(HI,xnγ) 2002An19,1999An36

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023

Others: 1999An10 (Same research group of 2002An19 and 1999An36), 2001Ju09, 2001Le36, 2001Uu01 (all are from the same research facility), 2005An17 (¹⁹¹Po production cross section was measured to be 1.6 μ b 4 and 2.5 μ b 8 in ¹⁴²Nd(⁵²Cr,3n), and 2.9 μ b 9 in ¹⁴⁴Sm(⁵⁰Ti,3n) reactions).

2002An19: Production via ¹⁴²Nd(⁵²Cr,3nγ), E(lab)=236 MeV. Gas-filled recoil fragment mass separator (RITU). Jurosphere Ge detector array around target; implantation of fusion-evaporation residues in position-sensitive Si strip detector after passage through multiwire proportional avalanche gas detector. RDT method for reaction product identification.

1999An36: ³⁶Ar beam incident on 500 μ g/cm² ¹⁶⁰Dy target, E(lab)=196 MeV, providing a range of 175-193 MeV in the target by using nickel degrader foils; RITU gas-filled recoil separator, position-sensitive Si strip detector. Identification using correlated α -decay chains, and excitation functions. Measured E(α), T_{1/2}. Evaluated correlated chains of α - α and α - γ coincidences.

¹⁹¹Po Levels

Proposed level scheme in 2002An19, based on prompt γ -ray intensities (not listed by authors) and coincidence measurements $\Delta t(\text{Rec-}\alpha) < 300 \text{ ms.}$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	(3/2 ⁻)	22 ms 1	From α -ray energy differences to levels in the daughter ¹⁸⁷ Pb nucleus, the high-spin (13/2 ⁺) isomer should lie about 40 keV above the low-spin (3/2 ⁻) isomer, indicating that the latter is the ¹⁹¹ Po ground state. This is consistent with the systematics of the g.s. J^{π} values in neighboring light Po nuclides. J^{π} : From Adopted Levels. $T_{1/2}$: From 7334 α (t) (2002An19,1999An36).
60 [#] 11	(13/2 ⁺)	93 ms <i>3</i>	 Additional information 1. E(level): From 2021Ko07 (NUBASE) – based on Eα difference. Other: 40 keV 15 in 2002An19, based on differences between their measured α ray energies. J^π: From Adopted Levels. T_{1/2}: From 7376α(t) (2002An19). Other: 98 ms 8 (1999An36).
309? [@]	$(15/2^+)$		2002An19 suggest this level as the lowest of a sequence of unfavored states.
322 [#]	$(17/2^+)$		
684? [@]	$(19/2^+)$		
689 [#]	$(21/2^+)$		
1153 [#]	$(25/2^+)$		
1164? [@]	$(23/2^+)$		
1691? [#]	$(29/2^+)$		

 † From $\gamma\text{-ray}$ energies, except where otherwise noted.

[‡] As proposed in 2002An19 (Fig. 6 and 8), except where otherwise noted.

[#] Band(A): Band 1A, favored sequence of γ transitions.

[@] Band(B): Band 1B, unfavored sequence of γ transitions.

(HI,xnγ) 2002An19,1999An36 (continued)

 $\gamma(^{191}\text{Po})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
^x 196 [‡] 250 [@] 262	309? 322	$(15/2^+)$ $(17/2^+)$	60 60	$(13/2^+)$ $(13/2^+)$	
$x^{x}264^{\#}$ $x^{x}301^{\#}$ $x^{x}312^{\#}$					
362 [@]	684?	$(19/2^+)$	322	$(17/2^+)$	
367	689	$(21/2^+)$	322	$(17/2^+)$	
^x 375 [#]					
375 [@]	684?	(19/2 ⁺)	309?	(15/2+)	Similar 375 keV 1 γ ray is also reported in coincidence with 6966 α , assigned to ^{187m} Pb in 2002An19.
^x 431 [#]					
x439#					
x456 [#]					
464	1153	$(25/2^+)$	689	$(21/2^+)$	
480 [@]	1164?	$(23/2^+)$	684?	$(19/2^+)$	
^x 521 [#]		/		/	
539 [@] *709 [‡]	1691?	(29/2+)	1153	(25/2+)	

[†] From 2002An19 (Fig. 6 and 8). Observed γ rays, $\Delta t(\text{Rec-}\alpha) < 300$ ms and 60 ms, fall into three groups , according to the information provided by α -ray tagged γ spectra. Two groups, associated with the E=7376 keV α -ray of the ^{191m}Po decay, are tentatively arranged into two bands: one based on the (13/2⁺) isomeric state, with partial support from prompt $\gamma\gamma$ coincidences; the other tentatively built on top of a (15/2⁺) state. The third group consists of a number of γ rays which are observed in E=7334 keV ^{191g}Po α -ray tagged γ spectra. These latter γ rays remain unplaced in the level scheme because the low statistics available did not allow the observation of $\gamma\gamma$ coincidences.

[±] Unplaced γ ray, correlated with the E=7376 keV α -decay of ^{191m}Po, $\Delta t(\text{Rec-}\alpha)$ <300 ms.

[#] Unplaced γ ray, correlated with the E=7334 keV α -decay of ^{191g}Po, $\Delta t(\text{Rec-}\alpha) < 60$ ms.

[@] Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

