			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023
$Q(\beta^{-}) = -7052 \ 10; \ S(n) = 7946$	14; S(p)=3214 10;	Q(α)=5402 14	2021Wa16	
			¹⁹¹ Pb Levels	

The adopted level scheme follows mostly the one proposed in 1998Fo02, and is based on $E\gamma$, $I\gamma$, $\gamma\gamma$ and $\gamma\gamma\gamma$ coincidences, and DCO (directional correlation) ratios. Other important contributions are the half-life and conversion coefficient measurements from 1999La06. While there is reasonable agreement between 1999La06 and 1998Fo02 about the band based on the $13/2^+$ isomeric state, there are significant differences for the $15/2^+$ band.

Cross Reference (XREF) Flags

			A B C	¹⁹¹ Bi ε decay (12.4 s) D ¹⁷³ Yb(²⁴ Mg,6nγ) ¹⁹⁵ Po α decay (4.64 s) E ¹⁸⁰ W(¹⁶ O,5nγ) ¹⁹⁵ Po α decay (1.92 s)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	3/2 ⁽⁻⁾	1.33 min 8	AB	$%ε+%β^+=99.987$ 5; %α=0.013 5 RMS charge radius: 5.4217 fm 26 (2004An14). J ^π : From α decay hindrance factor of 2.4 11 to the 3/2 ⁽⁻⁾ g.s. of ¹⁸⁷ Hg using the r ₀ (¹⁸⁷ Hg)=1.4964 71, obtained from the r ₀ of neighboring even-even isotopes of ¹⁸⁷ Hg (2020Si16). Systematics of g.s. J ^π in ¹⁹³ Pb, ¹⁹⁵ Pb, ¹⁹⁷ Pb, and ¹⁹⁹ Pb, the low-spin isomer is expected to be the ground state. %α: Branching estimated by authors of 1974Ho26. T _{1/2} : From 1974Ho26 (K x-ray(t)). Other value: 1.3 min 3 (1974Le02).
55 [#] 12	(13/2 ⁺) [‡]	2.18 min 8	A CDE	%ε+%β ⁺ =100; %α≈0.02 μ=-1.167 7; Q=+0.085 5 Additional information 1. Isotope shift: δ <r<sup>2> =-0.835 fm² 10, relative to ²⁰⁸Pb (1991Du07). E(level): From 2017A134. Labeled as 0.0+x in the previous evaluation, (2007Va21). From mass excess measurements, x=55 keV 12 was deduced in 2017A134. In 2021Ko07 (NUBASE): 58 keV 10. J^π: From systematics and HF ~2.6 of the 6700α from the (13/2⁺) parent state in ¹⁹⁵Po α decay (1.92 s). T_{1/2}: From 1981Mi11 (from several γ(t)). Other value: 2.03 min (1975UnZZ). %α from extrapolation of log E(α) vs log T_{1/2}(α) for 13/2⁺ state in ¹⁸⁷Pb with slope chosen from that for adjacent sets of nuclides (1995Br38). μ: From 2019StZV, 1991Du07 (Collinear fast beam laser spectroscopy). Q: From 2016St14, 1991Du07 (Collinear fast beam laser spectroscopy (no Sternheimer correction)).</r<sup>
214.7 5	(5/2 ⁻)		AB	J^{π} : $5/2^{-}$ or $7/2^{-}$, from population in the ¹⁹⁵ Po α Decay (4.64 s) $J^{\pi}=3/2^{(-)}$ and ¹⁹¹ Bi ε Decay (12.4 s) $J^{\pi}=(9/2^{-})$ along with the hindrance factor of α decay. $J^{\pi}=5/2^{-}$ is proposed based on the systematics of the low-excitation energy levels in the neighboring odd-A Pb isotopes.
597.3 5	3/2 ⁽⁻⁾		В	E(level): from energy reported in ¹⁹⁵ Po α decay (4.64 s) dataset for the γ ray to the (3/2 ⁻) g.s. J ^{π} : Based on the E0 component of 597.2 γ to 3/2 ⁽⁻⁾ and the α decay hindrance factor of 2 from (3/2 ⁻) (¹⁹⁵ Po α decay (4.64 s)).
641.7 <i>11</i>	(3/2 ⁻)		В	J ^{π} : The hindrance factor of 12 from (3/2 ⁻) state of ¹⁹¹ Po α decay is higher, yet expected (3/2 ⁻) to be a likely spin assignment.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁹¹Pb Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
