¹⁹⁰**Os**(α ,3**n** γ) **1977Sa01**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023					

Others: 1975Pi02, 1976Pi03, 1976Kh02, 1978Ti02.

1977Sa01: 95% enriched ¹⁹⁰Os target. Projectile: α , E=31-46 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(t)$, α , $\gamma(\theta)$ at five angles in the range 90°-140°, γ -ray excitation functions; detector: Ge(Li).

¹⁹¹Pt Levels

The level scheme has been constructed based on $\gamma\gamma$ -coin measurements. Spin assignments are primarily from $\alpha, \gamma(\theta)$ and γ -ray excitation functions. Level energies and γ -transition branching ratios of even-parity states are interpreted in terms of one quasiparticle coupled to a triaxial rotor. See also 1975Pi02 and 1976Kh02 for theoretical calculations. The odd-parity band has been interpreted as a three-quasineutron decoupled band related to the odd-parity band found in the adjacent even Pt isotopes. This band has also been observed in ¹⁹¹Hg.

E(level) [†]	J ^{π &}	T _{1/2}	Comments
0.0	3/2-		
9.554 [‡] 16	5/2-		Additional information 1.
100.65 10	9/2-	>1 µs	$T_{1/2}$: from 1976Pi03, $\gamma\gamma(t)$.
148.9 [#] 4	$13/2^{+}$	104 µs 4	$T_{1/2}$: from Adopted Levels.
173.1 4	$11/2^{+}$		
470.9 [#] 4	$17/2^{+}$		
529.0 4	15/2+		
599.1 4	$15/2^+$		
918.94	$(1/2^{+})$		
950.9" 4	$\frac{21}{2^{+}}$		
1158 3 4	$19/2^+$		
1302.5 4	$19/2^+$		
1381.3 [@] 4	$21/2^{(-)}$		
1471.3 4	/_		
1545.6 [@] 4	25/2 ⁽⁻⁾	1.07 ns 6	$T_{1/2}$: from 1978Ti02 (direct measurement of conversion electrons relative to cyclotron beam bursts). Other value: 1.5 ns 4 (1977Sa01).
1550.2 [#] 4	$25/2^{+}$		
1590.5 4			
1862.6 [@] 4	$(27/2^{-})$		
1924.9 5			
1939.0 5			
2125.0 ^w 4	29/2(-)		
2233.2# 5	$29/2^+$		
2385.0?	(22/2-)		
2581.1° 5	$(33/2^{-})$		
2940.4" 6	$(33/2^+)$		

[†] From least-squares fit to $E\gamma$ using adopted $\Delta E\gamma$ and fixing the three first excited levels energies on the adopted values; the obtained chi-square suggests uncertainties overestimated by a factor ≈ 2 .

[‡] From Adopted Levels.

[#] Favored decoupled band.

[@] i13/2 semidecoupled band.

& As given in Fig. 4 (1977Sa01), except where otherwise noted.

