 5;\ \alpha(M)=0.0293\ 26$ $\alpha(N)=0.0072\ 6;\ \alpha(O)=0.001217\ 30;\ \alpha(P)=4.8\times10^{-5}\ 33$ E _y : Other: 206.46 5 (1976Pi06). I _y : from doublet I _y =130\ 10 (1976Pi06) minus I _y =82 17 from 660 keV level decay. Mult.: $\alpha(K)\exp=0.58\ (76(ce)/130(I_y))$ for the doublet is compatible with assignment. $ce(K):ce(L1):ce(2):ce(M) \exp = 76\ 5:\ 14.0\ 28:\ <31:$ 5.3 8 (1967Jo06).
206.39 <i>3</i>	82 17	660.23	(5/2)+	453.83	(7/2)+	[M1,E2]		0.59 27	$\alpha(K)=0.43\ 27;\ \alpha(L)=0.120\ 5;\ \alpha(M)=0.0293\ 26$ $\alpha(N)=0.0072\ 6;\ \alpha(O)=0.001217\ 30;\ \alpha(P)=4.8\times10^{-5}\ 33$ I _y : from I _Y (206 _Y)/I _Y (353 _Y)=0.45 9 in adopted gammas. Mult.: $\alpha(K)$ exp=0.56 for the doublet is compatible with assignment.
210.09 4	35 3	1074.03	(5/2)+	863.93	(5/2)+	M1+E2	0.35 +16-14	0.76 5	$\begin{aligned} &\alpha(\text{K}) = 0.61 \ 5; \ \alpha(\text{L}) = 0.1109 \ 17; \ \alpha(\text{M}) = 0.0259 \ 5\\ &\alpha(\text{N}) = 0.00641 \ 13; \ \alpha(\text{O}) = 0.001137 \ 16; \ \alpha(\text{P}) = 7.0 \times 10^{-5} \ 6\\ &\text{E}_{\gamma}: \ \text{Other:} \ 210.05 \ 8 \ (1967Jo06). \end{aligned}$ Mult., δ : From ce(K):ce(L1):ce(L2):ce(M) exp=19.4 20:4.0 \ 5:0.57 \ 15:2.6 \ 5 \ (1967Jo06). \ \alpha(\text{K}) = 0.55 \ 7, \\ &\text{L1/L2} = 7.0 \ 20. \end{aligned}
223.63 [@] 5	13 1	253.947	(7/2,5/2)-	30.399	1/2-,3/2-	[M1,E2]		0.47 22	$\alpha(K)=0.35\ 22;\ \alpha(L)=0.0912\ 19;\ \alpha(M)=0.0221\ 8$ $\alpha(N)=0.00544\ 16;\ \alpha(O)=0.000923\ 33;\ \alpha(P)=3.8\times10^{-5}$
244.38 <i>4</i>	57 4	253.947	(7/2,5/2) ⁻	9.554	(5/2)-	M1+E2	0.62 14	0.438 32	
247.50 4	44 3	277.880	(3/2,5/2)-	30.399	1/2-,3/2-	M1+E2	2.3 1	0.232 5	$\alpha(K)=0.151 5; \alpha(L)=0.0612 9; \alpha(M)=0.01524 21$ $\alpha(N)=0.00374 5; \alpha(O)=0.000614 9; \alpha(P)=1.59\times10^{-5} 5$ $E_{\gamma}: \text{ Other: } 247.43 8 (1967Jo06).$ Mult., δ : From ce(K):ce(L1):ce(L2) exp=6.7 8:1.12 $15:1.34 20 (1967Jo06). \alpha(K)=0.15 2, L1/L2=0.8 2.$