724.6 5	(13/2+)		A C	E(level): From ¹⁹⁵ Po 1.92 s α decay dataset, based on the γ-ray energy difference to the $(13/2^+)$ isomeric level. J ^π : From unhindered α decay of the ¹⁹⁵ Po (1.92 s) isomeric $(13/2^+)$ state, and 669.6γ E0 component to $(13/2^+)$.
873.69 [#] 5	$(17/2^+)^{\ddagger}$		DE	J ^{π} : Stretched Q 818.69 γ to (13/2 ⁺). Possible configuration: ν $(i_{13/2})^{-1} \otimes (2^+_1, {}^{192}\text{Pb}).$
948.49 <mark>b</mark> 9	$(15/2^+)^{\ddagger}$		DE	J^{π} : 893.49 γ D to (13/2 ⁺).
1172.5 6	$(15/2^+, 17/2^+)^\ddagger$		D	
1261.9 8	$(15/2^+, 17/2^+)^\ddagger$		D	
1356.50 [#] 9	$(21/2^+)^{\ddagger}$		DE	J^{π} : 482.83 γ E2 to (17/2 ⁺).
1425.01 ^b 9	$(19/2^+)^{\ddagger}$		DE	J^{π} : 476.52 γ E2 to (15/2 ⁺).
1486.7 <i>4</i>	(17/2 ⁻)		D	Suggested configuration: $\nu (i_{13/2})^{-1} \otimes (4^+, {}^{192}\text{Pb})$. J ^{π} : 538.0 γ D to (15/2 ⁺), 612.0 γ D to (17/2 ⁺), and a non-M1 character for 224.7 γ was expected for intensity balance at 1206.9+X (${}^{24}\text{Mg,6n}\gamma$) (1998Fo02).
1695.77 <i>11</i> 1742.7 <i>6</i>	(21/2 ⁻) [‡]		DE D	J^{π} : 270.78 γ (E1) to (19/2 ⁺), 339.25 γ (E1) to (21/2 ⁺).
1918.79 [#] 12	$(25/2^+)^{\ddagger}$		DE	J^{π} : 562.38 γ E2 to (21/2 ⁺).
2005.7 ^b 4	(23/2 ⁺) [‡]		D	E(level), J^{π} : Third level in the (15/2 ⁺) band according to 1998Fo02 in ¹⁷³ Yb(²⁴ Mg,6n γ). Authors of 1999La06 did not report the 580 and 649 keV transitions deexciting this level in (¹⁶ O,5n γ), presumably due to their low intensity, propose instead the 2081 keV level as member of the 15/2 ⁺ band.
2137.69 13	(23/2+)		DE	E(level): This level is proposed as the third member in the $(15/2^+)$ based band $({}^{16}O,5n\gamma)$, in disagreement with data in $({}^{24}Mg,6n\gamma)$. J^{π} : 219.21 γ M1 to $(25/2^+)$. Other: $J^{\pi}=21/2^+$ on the rather weak basis of intensity balances in 1998Fo02 $({}^{24}Mg,6n\gamma)$.
2161.8 4	(25/2+)		DE	J^{π} : γ to $(21/2^+)$ and $(23/2^+)$ and $(25/2^+)$ states. E(level): In 1999La06 (¹⁶ O,5n γ) the level was quoted from 1998Eo02 (²⁴ Mg 6n γ), including 24.3 and 243.0 γ transitions.
2194.0 10			D	
2272.67 12	$(25/2^{-})^{\ddagger}$		DE	J ^π : 576.90γ (E2) γ to (21/2 ⁻).
2346.5 ^{<i>a</i>} 5	(27/2 ⁺)		DE	E(level): This is the lowest member of the $(27/2^+)$ -based Dipole Band 2 proposed in 1998Fo02 (²⁴ Mg,6n γ). I ^{π} : 184 78 γ M1 to (25/2 ⁺).
2473.07 16	(29/2 ⁻)	15 ns 4	DE	J^{π} : 200.40y E2 to (25/2 ⁻). There is from 1000L and (1 ⁶ O Snat). Other: 6.5 ns. 5 (2006LoZX)
2495.7 5	(27/2 ⁻ ,29/2 ⁻)	17 ns 4	DE	$T_{1/2}$: From 1999La06 (*0,5n7). Other: 0.5 hs 5 (2006loZ1). J^{π} : 149.19 γ E1 to (27/2 ⁺). $T_{1/2}$: From 1999La06 (¹⁶ O.5n γ). Other: 7.5 ns 5 (2006loZY).
2550.49 [#] 20	$(29/2^+)^{\ddagger}$		DE	J^{π} : 631.70 γ Q to (25/2 ⁺).
2568 ^{&} 3	(29/2 ⁻)		D	 This is the lowest member of the (29/2⁻) based Dipole Band 1 proposed in 1998Fo02 (²⁴Mg,6nγ). E(level): The energy for this Dipole Band 1 band head, relative to the 13/2⁺ isomeric level, is determined by that of an unobserved ≈72 keV transition. J^π: From systematics of similar dipole bands in neighboring Pb nuclei (²⁴Mg,6nγ) 1998Fo02.
2583.6 8			D	
2657.34 [#] 25	(33/2+)	$0.15 \ \mu s \ +10 - 5$	E	E(level): Level proposed only in 1999La06 ($^{16}O,5n\gamma$) as an