				¹⁹⁰ Os (a	α,3n γ)	1977Sa01	(continued	1)
					γ	(¹⁹¹ Pt)		-
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}^{π}_{\cdot}	Ef	J^{π}_{c}	Mult. [‡]	α #	Comments
(0,6)	/	0.554	1 5/2-		J 3/2-			E · From level energy difference
(24.3)		173.1	$\frac{3/2}{11/2^+}$	148.9	$\frac{3}{2}$ 13/2 ⁺			E_{γ} . From level energy difference.
48.2 3		148.9	$13/2^+$	100.65	9/2-	M2	462 15	α(L)=345 11; α(M)=91 3; α(N+)=26.9 9
	202.20	100.65	0/2-	0.554	5/0-			α (N)=22.8 8; α (O)=3.94 <i>13</i> ; α (P)=0.206 7 Observed only in the delayed spectrum. Mult.: from α (total) exp=600 <i>80</i> (1976Pi03).
91.1 <i>I</i>	292 20	100.65	9/2-	9.554	5/2-			$A_2=0.00$ 5; $A_4=0.00$ 7
144.5 5	12 2							$A_2 = +0.18$ $I4$ E_{γ} : A comparable 144.2 γ placed from 1302 keV adopted level.
^x 151.1 5	82							E_{γ} : A comparable 151.1 γ placed from 1309 keV adopted level.
164.3 <i>1</i>	312 22	1545.6	$25/2^{(-)}$	1381.3	$21/2^{(-)}$	Q		$A_2 = +0.25$ 7; $A_4 = -0.16$ 7
168.8 <i>1</i>	85 9	1471.3		1302.5	19/2+	D(+Q)		$A_2=0.00\ 16;\ A_4=-0.09\ 17$
207.8 6	20.6	1158.3	19/2+	950.9	$21/2^+$	D(O)		
209.2 2	39.5	1590.5	21/2(-)	1381.3	$21/2^{(-)}$	D(+Q)		$A_2 = -0.25$ 7; $A_4 = -0.06$ 8
223.0 1	287 20	1381.3	$21/2^{(-)}$	1158.3	19/21	D(+Q)		$A_2 = -0.21$ 7; $A_4 = +0.02$ 7
259.8 ^w 3	15 3	2385.0?		2125.0	$29/2^{(-)}$			
262.5 2	30 5	2125.0	$29/2^{(-)}$	1862.6	$(27/2^{-})$	D(+Q)		$A_2 = -0.139$
$x_{2/1.72}$	54 /					Q		$A_2 = +0.28 8; A_4 = -0.15 9$
$x_{200.0} = 4$	60 7					$D(\pm 0)$		$A_{2} = -0.25.7$; $A_{4} = \pm 0.03.8$
x313.0.3	18 3					$D(\pm Q)$		$R_2 = -0.257, R_4 = +0.050$
317.1.2	139 13	1862.6	$(27/2^{-})$	1545.6	$25/2^{(-)}$	D(+O)		$A_2 = -0.22.13$
319.8 2	48 6	918.9	$(17/2^+)$	599.1	$\frac{15}{2^+}$	2(1)		
322.0 1	1000	470.9	$17/2^{+}$	148.9	$13/2^{+}$	Q		A ₂ =+0.21 6; A ₄ =-0.11 7
x341.7 4	38 5							
351.6 3	21 4	1302.5	19/2+	950.9	$21/2^+$	0		
355.9 1	185 15	529.0	15/2+	1/3.1	$\frac{11}{2}$	Q		$A_2 = +0.237; A_4 = -0.118$
383 7 3	130 14	329.0 1302 5	$\frac{13}{2}$ $\frac{10}{2^+}$	018.0	$\frac{15/2}{(17/2^+)}$	D(+Q) D(+Q)		$A_2 = -0.817$; $A_4 = +0.158$
390.0.2	66.8	918.9	$(17/2^+)$	529.0	(17/2) $15/2^+$	D(+Q) D(+Q)		$A_2 = -0.17$ 7: $A_4 = +0.08$ 8
392.0.2	156 14	1381.3	$21/2^{(-)}$	989.2	$19/2^+$	D(+Q)		$A_2 = -0.196; A_4 = +0.067$
393.4 3	37.6	1939.0	=1/=	1545.6	$25/2^{(-)}$	(0)		$A_2 = +0.45 \ 17$
^x 403.8 4	13 2				- 1	(U		2
^x 413.2 4	20 4					D(+Q)		$A_2 = -0.42 \ 22; \ A_4 = -0.04 \ 24$
^x 423.5 3	38 6							
430.4 2	181 16	1381.3	$21/2^{(-)}$	950.9	$21/2^+$	D(+Q)		$A_2 = +0.33 6; A_4 = +0.01 6$
								$\gamma(\theta)$ data is consistent with a $\Delta J=0$
11783	36.6	018.0	$(17/2^{+})$	470.0	17/2+			transition.
450 2 2	199 18	599 1	(17/2) $15/2^+$	148.9	$\frac{17/2}{13/2^+}$	D(+O)		$A_2 = -0.85.8$ $A_4 = +0.20.9$
453.6 3	35 6	1924.9	10/2	1471.3	10/2	(0)		$A_2 = +0.20 \ I5; \ A_4 = -0.17 \ I7$
456.1 3	20 4	2581.1	$(33/2^{-})$	2125.0	$29/2^{(-)}$	(0)		$A_2 = +0.34 \ 12$
460.2 <i>1</i>	186 17	989.2	$19/2^{+}$	529.0	$15/2^{+}$	Q		$A_2 = +0.28 8; A_4 = -0.06 9$
480.0 1	478 <i>3</i> 8	950.9	$21/2^+$	470.9	$17/2^{+}$	Q		$A_2 = +0.26$ 7; $A_4 = -0.11$ 7
^x 482.5 4	17 3					D(+Q)		$A_2 = -0.86\ 23$
518.4 2	95 11	989.2	19/2+	470.9	$1'/2^+$	D(+Q)		$A_2 = -0.85 \ I2; A_4 = +0.14 \ I4$
~525.9 <i>3</i>	317							A_2 =+0.05 <i>12</i> assigned to 996.4 keV level decay in $\frac{189}{20}$ (c. 2p)
x527 3 3	47 8					(0)		$O_{S((\ell,211))}$
x542.7 4	28.6					D(+0)		$A_2 = -0.24$ 11
· · · · ·						- (• • •		2