	¹⁹¹ Au $\varepsilon + \beta^+$ decay (3.18 h) 1976Pi06,1967Jo06 (continued)											
						$\gamma(^{191}$	Pt) (continued)				
E_{γ}^{\dagger}	Ι _γ &e	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. ^b	δ^{C}	α^{d}	Comments			
253.95	3 149 10	253.947	(7/2,5/2) ⁻	0.0	3/2-	E2		0.1641 23	$\begin{aligned} &\alpha(\text{K}) = 0.0928 \ 13; \ \alpha(\text{L}) = 0.0538 \ 8; \ \alpha(\text{M}) = 0.01359 \ 19 \\ &\alpha(\text{N}) = 0.00333 \ 5; \ \alpha(\text{O}) = 0.000536 \ 8; \ \alpha(\text{P}) = 9.14 \times 10^{-6} \ 13 \\ &\text{E}_{\gamma}: \ \text{Other:} \ 253.90 \ 5 \ (1967\text{Jo06}). \\ &\text{Mult.: from ce(\text{K}):ce(\text{L1}):ce(\text{L2}):ce(\text{L3}):ce(\text{M}) \ exp=13.0 \\ &10:1.94 \ 20:4.7 \ 5:2.2 \ 4: \ 3.5 \ 7; \ ce(\text{N}) \ exp=2.1 \ 4 \end{aligned}$			
263.09	3 916	293.457	(5/2)-	30.399	1/2-,3/2-	E2		0.1469 <i>21</i>	(1967Jo06) rejected, outlier. $\alpha(K)=0.0849 \ 12; \ \alpha(L)=0.0468 \ 7; \ \alpha(M)=0.01181 \ 17$ $\alpha(N)=0.00289 \ 4; \ \alpha(O)=0.000467 \ 7; \ \alpha(P)=8.40\times10^{-6} \ 12$ $E_{\gamma}: \ Other: \ 263.05 \ 15 \ (1967Jo06).$ Mult.: from ce(K):ce(L3):ce(M) exp=7.8 \ 10:1.9 \ 3: \ <2.2 (coin with other lines) (1967Jo06).			
268.33	4 1169	277.880	(3/2,5/2) ⁻	9.554	(5/2)-	M1+E2	0.31 21	0.390 <i>35</i>	$\alpha(K)=0.319 \ 33; \ \alpha(L)=0.0548 \ 17; \ \alpha(M)=0.01273 \ 31 \ \alpha(N)=0.00315 \ 8; \ \alpha(O)=0.000562 \ 19; \ \alpha(P)=3.6\times10^{-5} \ 4 \ E_{\gamma}: \ Other: \ 268.25 \ 10 \ (1967Jo06).$ Mult., δ : From ce(K):ce(L1):ce(L2):ce(L3):ce(M) exp=31 \ 7:5.0 \ 15:0.61 \ 20:0.14 \ 6: \ 2.5 \ 10 \ - \ all had coin with other lines (1967Jo06) \ \alpha(K)=0.27 \ 6 \ L1/L \ 2=8 \ 4 \ L1/L \ 3=36 \ 19 \ 35 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1			
271.65	3 148 10	0 281.188	(3/2,5/2,7/2)-	9.554	(5/2) ⁻	M1+E2	1.00 10	0.267 15	$\begin{aligned} \alpha(K) &= 0.204 \ 14; \ \alpha(L) = 0.0477 \ 9; \ \alpha(M) = 0.01144 \ 19 \\ \alpha(N) &= 0.00282 \ 5; \ \alpha(O) = 0.000484 \ 10; \ \alpha(P) = 2.27 \times 10^{-5} \ 16 \\ E_{\gamma}: \ Other: \ 271.62 \ 5 \ (1967Jo06). \\ Mult., \delta: \ from \ ce(K):ce(L1):ce(L2):ce(L3):ce(M) \ exp = <31 \\ (coin with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ lines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ other \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ with \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 20: \ <2.2 \ (coin \ sines): \ 4.1 \ 3:1.74 \ 3:1$			
277.86	3 424 28	8 277.880	(3/2,5/2)-	0.0	3/2-	M1		0.376 5	$\alpha(K) = 0.311 \ 4; \ \alpha(L) = 0.0507 \ 7; \ \alpha(M) = 0.01172 \ 16$ $\alpha(N) = 0.00290 \ 4; \ \alpha(O) = 0.000522 \ 7; \ \alpha(P) = 3.53 \times 10^{-5} \ 5$ $E_{\gamma}: \ Other: \ 277.84 \ 3 \ (1967Jo06).$ Mult.: from ce(K):ce(L1):ce(L2):ce(L3):ce(M):ce(N) exp=100: \ 16.9 \ 10: \ 1.5 \ 3:0.12 \ 6:4.1 \ 4: \ <3.6 \ (coin with other lines) \ (1967Jo06).			
280.40	3 173 1	453.83	(7/2)+	173.433	(11/2)+	E2		0.1207 17	$\alpha(K)=0.0723 \ 10; \ \alpha(L)=0.0366 \ 5; \ \alpha(M)=0.00919 \ 13$ $\alpha(N)=0.002251 \ 32; \ \alpha(O)=0.000365 \ 5; \ \alpha(P)=7.22\times10^{-6} \ 10$ $E_{\gamma}: \ Other: \ 280.34 \ 10 \ (1967Jo06).$ Mult.: from ce(K):ce(L1):ce(L2):ce(L3):ce(M) exp=11.7 $10:1.54 \ 20: \ 2.81 \ 30:1.71 \ 20: \ <3.6 \ (1967Jo06).$			
283.90	3 396 2:	5 293.457	(5/2)-	9.554	(5/2)-	M1+E2	0.63 +8-7	0.287 13	$\alpha(K)=0.230 \ I2; \ \alpha(L)=0.0441 \ 9; \ \alpha(M)=0.01040 \ I9$ $\alpha(N)=0.00257 \ 5; \ \alpha(O)=0.000451 \ I0; \ \alpha(P)=2.58\times10^{-5} \ I4$ $E_{y}: \ Other: \ 283.88 \ 6 \ (1967Jo06).$ Mult., δ : from ce(K):ce(L1):ce(L2):ce(L3):ce(M) exp=79 $4:11.4 \ I0:1.64 \ 20: \ 1.06 \ I5: \ <6.5 \ (coin with other lines)$ $(1967Jo06), \ \alpha(K)=0.20 \ 2, \ L1/L,2=7.0 \ I0. \ L1/L,3=10.8 \ I8$			
293.45	3 167 1	293.457	(5/2)-	0.0	3/2-	M1+E2	0.9 3	0.23 4	$\alpha(K)=0.18$ 4; $\alpha(L)=0.0379$ 24; $\alpha(M)=0.0090$ 5			

	¹⁹¹ Au ε+ $β^+$ decay (3.18 h) 1976Pi06,1967Jo06 (continued)												
					$\gamma(1)$	¹⁹¹ Pt) (conti	nued)						
E_{γ}^{\dagger}	Ι _γ & <i>e</i>	E _i (level)	\mathbf{J}^{π}_{i}	E_f	\mathbf{J}_{f}^{π}	Mult. ^b	δ^{C}	α^{d}	Comments				
216 5@ 5		020.20		(12.15	(1/2 2/2 5/2)=				α(N)=0.00222 12; α(O)=0.000386 27; α(P)=2.0×10-5 4 Eγ: Other: 293.45 6 (1967Jo06). Mult.,δ: from ce(K):ce(L1):ce(L2):ce(M) exp=30 5 (coin with other lines):5.3 10 (coin with other lines):<2.5 (coin with other lines): 2.3 5 (coin with other lines) (1967Jo06). α(K)exp=0.18 3.				
$316.5 \circ 5$	≈5 0 <i>l</i>	929.20	$(1/2) 2/2 5/2)^{-1}$	613.15	$(1/2,3/2,5/2)^{-}$								
332.03 ° 5 340.35 5	91 91	613.15 594.29	(1/2,3/2,5/2)	281.188 253.947	(3/2,3/2,1/2) (7/2,5/2) ⁻	(M1)		0.2170 <i>30</i>	$\alpha(K)=0.1791\ 25;\ \alpha(L)=0.0291\ 4;\ \alpha(M)=0.00672\ 9$ $\alpha(N)=0.001664\ 23;\ \alpha(O)=0.000300\ 4;$ $\alpha(P)=2.028\times10^{-5}\ 28$ $E_{\gamma}:\ Other:\ 340.24\ 15\ (1967Jo06).$ Mult.: from $\alpha(K)exp=0.22\ 5\ (from\ ce(K)=2.0\ 4$				
$x_{347} 54^{\textcircled{0}} 5$	32.3								(190/3000)).				
353.88 3	183 <i>1</i> 2	660.23	(5/2)+	306.34	(9/2)+	(E2)		0.0611 9	$\alpha(K)=0.0407 \ 6; \ \alpha(L)=0.01547 \ 22; \ \alpha(M)=0.00384 \ 5 \ \alpha(N)=0.000942 \ 13; \ \alpha(O)=0.0001552 \ 22; \ \alpha(P)=4.18\times10^{-6} \ 6 \ E_{\gamma}: \ Other: \ 353.91 \ 12 \ (1967Jo06).$ Mult.: from ce(K):ce(L1):ce(L2):ce(L3):ce(M) exp= 6.0 \ 6:1.56 \ 15:1.37 \ 15:0.89 \ 15:0.46 \ 15 \ (1967Jo06).				
^x 359.85 [@] 5	10 2								The assignment of this γ to the decay of 613.1 level				
368.66 4	26 2	535.29	(3/2,5/2) ⁻	166.518	(3/2) ⁻	M1+E2	1.3 3	0.099 16	by 1976Pi06 is in disagreement with the level energy difference, 359.19 5 keV. $\alpha(K)=0.077 \ 14; \ \alpha(L)=0.0171 \ 13; \ \alpha(M)=0.00410 \ 27 \ \alpha(N)=0.00101 \ 7; \ \alpha(O)=0.000174 \ 14; \ \alpha(P)=8.5\times10^{-6} \ 16$				
376.56 [@] 4	25 2	535.29	(3/2,5/2)-	158.81	1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻	[M1,E2]		0.11 6	E _γ : Other: 368.89 <i>12</i> (1967Jo06). Mult.,δ: from ce(K):ce(L1):ce(L2) exp=2.1 5:0.33 8:0.13 5 (1967Jo06). α(K)=0.081 20, L1/L2=2.5 <i>12</i> . α(K)=0.09 5; α(L)=0.017 5; α(M)=0.0041 <i>10</i> α(N)=1.01×10 ⁻³ 26; α(O)=1.8×10 ⁻⁴ 5; α(P)=1.0×10 ⁻⁵ 6				