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁹¹Pb Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
			additional member of the $(13/2^+)$ band. J ^{π} : 106.85 γ E2 to $(29/2^+)$.
L			$T_{1/2}$: From 1999La06 (¹⁰ O,5n γ). Other: 0.33 μ s 5 (2006loZY).
2665.0 ⁰ 9	$(27/2^+)^{\ddagger}$	D	J^{π} : 659.3 γ to (23/2 ⁺) transition in sequence.
2683.7 ^{<i>a</i>} 9	$(29/2^+)$	D	J^{π} : 337.2 γ to (27/2 ⁺) in-band transition.
2802 ^{&} 3	$(31/2^{-})$	D	J^{π} : 234.0 γ to (29/2 ⁻) in-band transition.
2807.2 15		D	
2835.2 7		D	
3059.2 ^{<i>u</i>} 12	$(31/2^+)$	D	J^{n} : 3/5.5 γ to (29/2 ⁺) in-band transition.
3185 ^{°°} 3	$(33/2^{-})$	D	J^{π} : 383.6 γ to (31/2 ⁻) in-band transition.
3190.0 9	$(33/2^+)$	D	J^{n} : 639.5 γ to (29/2 ⁺).
3241.7 9		D	
32/4./ /		ע	
3310.4 <i>12</i> 3381 <i>A 1A</i>		ע	
3429.0 11		D	
3469.1 ^{<i>a</i>} 16	$(33/2^+)$	D	J^{π} : 409.9 γ to (31/2 ⁺) in-band transition.
3595 <mark>&</mark> 3	$(35/2^{-})$	D	J^{π} : 409.3 γ to (33/2 ⁻) in-band transition.
3615.8 13		D	
3858.5 12		D	
3873.2 10		D	
4021 X 3	$(37/2^{-})$	D	J^{π} : 426.1 γ to (35/2 ⁻) in-band transition.
4088.9 13		D	
4367 & 3	$(39/2^{-})$	D	J^{π} : 346.7 γ to (35/2 ⁻) in-band transition.
4462.8 16		D	
4486.8 14		D	
4682 ^{&} 4	$(41/2^{-})$	D	J^{π} : 314.1 γ to (39/2 ⁻) in-band transition.
4920 ^{&} 4	$(43/2^{-})$	D	J^{π} : 238.6 γ to (41/2 ⁻) in-band transition.
5197 ^{&} 4	$(45/2^{-})$	D	J^{π} : 277.2 γ to (45/2 ⁻) in-band transition.

[†] From a least-squares adjustment to the γ -ray energies, except where oherwise noted. For total uncertainty for levels above 641.7 keV, propagate 12 keV in quadrature. These levels are based on the (13/2⁺) isomeric state at 55 keV *12*.

[±] The J^{π} value is interpreted by 1998Fo02 (²⁴Mg,6n γ) as a coupling of the $i_{13/2}$ neutron hole to states in the ¹⁹²Pb core.

Band(A): Band 1 "Yrast quasiband" Band proposed in 1998Fo02 (²⁴Mg,6nγ), based on the 13/2⁺ isomeric state, comprising a cascade of stretched E2 transitions. Built on the basis of DCO ratios, coincidence relationships and transition intensity data.

^(a) Band(B): Band 2 (Second Yrast quasiband?) Band based on the 15/2⁺ level, comprising a cascade of stretched E2 transitions (1998Fo02). Coincidence and intensity data support.