Continued on next page (footnotes at end of table)

¹⁹⁰**Os**(α ,3n γ) **1977Sa01** (continued)

$\gamma(^{191}\text{Pt})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
559.3 <i>3</i>	119 20	1158.3	19/2+	599.1	$15/2^{+}$	(Q)	A ₂ =+0.41 23
579.4 2	110 18	2125.0	$29/2^{(-)}$	1545.6	$25/2^{(-)}$	Q	A ₂ =+0.30 8; A ₄ =-0.09 8
^x 591.1 3	59 11				·		Placed from 1581 level in author's table. However, their level scheme shows no such level.
599.3 2	180 26	1550.2	$25/2^+$	950.9	$21/2^{+}$		
x605.7 3	39 7						
^x 612.8 4	18 4						
^x 673.1 4	17 4					D(+Q)	A ₂ =-0.77 33; A ₄ =+0.19 36
683.0 2	129 23	2233.2	$29/2^{+}$	1550.2	$25/2^+$	(Q)	$A_2 = +0.19 9; A_4 = -0.08 10$
687.3 2	180 27	1158.3	$19/2^{+}$	470.9	$17/2^{+}$	D(+Q)	$A_2 = -0.79 8; A_4 = +0.25 10$
703.3 4	22 4	1302.5	$19/2^{+}$	599.1	$15/2^{+}$		2
707.2 3	38 7	2940.4	$(33/2^+)$	2233.2	$29/2^{+}$	(Q)	$A_2 = +0.35 \ 14$
^x 709.4 3	42 7					(Q)	$A_2 = +0.40 \ 13$
831.6 <i>3</i>	54 8	1302.5	$19/2^{+}$	470.9	$17/2^{+}$	D(+Q)	$A_2 = -1.14 \ 19; A_4 = +0.05 \ 21$
^x 838.6 4	23 5						- · ·

[†] From 1977Sa01. Relative photon intensity at θ =125°, E=37 MeV.

[‡] From $\alpha, \gamma(\theta)$, except for 48.2 γ (method given in comment) (1977Sa01). 1977Sa01 report the multiporarities as E2, E1 or M1, and M1/E2, evaluator lists as D and Q.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

 $^{191}_{78}{\rm Pt}_{113}$