 ∞

 $^{191}_{78}\text{Pt}_{113}\text{--}8$

					¹⁹¹ Au ε + β ⁺	decay (3.18	h) 1976Pi06 ,	1967Jo06 (co	ontinued)
						$\gamma(1)$	¹⁹¹ Pt) (continued)	<u>)</u>	
${E_\gamma}^\dagger$	Ι _γ &e	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. ^b	δ^{c}	α^{d}	Comments
386.90 <i>3</i>	212 14	487.584	(7/2)-	100.668	(9/2)-	M1+E2	1.05 +11-9	0.098 5	α(K)=0.078 5; α(L)=0.0157 5; α(M)=0.00373 11 α(N)=0.000919 27; α(O)=0.000160 5; α(P)=8.6×10-6 6 Eγ: Other: 386.92 5 (1967Jo06). Mult.,δ: from ce(K):ce(L1):ce(L2):ce(L3):ce(M):ce(N) exp=24.0 15: 3.7 3:<5.9:0.60 15:1.61 20:<1.9
390.25 <i>3</i>	160 <i>11</i>	399.835	7/2-	9.554	(5/2)-	M1+E2	0.41 15	0.1354 99	(1967Jo06). $\alpha(K)=0.11 \ l$, L1/L2=6.2 <i>16</i> . $\alpha(K)=0.111 \ g$; $\alpha(L)=0.0188 \ g$; $\alpha(M)=0.00436 \ Ig$ $\alpha(N)=0.00108 \ 5$; $\alpha(O)=0.000193 \ IG$; $\alpha(P)=1.25\times10^{-5} \ IG$ E_{γ} : Weighted average of 390.23 <i>5</i> (1967Jo06) and 390.27 <i>4</i> (1976Pi06). Mult., δ : from ce(K):ce(L1):ce(L2):ce(L3) exp=17.9 <i>15</i> :3.4 <i>3</i> :0.44 <i>10</i> :0.6 <i>3</i> (1967Jo06). $\alpha(K)$ exp=0.112 <i>12</i> ,
399.84 <i>4</i>	279 19	399.835	7/2-	0.0	3/2-	E2		0.0438 6	L1/L2=7.7 19. $\alpha(K)=0.0304 4; \alpha(L)=0.01014 14; \alpha(M)=0.002499 35$ $\alpha(N)=0.000613 9; \alpha(O)=0.0001019 14; \alpha(P)=3.16\times10^{-6} 4$ E _y : Other: 399.84 7 (1967Jo06). Mult.: from ce(K):ce(L1):ce(L2):ce(L3):ce(M) exp=7.9 6: <1.9 (coin with other lines):1.7 3:0.5 3: <1.5 (coin with other lines) (1967Jo06).
408.21 6	54 7	574.66	(1/2)-	166.518	(3/2)-	M1+E2	1.36 23	0.074 8	
410.20 [‡] <i>15</i>	26 5	863.93	(5/2)+	453.83	(7/2)+	M1+E2	1.2 4	0.078 18	α (K)=0.061 <i>16</i> ; α (L)=0.0127 <i>17</i> ; α (M)=0.0030 <i>4</i> α (N)=0.00074 <i>9</i> ; α (O)=0.000129 <i>18</i> ; α (P)=6.8×10 ⁻⁶ <i>19</i> Mult., δ : from α (K)exp=0.063 <i>14</i> using ce(K):ce(L12) = 1.64 <i>20</i> : <1.5 (1967Jo06).
411.5 [@] 2 413.76 4	15 3 217 <i>14</i>	1074.03 1074.03	(5/2) ⁺ (5/2) ⁺	662.27 660.23	(3/2,5/2) ⁻ (5/2) ⁺	M1+E2	0.78 +19–17	0.095 10	$\alpha(K)=0.077 \ 8; \ \alpha(L)=0.0141 \ 9; \ \alpha(M)=0.00331 \ 19$ $\alpha(N)=0.00082 \ 5; \ \alpha(O)=0.000144 \ 9; \ \alpha(P)=8.6\times10^{-6} \ 10$ $E_{\gamma}: Weighted average of 713.81 \ 6 \ (1967Jo06) and 413.73 \ 5 \ (1976Pi06).$ Mult., δ : from ce(K):ce(L12):ce(L3):ce(M):ce(N) exp=19.4 \ 10:<20.9: \ 0.29 \ 4:1.7 \ 3: \ <1.4 \ (1967Jo06).
421.44 4	203 14	451.84	(3/2)-	30.399	1/2-,3/2-	M1(+E2)	0.55 +18-17	0.103 10	$\alpha(K)=0.089$ /, $\alpha(L3)=0.0013$ 2, $\alpha(M)=0.0078$ 15. $\alpha(K)=0.084$ 9; $\alpha(L)=0.0145$ 9; $\alpha(M)=0.00338$ 20 $\alpha(N)=0.00084$ 5; $\alpha(O)=0.000149$ 10; $\alpha(P)=9.4\times10^{-6}$ 10 E_{γ} : Other: 421.44 6 (1967Jo06). Mult., δ : from ce(K):ce(L1):ce(L2):ce(M) exp=16.3