[&] Band(C): Dipole Band 1 Negative-parity band based on the $(29/2^-)$ state, built on a cascade of (M1) transitions, supported by coincidence and intensity arguments (1998F002). Possible magnetic rotational ($\Delta J=1$) band. Suggested configuration= $\pi [s_{1/2}^{-2}h_{9/2}i_{13/2}]_{11^-} \nu [i_{13/2}^{-1}]_{13/2^+}$ for the lower part of the band and $\pi [s_{1/2}^{-2}h_{9/2}i_{13/2}]_{11^-} \nu [i_{13/2}^{-3}]_{33/2^+}$ above the backbend (1998F002).

^{*a*} Band(D): Dipole Band 2 (?) Tentative positive-parity band above the $(27/2^+)$ state, built on a cascade of (M1) transitions (1998Fo02). Support is provided by the existence of a similar sequence in ¹⁹³Pb, also based on a $(27/2^+)$ level. Possible magnetic rotational band (?). Suggested configuration= $\pi[s_{1/2}^{-2}h_{9/2}^2]_{8^+} \nu[i_{13/2}^{-1}]_{13/2^+}$ or $\pi[s_{1/2}^{-1}i_{13/2}]_{7^+} \nu[i_{13/2}^{-1}]_{13/2^+}$ (1998Fo02).

^b Seq.(E): second positive parity states based on $15/2^+$, comprising a cascade of stretched Q (E2) transitions.

					Adoj	pted Levels, Ga	mmas (conti	nued)
						$\gamma(^{191}$	Pb)	
E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{c}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^d	αf	Comments
214.7 597.3	$(5/2^{-})$ $3/2^{(-)}$	214.8 [‡] 5 383 [‡] 1	9 [‡] 2	0.0 214.7	3/2 ⁽⁻⁾ (5/2 ⁻)			
		597.2 [‡] 5	100‡	0.0	3/2(-)	E0+M1+E2	0.6 3	Mult.: From measured total conversion coefficient ¹⁹⁵ Po α Decay (4.64 s) (2002Va13). α : Measured value in 2010Co13 ¹⁹⁵ Po α Decay (4.64 s).
641.7	$(3/2^{-})$	427 [‡] 1	100	214.7	$(5/2^{-})$			
724.6	(13/2 ⁺)	669.6 [‡] 5	100	55	(13/2 ⁺)	E0+M1+E2	0.8 <i>3</i>	Mult.: From measured conversion coefficient in ¹⁹⁵ Po (1.92 s) α decay.
873.69	(17/2 ⁺)	818.69 [@] 5	100	55	(13/2 ⁺)	Q ^e		α: Measured value in ¹⁵ Po (1.92 s) α decay. E_{γ} : weighted average of 818.5 2 from (²⁴ Mg,6nγ) and 818.70 5 from (¹⁶ O,5nγ).
								Mult.: Other: (E2) in ($^{16}O, 5n\gamma$), but no conversion coefficient datum is available.
948.49	(15/2+)	893.49 10	100	55	(13/2 ⁺)	D ^e		E_{γ} : weighted average of 893.4 4 from (²⁴ Mg,6n γ) and 893.50 10 from (¹⁶ O,5n γ).
								Mult.: Other: (M1) in ($^{16}O,5n\gamma$), but no conversion coefficient datum is available.
1172.5	(15/2+,17/2+)	1117.3 8	100	55	$(13/2^+)$			
1261.9	$(15/2^+, 17/2^+)$	1206.7 10	100	55	$(13/2^+)$			
1356.50	$(21/2^+)$	482.83 [@] 8	100	873.69	$(17/2^+)$	E2	0.0320 4	$\alpha(K)=0.02237 \ 31; \ \alpha(L)=0.00724 \ 10; \ \alpha(M)=0.001804 \ 25 \ \alpha(N)=0.000457 \ 6; \ \alpha(O)=8.61\times10^{-5} \ 12; \ \alpha(P)=6.62\times10^{-6} \ 9$
								E_{γ} : Weighted average of 482.5 2 from (²⁴ Mg,6n γ) and 482.85 5 from (¹⁶ O,5n γ).
1425.01	(19/2+)	476.52 ^{&} 11	100 6	948.49	$(15/2^+)$	E2	0.0330 5	$\alpha(K)=0.02300 \ 32; \ \alpha(L)=0.00755 \ 11; \ \alpha(M)=0.001882 \ 26 \ \alpha(N)=0.000476 \ 7; \ \alpha(\Omega)=8.98\times10^{-5} \ 13; \ \alpha(P)=6.86\times10^{-6} \ 10$
								E_{γ} : weighted average of 476.1 4 from (²⁴ Mg,6n γ) and 476.55
		551 00 15	(1.6	972 (0	$(17/2^{+})$	D.(11	0.0024.12	$10 \text{ from } ({}^{16}\text{O},5n\gamma).$
		551.29 15	01 0	8/3.09	$(1/2^{+})$		0.0834 12	$\alpha(\mathbf{K})=0.00684 \ I0; \ \alpha(\mathbf{L})=0.01149 \ I0; \ \alpha(\mathbf{M})=0.00209 \ 4$ $\alpha(\mathbf{N})=0.000682 \ I0; \ \alpha(\mathbf{O})=0.0001361 \ I9; \ \alpha(\mathbf{P})=1.459\times10^{-5} \ 20$
								E_{γ} : weighted average of 551.2 6 from (²⁴ Mg,6n γ) and 551.30 15 from (¹⁶ O 5n γ).
								I _{γ} : weighted average of 59 6 from (²⁴ Mg,6n γ) and 69 13 from (¹⁶ O 5n γ)
								Mult.: Suggested (M1) in ($^{16}O,5n\gamma$) (1999La06), but no supporting data was provided
								supporting data was provided.

