¹⁹²Pt(p,d),(d,t) **1980Ka19,1978Be09**

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023	

Other: 1976VeZZ (p,d).

1980Ka19 target: 57% enriched ¹⁹²Pt. Projectile: protons, E=25 MeV. Measured scattered deuterons at 6 angles between 5° and 55°. Detector: magnetic spectrometer, FWHM=12 keV. The agreement between experimental and theoretical (DWBA) cross sections is good for L=1, fair for L=6, and poor for L=3 transfers.

1978Be09 target: 57% enriched ¹⁹²Pt. Projectile: deuterons, E=26 MeV. Measured scattered tritons at θ =15°. Detector: magnetic spectrometer, FWHM≈10 keV. Because of target low enrichment and uniformity problems, only 7 levels were clearly separated. θ =15° was chosen to observe the first J^{π} =5/2⁻ level. The cross section is maximum for L=3, and minimum for L=1 at this angle, consequently, spectroscopic factors calculated for other L transfers may be more imprecise.

1980Ka19 and 1978Be09 from the same research group.

¹⁹¹Pt Levels

E(level) [†]	${ m J}^{\pi \#}$	L@	$C^2S(p,d)^a$	Comments
0.0	3/2-	1+(3)&	1.0	$C^2S(p,d)$: assuming $J^{\pi}=3/2^-$. $C^2S=1.19$ in (d,t).
≈9	(5/2)			Observed as a separate level in (d,t) only. $C^2S=1.85$ in (d,t) assuming $J^{\pi}=5/2^-$.
30.0 25	1/2-,3/2-	1	0.73	assuming $J^{\pi}=1/2^{-}$; C ² S=1.38 in (d,t).
$100.0^{\ddagger} 25$	$(9/2)^{-}$	5,6	0.83	
149.0 [‡] 25	$(13/2)^+$	6,5	4.05	
165.0 [‡] 25	$(3/2)^{-}$	1,3	0.03	$C^2S(p,d)$: assuming $J^{\pi}=3/2^-$.
173.0 [‡] 25	$(11/2)^+$		0.24	
292 [‡] <i>3</i>	$(5/2)^{-}$	1,(3)	0.26	$C^2S(p,d)$: $C^2S=0.04$ if $J^{\pi}=3/2^-$.
307.0 [‡] 25	$(9/2)^+$	4	0.73	
400.0 25	5/2-,7/2-	3	1.40	J^{π} : From L=3. $7/2^-$ in the Adopted Levels. $C^2S(p,d)$: assuming $J^{\pi}=5/2^-$; $C^2S=1.70$ in (d,t).
452.0 [‡] 25	$(3/2^-,5/2^-)$	1+(4)&	0.11	$C^2S(p,d)$: assuming $J^{\pi}=3/2^-$.
.62.6	(6/2 ,6/2)	1.(1)	0.11	Doublet; for L=(4) component, C ² S=0 to 0.30 assuming J^{π} =7/2 ⁺ (1980Ka19). 1978Be09 assigned L=1+(3); L=(4) is compatible with level properties from ¹⁹¹ Au ε decay.
488.0 25	$(7/2)^{-}$	3	1.21	$C^2S(p,d)$: $C^2S=0.99$ in (d,t).
560 [‡] 4	1/2-,3/2-	1	0.014	$C^2S(p,d)$: assuming $J^{\pi}=3/2^-$.
611.0 [‡] 25	$(1/2,3/2,5/2)^-$			
690.0 [‡] 25		3,4	0.11	$C^2S(p,d)$: assuming $J^{\pi}=5/2^-$; $C^2S=0.28$ if $J^{\pi}=9/2^+$.
732.5 [‡] 25	1/2-,3/2-	1	0.40	$C^2S(p,d)$: assuming $J^{\pi}=3/2^-$.
810 [‡] <i>5</i>	$(11/2^+, 13/2^+)$	6,5	0.66	$C^2S(p,d)$: assuming $J^{\pi}=13/2^+$. $C^2S=0.85$ if $J^{\pi}=9/2^-$.
885 [‡] 5 925 [‡] 5	(1/2-,3/2-)	(1)	0.06	$C^2S(p,d)$: assuming $J^{\pi}=3/2^-$.

[†] From (1980Ka19), unless otherwise specified.

[‡] Observed in (p,d) only.

[#] From Adopted Levels, except otherwise noted.

[®] For the (p,d) reaction, from a comparison between experimental and theoretical (DWBA) cross sections at various angles.

[&]amp; The angular distribution is compatible with L=1 transfer. However, the peak corresponds to a known doublet, and therefore a mixed L analysis has been performed.

^a From $(d\sigma/d\Omega)(\exp)/N(d\sigma/d\Omega)(DWBA)$; the value of N was not given in 1980Ka19 for (p,d), probably N=2.29 given in 1978Be09 was used. Spectroscopic factors for (d,t) are given in comments, for θ=15° and N=3.33 (1978Be09).