				¹⁹¹ Αu ε	$+\beta^+$ decay (3.18	h) 197	6Pi06,1967Jo0	06 (continued)
					<u>γ(</u>	¹⁹¹ Pt) (con	tinued)	
${\rm E_{\gamma}}^{\dagger}$	Ι _γ &e	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. ^b	α^{d}	Comments
x427.33 6	13 <i>I</i>							15:3.05 20:0.35 11:0.46 7 (1967Jo06). α(K)exp=0.080 9, L1/L2=8.7 28. E _γ : Other: 427.31 15 (1967Jo06). ce(K):ce(L1) exp=0.95 12:<0.14.
x432.42 [@] 10 442.27 5	9 <i>1</i> 35 <i>3</i>	451.84	(3/2)-	9.554	(5/2) ⁻	M1	0.1077 15	$\alpha(K)=0.0891 \ 12; \ \alpha(L)=0.01438 \ 20; \ \alpha(M)=0.00332 \ 5$ $\alpha(N)=0.000820 \ 11; \ \alpha(O)=0.0001477 \ 21; \ \alpha(P)=1.003\times10^{-5} \ 14$ $E_{\gamma}: \ Other: \ 442.18 \ 10 \ (1967Jo06).$ Mult., δ : from ce(K):ce(L12):ce(M) exp=3.4 \ 3:0.51 \ 8:0.37 \ 6 $(1027Je06) \ (M) = 0.007 \ 12$
446.58 6	21 2	613.15	(1/2,3/2,5/2) ⁻	166.518	(3/2)-	(M1)	0.1050 <i>15</i>	(196/J006). $\alpha(K)=0.09772$. $\alpha(K)=0.086812$; $\alpha(L)=0.0140120$; $\alpha(M)=0.003235$ $\alpha(N)=0.00079911$; $\alpha(O)=0.000144020$; $\alpha(P)=9.77\times10^{-6}14$ E_{γ} : Other: 446.5515 (1967J006). Mult.: from ce(K):ce(L12) exp=1.7320:0.305, and $\alpha(K)$ exp=0.083 (1967J006).
x450.69 11	92							E_{γ} : Other: 450.26 15 (1967Jo06). ce(K):ce(L12) exp=1.92 25:0.22 4 (1967Jo06).
451.21 ^{<i>f</i>} 13	79 ^{<i>f</i>} 6	1113.49	(5/2)+	662.27	(3/2,5/2) ⁻	[E1]	0.01031 14	$\alpha(K)=0.00858 \ 12; \ \alpha(L)=0.001334 \ 19; \ \alpha(M)=0.000306 \ 4$ $\alpha(N)=7.52\times10^{-5} \ 11; \ \alpha(O)=1.328\times10^{-5} \ 19; \ \alpha(P)=8.12\times10^{-7} \ 11$ E _{\gamma} : Quoted value is the level energy difference, which disagrees with doublet energy (451.85 5 keV - 1976Pi06), and was not included in the level energies fit. Placement from 1976Pi06 \(\gamma\)-\(\gamma\) coincidence measurement. Other: 451.87 10 (1967Jo06). I _{\gamma} : For doublet with 451.85\(\gamma\), placed from 451 keV level. Mult.: same as for the \(\gamma\) from 451.83 level.
451.85 ^{<i>f</i>} 5	79 ^ƒ 6	451.84	(3/2)-	0.0	3/2-			$\alpha(K)=0.05 \ 3; \ \alpha(L)=0.010 \ 4; \ \alpha(M)=0.0024 \ 8; \ \alpha(N+)=0.00070 \ 23 \ \alpha(N)=0.00059 \ 19; \ \alpha(O)=0.00010 \ 4; \ \alpha(P)=6.E-6 \ 4 \ E_{\gamma}: \ Other: \ 451.87 \ 10 \ (1967Jo06). \ I_{\gamma}: \ For \ doublet \ with \ 451.21\gamma, \ placed \ from \ 1113.4 \ keV \ level. \ Mult.: \ \alpha(K)exp<0.076, \ \alpha(L1)exp=0.021 \ 2, \ \alpha(L2)exp<0.004, \ \alpha(L3)exp=0.0053 \ 8 \ (deduced \ value \ using \ ce(K):ce(L1):ce(L2):ce(L3)= <5.9:1.63 \ 15:<0.3: \ 0.42 \ 6 \ - \ (1967Jo06) \ and \ I_{\gamma}) \ for \ the \ doublet, \ and \ theory: \ E2 \ (0.023, 0.003, 0.0025, 0.0011) \ and \ M1 \ (0.084, 0.012, 0.0011, 0,0001), \ would \ require \ multipolarity \ \ge3 \ for \ at \ least \ one \ of \ the \ transitions \ forming \ the \ doublet$
460.94 [@] 12	14 2	1074.03	$(5/2)^+$	613.15	(1/2,3/2,5/2)-	[E1]	0.00984 14	$\alpha(K)=0.00819 \ 11; \ \alpha(L)=0.001271 \ 18; \ \alpha(M)=0.000291 \ 4$
								$\alpha(N)=7.16\times10^{-5}\ 10;\ \alpha(O)=1.266\times10^{-5}\ 18;\ \alpha(P)=7.76\times10^{-7}\ 11$