4

 $^{191}_{82} \text{Pb}_{109}\text{-}4$

L

Adopted Levels, Gammas (continued)

$\gamma(^{191}\text{Pb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{c}	\mathbf{E}_{f}	J_f^π	Mult. ^d	α^f	Comments
1486.7	$(17/2^{-})$	224.7 10	16 4	1261.9	$(15/2^+, 17/2^+)$			
		314.0 8	50 10	1172.5	$(15/2^+, 17/2^+)$	_		
		538.0 8	52 10	948.49	$(15/2^+)$	D		
1605 77	$(21/2^{-})$	612.9 8 208 7 6	100 20	8/3.09	$(17/2^{-1})$	D		
1095.77	(21/2)	200.70 ± 10		1425.01	(17/2)	(E1)	0.0275.5	$\alpha(K) = 0.0207$ (1, $\alpha(I) = 0.00525$ 7; $\alpha(M) = 0.001226$ 17
		270.78 10	51.0	1423.01	(19/2)	(E1)	0.0373 3	$\alpha(\mathbf{N}) = 0.00074; \alpha(\mathbf{L}) = 0.003257; \alpha(\mathbf{M}) = 0.00122017$ $\alpha(\mathbf{N}) = 0.0003004; \alpha(\mathbf{C}) = 5.08 \times 10^{-5}8; \alpha(\mathbf{D}) = 5.47 \times 10^{-6}8$
								U(1) = 0.0005097, u(0) = 0.90810 0, u(1) = 0.47810 0
								$(^{16}O 5n\gamma)$
		339.25 [#] 10	100.9	1356 50	$(21/2^+)$	(E1)	0 02227 31	$\alpha(K) = 0.01828.26$; $\alpha(L) = 0.00305.4$; $\alpha(M) = 0.000712.10$
		557.25 10	100 2	1000.00	(21/2)	(11)	0.02227 51	$\alpha(\mathbf{N}) = 0.0001794 \ 25^{\circ} \ \alpha(\mathbf{O}) = 3.50 \times 10^{-5} \ 5^{\circ} \ \alpha(\mathbf{P}) = 3.29 \times 10^{-6} \ 5^{\circ}$
1742.7		868.8 8	100	873.69	$(17/2^+)$			
1918.79	$(25/2^+)$	562.38 [@] 10	100	1356.50	$(21/2^+)$	E2	0.02228 31	$\alpha(K)=0.01626\ 23;\ \alpha(L)=0.00456\ 6;\ \alpha(M)=0.001124\ 16$
					,			$\alpha(N)=0.000285 4; \alpha(O)=5.41\times10^{-5} 8; \alpha(P)=4.43\times10^{-6} 6$
								E_{γ} : weighted average of 562.1 4 from (²⁴ Mg,6n γ) and 562.40 10
								from $({}^{16}\text{O},5n\gamma)$,
2005.7	$(23/2^+)$	580.6 ^{&} 4	100 9	1425.01	$(19/2^+)$	Q ^e		
		649.1 8	21 4	1356.50	$(21/2^+)$			
2137.69	$(23/2^+)$	131.6 10	<4.2	2005.7	$(23/2^+)$	1.01	1.014.14	
		219.21 18	6//	1918.79	$(25/2^{+})$	MI	1.014 14	$\alpha(\mathbf{K})=0.828 \ I2; \ \alpha(\mathbf{L})=0.1422 \ 20; \ \alpha(\mathbf{M})=0.0533 \ 5$
								a(1)=0.0004772, $a(0)=0.00100824$, $a(1)=0.000100420E : weighted average of 21925 15 from ({}^{16}O 5ny) and 21856$
								from $({}^{24}Mg$ 6nv)
								I_{γ} : Other: 95 15 (¹⁶ O.5n γ).
		394.8 8	22 4	1742.7				
		712.56 19	52 6	1425.01	$(19/2^+)$	[E2]	0.01323 19	α (K)=0.01012 14; α (L)=0.002364 33; α (M)=0.000574 8
								α (N)=0.0001453 20; α (O)=2.80×10 ⁻⁵ 4; α (P)=2.484×10 ⁻⁶ 35
								E_{γ} : weighted average of 212.60 20 from (¹⁶ O,5nγ) and 212.2 6 from (²⁴ Mg,6nγ).
								I_{γ} : Other: 100 30 (¹⁶ O,5n γ).
								Mult.: Suggested (E2) in 1999La06 ($^{16}O,5n\gamma$), but no supporting is
								available.
		781.08 14	100 8	1356.50	$(21/2^+)$	De		E_{γ} : weighted average of 781.10 15 from (¹⁶ O,5n γ) and 780.9 4
								trom ($^{2+}$ Mg,6n γ).
								I_{γ} : Utner: 46 <i>IU</i> (¹⁰ U, 5n γ).
2161.8	$(25/2^{+})$	(~ 24.3)		2137.60	$(23/2^{+})$			Mull.: Other: (M1) in ($^{\circ}$ O,Sn γ), but no supporting data is available. The existence of this unobserved γ transition is required by
2101.0	(20/2)	(-2		2137.09	(==),=)			coincidence data in 173 Yb(24 Mg,6ny) dataset (1998Fo02).