				^{191}A	u ε + β^+ (decay (3.18	h) 1976	Pi06,1967Jo	06 (continued)
						$\gamma(1)$	¹⁹¹ Pt) (cont	inued)	
E_{γ}^{\dagger}	Ι _γ & <i>e</i>	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ^{C}	α^{d}	Comments
									$\begin{aligned} \alpha(N) = 0.000709 \ 10; \ \alpha(O) = 0.0001277 \ 18; \ \alpha(P) = 8.68 \times 10^{-6} \ 12 \\ E_{\gamma}: \ Other: \ 467.06 \ 8 \ (1967Jo06). \\ Mult.: \ from \ \alpha(K) exp = 0.08 \ 3, \ \alpha(L12) exp = 0.012 \ 3 \ (deduced \\ value \ using \ ce \ data \ ce(K) : ce(L12) = \ 3.5 \ 5:0.53 \ 8 \ of \ 1967Jo06 \\ and \ I\gamma). \end{aligned}$
478.04 4	232 16	487.584	(7/2)-	9.554	(5/2)-	M1+E2	0.90 11	0.061 4	α(K)=0.0491 34; α(L)=0.0090 4; α(M)=0.00211 9 $α(N)=0.000520 22; α(O)=9.2×10^{-5} 4; α(P)=5.5×10^{-6} 4 $ E _y : Other: 477.98 7 (1967Jo06). Mult.,δ: from ce(K):ce(L1):ce(L2):ce(L3):ce(M):ce(N) exp= <20.9:2.62 20:0.43 6: 0.17 2:0.87 10: <0.21 (1967Jo06). L1/L2=6.1 10, L1/L3=15.4 22. L _x : Other: 347 35 from ce data fit.
487.61 <i>4</i>	163 11	487.584	(7/2) ⁻	0.0	3/2-	E2		0.0263 4	$\alpha(K)=0.01932\ 27;\ \alpha(L)=0.00534\ 7;\ \alpha(M)=0.001298\ 18$ $\alpha(N)=0.000319\ 4;\ \alpha(O)=5.38\times10^{-5}\ 8;\ \alpha(P)=2.032\times10^{-6}\ 28$ $E_{\gamma}:\ Other:\ 487.58\ 7\ (1967Jo06).$ Mult.: from ce(K):ce(L1):ce(L2):ce(L3):ce(M)\ exp=\ 3.27 $20:0\ 62\ 10:0\ 31\ 15:0\ 18\ 2:0\ 18\ 3\ (1967Jo06).$
495.74 5	34 3	662.27	(3/2,5/2) ⁻	166.518	(3/2)-	M1		0.0797 11	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0659 \ 9; \ \alpha(\mathbf{L}) = 0.01061 \ 15; \ \alpha(\mathbf{M}) = 0.002445 \ 34 \\ \alpha(\mathbf{N}) &= 0.000605 \ 8; \ \alpha(\mathbf{O}) = 0.0001090 \ 15; \ \alpha(\mathbf{P}) = 7.41 \times 10^{-6} \ 10 \\ \mathbf{E}_{\mathbf{y}}: \ \text{Other:} \ 495.72 \ 12 \ (1967Jo06). \\ \text{Mult.: from } \alpha(\mathbf{K}) &= 0.008 \ 3, \ \alpha(\mathbf{L}12) \\ \exp = 0.0106 \ 22, \\ \alpha(\mathbf{M}) \\ \exp = 0.0046 \ 23 - (\text{deduced using ce data} \\ \text{ce}(\mathbf{K}) \\ \text{:ce}(\mathbf{L}12) \\ \text{:ce}(\mathbf{M}) \\ = 2.7 \ 3: \ 0.36 \ 4: \ 0.16 \ 3 \ \text{of} \ 1967Jo06 \ \text{and} \\ \\ \mathbf{I}_{\mathbf{y}}). \end{aligned}$
499.62 [@] 12	27 3	1074.03	(5/2)+	574.66	(1/2)-	[M2]		0.2348 <i>33</i>	α (K)=0.1865 26; α (L)=0.0370 5; α (M)=0.00878 12 α (N)=0.002180 31; α (O)=0.000390 5; α (P)=2.504×10 ⁻⁵ 35 E _y : Uncertainty increased from 1976Pi06 value (499.62 5); outlier in level energy fit, original uncertainty appeared to be incompatible with the complexity of the energy spectrum in the region. A closer E _y =502.09 15 in 1967Jo06.
525.79 5	51 4	535.29	(3/2,5/2) ⁻	9.554	(5/2) ⁻	M1		0.0683 10	$\begin{aligned} &\alpha(\text{K}) = 0.0565 \ 8; \ \alpha(\text{L}) = 0.00908 \ I3; \ \alpha(\text{M}) = 0.002092 \ 29 \\ &\alpha(\text{N}) = 0.000518 \ 7; \ \alpha(\text{O}) = 9.32 \times 10^{-5} \ I3; \ \alpha(\text{P}) = 6.34 \times 10^{-6} \ 9 \\ &\text{E}_{y}: \ \text{Other:} \ 525.75 \ 8 \ (1967\text{Jo06}). \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.067 \ 20 \ \text{and } \alpha(\text{L12}) \text{exp} = 0.012 \ 3 \\ &\text{(deduced from ce data ce(\text{K}):ce(\text{L12}):ce(\text{M}) \ exp} = 3.4 \ 3:0.60 \\ &7: \ 0.13 \ 2 \ (1967\text{Jo06})). \end{aligned}$
532.63 [@] 6 ^x 535.25 12	23 <i>3</i> 8 2	986.46		453.83	(7/2)+				E_{γ} : Other: 535.07 <i>15</i> (1967Jo06). ce(K):ce(L12) exp=0.39 <i>4</i> :0.16 <i>3</i> (1967Jo06).