S

					Adopted Le	evels, Gam	mas (continue	bd)
					$\gamma(1)$	¹⁹¹ Pb) (con	tinued)	
E _i (level)	${ m J}^{\pi}_i$	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ c}$	E_f	J_f^π	Mult. ^d	α^{f}	Comments
								Mult.: Considering J^{π} for the initial and final states in (²⁴ Mg,6n γ) 1998Fo02, an E2 multipolarity, or higher, is expected for this γ ray. On the other hand, a M1 character is suggested in 1999La06 ¹⁸⁰ W(¹⁶ O,5n γ), based on the ratio of reduced transition probabilities. E _{γ} : The energy is estimated from energy sum relations provided by the proposed level scheme in (²⁴ Mg,6n γ) dataset (1998Fo02).
2161.8 2194.0	(25/2+)	156.0 <i>10</i> 243.0 <i>6</i> 805.2 <i>6</i> 498.2 <i>10</i>	<6.7 100 9 73 7 100	2005.7 1918.79 1356.50 1695.77	$(23/2^+) (25/2^+) (21/2^+) (21/2^-)$	D ^e		
2272.67	(25/2 ⁻)	576.90 [#] 5	100	1695.77	$(21/2^{-})$	(E2)	0.02102 29	$\alpha(K)=0.01543\ 22;\ \alpha(L)=0.00423\ 6;\ \alpha(M)=0.001041\ 15$
2346.5	(27/2 ⁺)	184.78 <i>15</i>	100	2161.8	(25/2 ⁺)	M1	1.635 23	$\alpha(N)=0.0002044, \alpha(O)=0.02\times10^{-7}, \alpha(P)=4.13\times10^{-6}$ $\alpha(K)=1.334$ <i>19</i> ; $\alpha(L)=0.2298$ <i>33</i> ; $\alpha(M)=0.0539$ <i>8</i> $\alpha(N)=0.01369$ <i>19</i> ; $\alpha(O)=0.00273$ <i>4</i> ; $\alpha(P)=0.000292$ <i>4</i>
								E_{γ} : weighted average of 184.6 4 from (²⁴ Mg,6n γ) and 184.80 15 from (¹⁶ O,5n γ).
2473.07	(29/2 ⁻)	200.40 [#] 10	100	2272.67	(25/2 ⁻)	E2	0.425 6	B(E2)(W.u.)=1.25 +45-27 α (K)=0.1676 24; α (L)=0.1920 27; α (M)=0.0502 7 α (N)=0.01266 18; α (O)=0.002290 32; α (P)=0.0001151 16
2495.7	(27/2 ⁻ ,29/2 ⁻)	(≈23.6) 149.19 5	100	2473.07 2346.5	(29/2 ⁻) (27/2 ⁺)	E1	0.1614 23	Unobserved transition. See discussion in the $({}^{24}Mg,6n\gamma)$ dataset. B(E1)(W.u.)=3.1×10 ⁻⁶ +10-6 α (K)=0.1300 18; α (L)=0.02402 34; α (M)=0.00564 8 α (N)=0.001415 20; α (O)=0.000270 4; α (P)=2.245×10 ⁻⁵ 31 E _{γ} : weighted average of 148.8 4 from $({}^{24}Mg,6n\gamma)$ and 149.20 5 from $({}^{16}O.5n\gamma)$.
2550.49	(29/2+)	631.70 ^{#@} 15	100	1918.79	(25/2 ⁺)	Q ^e		$\alpha(K)=0.01286 \ 18; \ \alpha(L)=0.00328 \ 5; \ \alpha(M)=0.000802 \ 12; \ \alpha(N+)=0.000245 \ 4 \ \alpha(N)=0.000203 \ 3; \ \alpha(O)=3.89\times10^{-5} \ 6; \ \alpha(P)=3.32\times10^{-6} \ 5 \ Mult.: \ Other: \ Suggested \ (E2) \ in \ 1999La06 \ (^{16}O,5n\gamma), \ but \ no \ supporting \ is \ available$