 $^{191}_{78} \mathrm{Pt}_{113} \text{--} 11$

				-	¹⁹¹ Au $\varepsilon + \beta^+$ deca	ay (3.18 h)	1976Pi06,1967Jo06 (continued)				
$\gamma(^{191}\text{Pt})$ (continued)											
${\rm E_{\gamma}}^{\dagger}$	Ιγ ^{&} ε	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. ^b	δ ^C	α^{d}	Comments		
538.7 3	48 8	1074.03	(5/2)+	535.29	(3/2,5/2)-	E1		0.00706 10	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00589 \ 8; \ \alpha(\mathrm{L}) = 0.000903 \ 13; \ \alpha(\mathrm{M}) = 0.0002068 \ 29 \\ &\alpha(\mathrm{N}) = 5.09 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 9.01 \times 10^{-6} \ 13; \ \alpha(\mathrm{P}) = 5.64 \times 10^{-7} \ 8 \\ &\mathrm{E}_{\gamma}: \ \mathrm{Other:} \ 538.65 \ 20 \ (1967Jo06). \end{aligned}$ Mult.: from $\alpha(\mathrm{K}) \exp = 0.0050 \ 13 \ \mathrm{using} \ \mathrm{ce}(\mathrm{K}) = 0.24 \ 4 \\ &(1967Jo06). \end{aligned}$		
544.35 ^{^w} 10 557.51 8	9 2 13 2	574.66 863.93	$(1/2)^-$ $(5/2)^+$	30.399 306.34	1/2 ⁻ ,3/2 ⁻ (9/2) ⁺	E2		0.01908 27	α (K)=0.01440 20; α (L)=0.00357 5; α (M)=0.000861 12 α (N)=0.0002118 30; α (O)=3.61×10 ⁻⁵ 5; α (P)=1.521×10 ⁻⁶ 21 E _{γ} : Other: 557.16 20 (1967Jo06).		
561.72 15	4 1	1174.65	-	613.15	(1/2,3/2,5/2)-	(M1)		0.0575 8	Mult.: from α (K)exp=0.011 3 using ce(K)=0.14 2 (1967Jo06). α (K)=0.0476 7; α (L)=0.00763 11; α (M)=0.001757 25 α (N)=0.000435 6; α (O)=7.83×10 ⁻⁵ 11; α (P)=5.33×10 ⁻⁶ 7 E _{γ} : Weighted average of 561.90 17 (1967Jo06) and 561.59 14 (1976Pi06)		
565.13 5	29 <i>3</i>	574.66	(1/2)-	9.554	(5/2) ⁻	E2		0.01848 26	Mult.: form α (K)exp=0.08 3 from ce(K)=0.32 4 (1967Jo06). α (K)=0.01398 20; α (L)=0.00343 5; α (M)=0.000827 12 α (N)=0.0002034 28; α (O)=3.47×10 ⁻⁵ 5; α (P)=1.478×10 ⁻⁶ 21		
*565.91 [‡] 18 *568.29 10	10 2								 E_γ: Other: 565.06 7 (1967Jo06). Mult.: from ce(K):ce(L1):ce(L2):ce(M) exp=0.83 9:0.18 3:0.11 3:0.12 3. ce(K)=0.18 3 (1967Jo06). E_γ: Other: 568.00 17 (1967Jo06). 		
574.54 [@] 7	10 2	574.66	(1/2)-	0.0	3/2-	M1+E2	1.8 5	0.026 5	ce(K):ce(L12) exp= 0.30 3: 0.06 1 (1967Jo06). α (K)=0.021 4; α (L)=0.0042 5; α (M)=0.00099 12 α (N)=0.000245 30; α (O)=4.3×10 ⁻⁵ 6; α (P)=2.3×10 ⁻⁶ 5 Mult., δ : from α (K)exp=0.021 6, obtained from 496.1 keV ce line observed by 1967Jo06 with Ice=0.21 4 and assigning it to K conversion.		
^x 577.26 [‡] 20 580.5 [@] 3	≈5	1174.65	_	594.29	_				ce(K)=0.32 <i>3</i> (1967Jo06).		
586.44 <i>4</i>	1000	1074.03	(5/2)+	487.584	(7/2)-	E1		0.00593 8	α(K)=0.00495 7; α(L)=0.000754 11; α(M)=0.0001724 24 α(N)=4.24×10-5 6; α(O)=7.53×10-6 11; α(P)=4.76×10-7 7 Eγ: Other: 586.46 8 (1967Jo06). Mult.: from ce(K):ce(L12):ce(L3):ce(M) exp=5.2 5:0.77 7:0.064 20: <0.4 (1967Jo06); ce(N)=0.19 4 discarded, outlier in ce data fit.		
^x 591.73 [‡] 20									ce(K):ce(L12) exp= 0.44 9: 0.10 3 (1967Jo06).		

L

 $^{191}_{78}\text{Pt}_{113}$ -12

			¹⁹¹ Au ε + β ⁺ de	ecay (3.18 h)) 1976Pi 0	1976Pi06,1967Jo06 (continued)				
γ ⁽¹⁹¹ Pt) (continued)										
E_{γ}^{\dagger}	Ι _γ &e	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^b	δ^{c}	α^{d}	Comments	
x595.90 10	20 2					E2		0.01635 23	$\begin{aligned} &\alpha(\text{K}) = 0.01249 \ 17; \ \alpha(\text{L}) = 0.00295 \ 4; \ \alpha(\text{M}) = 0.000708 \ 10 \\ &\alpha(\text{N}) = 0.0001743 \ 24; \ \alpha(\text{O}) = 2.98 \times 10^{-5} \ 4; \\ &\alpha(\text{P}) = 1.321 \times 10^{-6} \ 19 \\ &\text{E}_{\gamma}: \ \text{Other: } 595.57 \ 20 \ (1967Jo06). \\ &\text{Mult.: from ce(K):ce(L12):ce(L3):ce(M) \ exp=0.67 \ 7:0.16 \\ &4: < 0.4:0.08 \ 2 \ (1967Jo06). \end{aligned}$	
^x 596.60 [‡] 20									$ce(K) exp = 0.35 \ 10 \ (1967Jo06).$	
^x 608.36 ^{+#} 20 ^x 616.26 10	22 3					E2+M1	2.2 3	0.0203 14	ce(K)=0.18 2 (1967Jo06). α (K)=0.0160 12; α (L)=0.00325 16; α (M)=0.000769 35 α (N)=0.000190 9; α (O)=3.30×10 ⁻⁵ 16; α (P)=1.74×10 ⁻⁶ 14	
620.31 8	64 6	1074.03	(5/2)+	453.83	(7/2)+	M1+E2	0.93 24	0.031 4	E _γ : Other: 616.35 20 (1967Jo06). Mult.,δ: from α (K)exp=0.016 3. ce(K):ce(L12) exp= 0.35 5:<0.23 (coin with other lines) (1967Jo06). α (K)=0.025 4; α (L)=0.0044 5; α (M)=0.00102 10 α (N)=0.000252 26; α (O)=4.5×10 ⁻⁵ 5; α (P)=2.8×10 ⁻⁶ 4 E _γ : Other: 620.15 12 (1967Jo06). Mult δ: from α (K)exp=0.025 3	
625.85 ^g 12	53 8	1113.49	(5/2)+	487.584	(7/2)-				(ce(K):ce(L12):ce(L3):ce(M) exp=1.57 15:0.36 4:0.12 3 (1967Jo06)). E _γ : Other: 625.93 20 (1967Jo06). E2+M1, δ =0.73 23, from α(K)exp=0.018 6 (1967Jo06). Inconsistent with 1976Pi06 placement on level scheme	
627.74 15	12 3	1289.97		662.27	(3/2,5/2) ⁻	(M1)		0.0431 6	from $\gamma - \gamma$ coinc measurement. $\alpha(K) = 0.0357 5$; $\alpha(L) = 0.00570 8$; $\alpha(M) = 0.001312 18$ $\alpha(N) = 0.000324 5$; $\alpha(O) = 5.85 \times 10^{-5} 8$; $\alpha(P) = 3.99 \times 10^{-6} 6$ E_{γ} : Other: 627.61 20 (1967Jo06). Mult.: from $\alpha(K) \exp = 0.057 22$ and $\alpha(L12) \exp = 0.010 5$ from $\alpha(K) \exp (-12) = 0.68 7$; $0.12 3$ (1967Jo06).	
$x_{634.59}^{\ddagger \#} 25$									ce(K)=0.084 15 (1967Jo06).	
647.97 [@] 15 659.69 12	62 172	929.20 1113.49	(5/2)+	281.188 453.83	(3/2,5/2,7/2) ⁻ (7/2) ⁺	M1+E2	1.2 +4-3	0.023 4	α(K) = 0.0188 30; α(L) = 0.0034 4; α(M) = 0.00079 9 α(N) = 0.000194 22; α(O) = 3.4 × 10-5 4; α(P) = 2.07 × 10-6 35 Eγ: Other: 659.63 25 (1967Jo06). Mult.,δ: from α(K)exp=0.018 7 and α(L12)exp=0.0034	
^x 669.59 <i>15</i>	4 1					(M1)		0.0364 5	<i>11</i> using ce(K):ce(L12) exp =0.31 5:0.057 <i>10</i> (1967Jo06) α (K)=0.018 <i>3</i> , α (L12)=0.0034 <i>7</i> . α (K)=0.0302 <i>4</i> ; α (L)=0.00481 <i>7</i> ; α (M)=0.001108 <i>16</i> α (N)=0.000274 <i>4</i> ; α (O)=4.94×10 ⁻⁵ <i>7</i> ; α (P)=3.37×10 ⁻⁶ <i>5</i>	

$^{191}_{78} Pt_{113}$ -13

From ENSDF

				¹⁹¹ A	u ε + β^+ decay ((3.18 h)	1976Pi06,1967Jo06 (continued)			
						$\gamma(^{191}\text{Pt})$	(continued)			
E_{γ}^{\dagger}	Ι _γ & <i>e</i>	E _i (level)	J_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. <mark>b</mark>	α^{d}	Comments		
674.22 6	402 29	1074.03	(5/2)+	399.835	7/2-	E1	0.00448 6	E _γ : Other: 669.76 25 (1967Jo06). Mult.: From α (K)exp=0.04 2. ce(K):ce(L12) exp= 0.16 4:<0.31 (coin with other lines) (1967Jo06). α (K)=0.00374 5; α (L)=0.000564 8; α (M)=0.0001289 18 α (N)=3.17×10 ⁻⁵ 4; α (O)=5.65×10 ⁻⁶ 8; α (P)=3.62×10 ⁻⁷ 5 E _γ : Other: 674.21 8 (1967Jo06). Mult.: from α (K):ce(L12):ce(L12) exp= -1.74 JS:0.22		
^x 680.74 <i>15</i> 701.94 8	4 <i>1</i> 32 <i>3</i>	732.37	1/2-,3/2-	30.399	1/2 ⁻ ,3/2 ⁻	(M1)	0.0323 5	Mult.: from ce(K):ce(L12):ce(L3):ce(M) exp =1.74 13:0.22 $3:<0.06:0.09 \ 2 \ (1967Jo06).$ $E_{\gamma}:$ Other: 680.60 25 (1967Jo06). $\alpha(K)=0.0267 \ 4; \ \alpha(L)=0.00426 \ 6; \ \alpha(M)=0.000980 \ 14$ $\alpha(N)=0.0002423 \ 34; \ \alpha(O)=4.37\times10^{-5} \ 6; \ \alpha(P)=2.98\times10^{-6} \ 4$ $E_{\gamma}:$ Weighted average of 701.93 <i>10</i> (1967Jo06) and 701.96 <i>12</i>		
732.48 16	6 1	732.37	1/2-,3/2-	0.0	3/2-	(M1)	0.0289 4	(1976Pi06). Mult.: from α (K)exp=0.030 <i>10</i> , α (L12)exp=0.0059 <i>21</i> using ce(K):ce(L12) = 0.97 <i>10</i> :0.19 <i>4</i> (1967Jo06). α (K)=0.02398 <i>34</i> ; α (L)=0.00381 <i>5</i> ; α (M)=0.000877 <i>12</i> α (N)=0.0002169 <i>30</i> ; α (O)=3.91×10 ⁻⁵ <i>5</i> ; α (P)=2.67×10 ⁻⁶ <i>4</i> E _{γ} : Other: 732.40 <i>25</i> (1967Jo06).		
^x 734.37 <i>13</i>	8 1							 Mult.: from α(K)exp=0.023 6 from ce(K):ce(L12) = 0.14 2:<0.10 (1967Jo06). E_γ: Weighted average of 734.51 <i>16</i> (1976Pi06) and 134.25 <i>15</i> (1967Jo06). α(K)exp < 0.04. ce(K):ce(L12) exp=<0.31 (coin with other lines):<0.12 (mix of lines of other isotope) (1967Jo06). 		
^x 751.62 ^{‡#} 25	10.0	1074.02	(5/0)+	206.24	(0/2)			ce(K)=0.114 25 (1967Jo06).		
767.75 10 780 51 [@] 16	12 2	1074.03	$(5/2)^+$ $(5/2)^+$	306.34 293.457	$(9/2)^{-}$					
792.78 <i>15</i>	42 4	1074.03	$(5/2)^+$	281.188	$(3/2)^{-}$ $(3/2,5/2,7/2)^{-}$	E1	0.00327 5	$\alpha(K)=0.00274 \ 4; \ \alpha(L)=0.000408 \ 6; \ \alpha(M)=9.31\times10^{-5} \ 13$ $\alpha(N)=2.292\times10^{-5} \ 32; \ \alpha(O)=4.09\times10^{-6} \ 6; \ \alpha(P)=2.67\times10^{-7} \ 4$ E_{γ} : Other: 792.30 25 (1967Jo06). Mult.: from ce(K):ce(L12) exp =0.18 3:0.046 12 (1967Jo06).		
820.07 [@] 18	21 2	1074.03	$(5/2)^+$	253.947	(7/2,5/2)-			······································		
^x 829.88 [@] 20	4 1									
835.53 16	40 2	1113.49	(5/2)+	277.880	(3/2,5/2)-	E1	0.00296 4	$\alpha(K)=0.002479 \ 35; \ \alpha(L)=0.000368 \ 5; \ \alpha(M)=8.39\times10^{-5} \ 12$ $\alpha(N)=2.068\times10^{-5} \ 29; \ \alpha(O)=3.69\times10^{-6} \ 5; \ \alpha(P)=2.420\times10^{-7} \ 34$ E_{γ} : Other: 835.69 25 (1967Jo06). Mult.: from $\alpha(K)$ exp=0.0035 13 from ce(K)=0.14 3 (1967Jo06).		
^x 839.64 ^{‡#} 35 ^x 854.28 [@] 20	4 1							ce(K)=0.054 20 (1967Jo06).		