2568	(29/2 ⁻)	(72 5)		2495.7	(27/2 ⁻ ,29/2 ⁻)			Unobserved transition, expected from systematics (see
		(≈94.6)		2473.07	(29/2 ⁻)			E_{γ} : The energy for this unobserved γ ray is estimated from energy sum relations provided by the proposed level scheme in $(^{24}Mg,6n\gamma)$ (1998Fo02), and assuming that the energy value for the 72 keV γ ray is correct
2583.6		664.8 8	100	1918.79	(25/2 ⁺)			for the 72 keV y ray is context.

6

 $^{191}_{82} \mathrm{Pb}_{109}\text{-}6$

657.34	$\frac{v_i}{(33/2^+)}$	<u>-γ</u> 10ζ.95 #@ _15	±γ		-	VIIII.	α^{J}	Comments
0665-0	(33/2)	106 85" ~ /5	100	2550.49	$\frac{f}{(29/2^+)}$	E2	4 77 7	$B(E_2)(W_{\rm H}) = 0.72 + 37 - 27$
665.0		100.05 15	100	2350.19	(2)/2)	12	1.,,,,	$\alpha(K)=0.512$ 7; $\alpha(L)=3.17$ 5; $\alpha(M)=0.838$ 13 $\alpha(N)=0.2114$ 33; $\alpha(O)=0.0377$ 6; $\alpha(P)=0.001504$ 23 E_{γ} : Not reported in 1998Fo02 (²⁴ Mg,6n γ).
.005.0	$(27/2^+)$	659.3 <mark>&</mark> 8	100	2005.7	$(23/2^+)$			
683.7	$(29/2^+)$	337.2 ^b 8	100	2346.5	$(27/2^+)$			
.802	$(31/2^{-})$	234.0 ^a 6	100	2568	$(29/2^{-})$	D ^e		
2807.2		613.2 10	100	2194.0				
2835.2		562.4 8	100	2272.67	$(25/2^{-})$			
059.2	$(31/2^+)$	375.5 ⁰ 8	100	2683.7	$(29/2^+)$			
185	$(33/2^{-})$	383.6 ^{<i>a</i>} 8	100	2802	$(31/2^{-})$			
190.0	$(33/2^{+})$	639.5 8	100	2550.49	$(29/2^+)$			
241.7		/08./ 10 439.4.10	100 67 17	2475.07	(29/2)			
217.1		801.7.8	100 25	2473.07	$(29/2^{-})$			
318.4		653.4 8	100 100	2665.0	$(27/2^+)$			
381.4		716.4 10	100	2665.0	$(27/2^+)$			
429.0		878.5 10	100	2550.49	$(29/2^+)$			
469.1	$(33/2^+)$	409.9 <mark>b</mark> 10	100	3059.2	$(31/2^+)$			
595	$(35/2^{-})$	409.3 ^a 8	100 22	3185	$(33/2^{-})$			
		792.9 10	22 7	2802	$(31/2^{-})$			
615.8		425.8 10	100	3190.0	$(33/2^{+})$			
873 2		598 4 10	100 29	3274.7 3274.7				
1073.2		631.5 10	<71	3241.7				
-021	$(37/2^{-})$	426.1 ^{<i>a</i>} 5	100 16	3595	$(35/2^{-})$			
		835.5 10	26 11	3185	$(33/2^{-})$			
088.9		898.9 10	100	3190.0	$(33/2^+)$			
367	$(39/2^{-})$	346.7 ^{<i>a</i>} 10	100	4021	$(37/2^{-})$			
462.8		604.3 10	100	3858.5				
486.8	(41/2-)	613.6 10	100	3873.2	(20/2-)			
082	(41/2) $(43/2^{-})$	514.1^{-10} 10 238 6 ^{<i>a</i>} 10	100	4307 4682	(39/2)			
1920	$(+5/2^{-})$	233.0 10 277 2 ^{<i>a</i>} 10	100	4920	(+1/2) $(43/2^{-})$			