¹⁹¹ Au $\varepsilon + \beta^+$ decay (3.18 h) 1976Pi06,1967Jo06 (continued)											
$\underline{\gamma}(^{191}\text{Pt})$ (continued)											
${\rm E_{\gamma}}^{\dagger}$	Ιγ ^{&} ε	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^{\pi}$	Mult. ^b	α^{d}	Comments			
859.57 [@] 19	18 2	1113.49	$(5/2)^+$	253.947	(7/2,5/2)-						
^x 870.54 22	6 1							E_{γ} : Other: 870.20 <i>30</i> (1967Jo06). ce(K)=0.097 <i>15</i> (1967Jo06).			
x878.56 ^{‡#} 25								ce(K):ce(L12):ce(M) exp=0.35 7 (coin with lines of other isotope):<0.11 (mix of lines from other isotopes):<0.04 (mix with lines from other isotopes) (1967Jo06).			
880.77 [@] 21	11 <i>I</i>	1174.65	-	293.457	$(5/2)^{-}$						
896.58 [@] 23	8 1	1174.65	-	277.880	$(3/2, 5/2)^{-}$						
920.81 18	5 1	1174.65	_	253.947	(7/2,5/2)-	(M1)	0.01613 23	$\alpha(K)=0.01339 \ 19; \ \alpha(L)=0.002112 \ 30; \ \alpha(M)=0.000486 \ 7 \ \alpha(N)=0.0001201 \ 17; \ \alpha(O)=2.166\times10^{-5} \ 30; \ \alpha(P)=1.485\times10^{-6} \ 21 \ E_{\gamma}$: Weighted average of 920.96 25 (1967Jo06) and 920.66 25 (1976Pi06).			
								Mult.: from $\alpha(K)$ exp=0.013 6 from ce(K)=0.65 15 (coin with other lines) (1967Jo06).			
^x 924.04 ^{‡#} 30								ce(K):ce(L12) exp=0.16 2:0.020 7.			
^x 929.16 ^{‡#} 30								ce(K):ce(L12) exp=0.084 20:0.030 10.			
^x 971.32 ^{‡#} 35								ce(K):ce(L12) exp=0.114 20:<0.1 (coin with lines of other isotopes) (1967Jo06).			
^x 981.71 ^{‡#} 35											
^x 985.36 ^{‡#} 35											
$x1006.3 \ 3$ 1023.0 3	4 1 6 1	1300.9		277.880	$(3/2.5/2)^{-}$	(M1)	0.01236 17	$\alpha(K)=0.01026$ 14: $\alpha(L)=0.001613$ 23: $\alpha(M)=0.000371$ 5			
								$\alpha(N)=9.17\times10^{-5}$ 13; $\alpha(O)=1.654\times10^{-5}$ 23; $\alpha(P)=1.136\times10^{-6}$ 16 E _y : Other: 1023.43 35 (1967Jo06). Mult.: from $\alpha(K)\exp=0.017$ 7 using ce(K)=0.104 20 (1967Jo06).			
^x 1028.0 [@] 3	71										
1035.80 [‡] 35	51	1289.97		253.947	$(7/2, 5/2)^{-}$						
1064.7 [@] 3	91	1074.03	$(5/2)^+$	9.554	$(5/2)^{-}$						
1074.2 ^{<i>@</i>} 3	10 1	1074.03	$(5/2)^+$	0.0	3/2-						
^x 1086.9 [@] 4	4 1										
^x 1096.8 ^w 3	71										
^x 1101.9 ⁺ 4	8 1					(M1)	0.01025 14	$\alpha(K)=0.00851 \ 12; \ \alpha(L)=0.001335 \ 19; \ \alpha(M)=0.000307 \ 4$ $\alpha(N)=7.59\times10^{-5} \ 11; \ \alpha(O)=1.369\times10^{-5} \ 19; \ \alpha(P)=9.41\times10^{-7} \ 13; \ \alpha(IPF)=3.00\times10^{-7} \ 7$			
1113.6 [@] 3	15 2	1113.49	$(5/2)^+$	0.0	3/2-			Mult.: from $\alpha(\mathbf{K})\exp=0.014$ 3. ce(K)=0.108 20 (196/J006).			

 $^{191}_{78}\text{Pt}_{113}\text{-}15$

From ENSDF

 $\gamma(^{191}\text{Pt})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\&e}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
^x 1161.2 [@] 3	11 2		_		
1164.9 [@] 3	12 2	1174.65	-	9.554	$(5/2)^{-}$
1174.0 ⁸ 4	8 1	1174.65	-	0.0	3/2-
1199.3 [@] 3	91	1453.3		253.947	$(7/2, 5/2)^{-}$
^x 1259.6 [@] 3	17 2				
$x_{1302.3}^{@}$ 4	92				

[†] From 1976Pi06, unless otherwise specified; energies from 1967Jo06 are compatible with 1976Pi06 values, and were adopted when more precise.

[‡] From 1967Jo06.

16

[#] Not observed by 1976Pi06.

[@] Not observed by 1967Jo06.

& From 1976Pi06, unless otherwise specified. I γ from 1976Pi06 and those deduced from ce data of 1967Jo06 are discrepant below 130 keV sometimes. The intensity balance at the 149 keV ($J^{\pi}=13/2^+$) level using electron intensities of 1967Jo06 for 24.4 γ and 48.4 γ shows no ε feeding to this level, supporting the correctness of Ice low-energy transition measurements. For energies above 130 keV, the I γ from 1976Pi06 agrees with those deduced from the ce data of 1967Jo06.

^a Deduced value using Ice data in 1967Jo06.

^b Multipolarities are from shell and subshell ratios whenever possible; when this procedure did not have sufficient precision, conversion coefficients were calculated by evaluator using Iγ from 1976Pi06 and Ice from 1967Jo06.

^c Deduced using the ce data of 1967Jo06. $\alpha = ce/I\gamma$ and subshell ratios were used for BriccMixing code – as listed in the comments.

^d Additional information 1.

^e For absolute intensity per 100 decays, multiply by ≈ 0.014 .

^f Multiply placed with undivided intensity.

^g Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁹¹Au ε decay (3.18 h) 1976Pi06,1967Jo06

¹⁹¹Au ε decay (3.18 h) 1976Pi06,1967Jo06

¹⁹¹₇₈Pt₁₁₃

¹⁹¹Au ε decay (3.18 h) 1976Pi06,1967Jo06