From ENSDF

 $^{191}_{82} Pb_{109}$ -7

$\gamma(^{191}\text{Pb})$ (continued)

[@] Transition connecting levels in Yrast Quasi Band 1. [&] Transition connecting levels in Yrast Quasi Band 2.

^{*a*} Transition connecting levels in Dipole Band 1.

^b Transition connecting levels in Dipole Band 2.

^c From (²⁴Mg,6nγ) (1998Fo02), except where otherwise noted.
 ^d From (¹⁶O,5nγ), based on the determined conversion coefficient, except where otherwise noted.
 ^e From (²⁴Mg,6nγ), based on DCO ratio. D or Q is assigned by the evaluator, if only based on DCO ratio.

f Additional information 2.

Level Scheme

Intensities: Relative photon branching from each level

 $^{191}_{82}{\rm Pb}_{109}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

+ 6132 100 2807.2 4 3322 1901 $(31/2^{-})$ + 630, 100 . 2802 $\frac{(29/2^+)}{(27/2^+)}$ 2683.7 2665.0 .0 ? 2657.34 2.80 0.15 µs +10-5 64 8 2583.6 S. 2 Ŵ $(29/2^{-})$ 2568 ¥ Ŵ 16, 23,0 10,0 200.40 $(29/2^+)$ 2550.49 (27/2-,29/2-) 001/11/8/ 2495.7 17 ns 4 (29/2-) * ł 2473.07 15 ns 4 + 578.9 $(27/2^+)$ 2346.5 $(25/2^{-})$ 805 × 10 805 × 10 15 0 0 1 15 0 0 1 15 0 0 0 2272.67 1 2.80x 2194.0 $(25/2^+)$ $\left| \frac{\sigma_{g_0}}{\sigma_{g_0}} \right|^{-1}$ 2161.8 2137.69 ¥ $(23/2^+)$ 001 ES 100 $(23/2^+)$ 2005.7 502.38 $(25/2^+)$ 1918.79 + 868.8 100 $\frac{33_{0}}{20}$, $\frac{3}{20}$, $\frac{10_{0}}{20}$, $\frac{20_{0}}{20}$, $\frac{20_{0}}$ 1742.7 $(21/2^{-})$ 1695.77 = 55, -456, - 26, 101, 6, 26, - 26, 100, -26, - 200, -26, - 200, -20 6129 538.0 D100 314.0 55 224.5 16 $(17/2^{-})$ 1486.7 $(19/2^+)$ 1425.01 $(21/2^+)$ 1356.50 $(15/2^+, 17/2^+)$ 1261.9 $(15/2^+, 17/2^+)$ 1172.5 $(15/2^+)$ 948.49 (17/2+) 873.69 $3/2^{(-)}$ 0.0 1.33 min 8

¹⁹¹₈₂Pb₁₀₉

Legend

γ Decay (Uncertain)

Legend

•

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{191}_{82} \mathrm{Pb}_{109}$