¹⁹⁰Os(n,γ) E=thermal **1991Bo35**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023

Others: 1977Be15, 1977Ca19, 1999BoZT, 2007Hu17 (E=spectrum).

- 1991Bo35: Target: 89.9% enriched ¹⁹⁰Os. Measured $E\gamma$, $I\gamma$ for primary γ rays with a germanium pair spectrometer. Measured $E\gamma$, $I\gamma$ for secondary γ rays using a bent crystal spectrometer. $\gamma\gamma$ coincidence measurements were done for primary and secondary transitions. Measured conversion electrons by a magnetic spectrometer. Deduced conversion coefficients. Also studied average resonance capture with a 97.8% enriched ¹⁹⁰Os target. Measured $\gamma\gamma$ coincidences between primary-primary and primary-secondary γ rays. Detectors: germanium hyperpure. Coincidence resolving time: ≈ 10 ns.
- 1977Be15: 99 mg ¹⁹⁰Os target (95.46%) was irradiated with thermal neutrons at the Los Alamos Omega West Reactor facility. Ge(Li) detector. Three gamma ray energy ranges were measured with three different arrangements. High energy γ rays (3.3-6 MeV) were measured in the "double escape" or "pair" mode, intermediate energy transitions, in the "anti-Compton" mode and low energy γ rays without coincidence restrictions. The resolutions were 6-7 keV, 3 keV and 0.5-0.9 keV FWHM, respectively. Measured E γ , partial γ -ray cross sections. Also studied ¹⁹⁰Os(p,d) and ¹⁹²Os(d,t).
- 1977Ca19: Target: osmium powder enriched to 95.46% in ¹⁹⁰Os. At 90° to the beam, the primary γ rays following thermal neutron capture were recorded in a 40 cm³ Ge(Li) detector. Typical resolution was 6.5 keV FWHM at about 6 MeV. Measured primary E γ , I γ .
- 1999BoZT: Studied ¹⁹¹Os following (n,γ) E=thermal by cascade γ -decay reported several excited levels in ¹⁹¹Os. In 1999BoZT, it is noted that an article was submitted to the European Physical Journal A: Hadrons and Nuclei. No publication was found. The data from this secondary (unpublished) article are not listed/considered in this dataset.
- For ¹⁹⁰Os(n, γ) E=th, σ_{γ}^{0} [15.4 d]=1.93 b *10* (2018MuZZ, 2012Kr05). 1977Be15 observed 5.4 b, as noted on page 4. Evalutor gets 5.1 b by adding all the primary γ -ray partial cross sections from the capture state. 1991Bo35 reported 21 primary gammas from the capture state, while 39 in 1977Be15, and 34 in 1977Ca19. Scaling I γ (rel)(5147)=1993 (1991Bo35, 1977Ca19) to 1469 mb (1977Be15), Σ I(γ)(primary) yields 3.6 b and 4.4 b for data reported in 1991Bo35 and 1977Ca19, respectively. In earlier evaluation σ_{γ}^{0} [15.4 d]=3.9 6 (1984MuZY).

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	$9/2^{-}$	637.617 3	$1/2^{-}, 3/2^{-}$
74.3836 25	3/2-	688.819 5	5/2-
84.4561 24	$1/2^{-}$	721.431 3	3/2-
131.938 <i>3</i>	5/2-	748.344 4	3/2-
141.9348 24	3/2-	762.375 9	3/2+,5/2+,7/2+
175.6783 10	$11/2^{+}$	764.6619 25	$3/2^+, (5/2^+)$
272.7536 18	5/2-	794.659 6	3/2-
314.266 <i>3</i>	$5/2^{-}$	804.551 20	5/2-,7/2-
410.8204 24	$7/2^{+}$	815.429 6	3/2-
417.1528 24	$1/2^{-}, 3/2^{-}$	823.891 4	+
433.590 <i>3</i>	$1/2^{-}, 3/2^{-}$	959.015 16	1/2-,3/2-
436.966 <i>3</i>	1/2-,3/2-	974.541 <i>11</i>	
446.926 <i>4</i>	$7/2^{-}$	1077.801 9	1/2-,3/2-
462.532 <i>3</i>	7/2-	1083.6 5	
471.650 <i>4</i>	$5/2^{-}$	1092.739 9	1/2-,3/2-
487.610 <i>3</i>	3/2-	1108.729 8	5/2-
508.1465 25	3/2-	1118.001 19	5/2-
519.398 6	7/2+,9/2+	1143.544 <i>13</i>	1/2-,3/2-
574.167 5	5/2-	1176.695 5	$1/2^+, 3/2^+, (5/2^+)$
611.9588 23	$1/2^{-}, 3/2^{-}$	1202.264 10	1/2-,3/2-
619.206 5	5/2-	1227.90 11	
630.716 <i>11</i>	$5/2^{-}$	1280.851 9	5/2+

¹⁹¹Os Levels

Continued on next page (footnotes at end of table)

From ENSDF

¹⁹⁰**Os**(\mathbf{n}, γ) **E=thermal** 1991Bo35 (continued)

¹⁹¹Os Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
1298.436 <i>18</i> (5758.83 <i>4</i>)	1/2 ⁻ ,3/2 ⁻ 1/2 ⁺	E(level): 5758.73 keV 16, deduced value in 1991Bo35. Sn=5758.73 11 in 2021Wa16 – AME. J^{π} : for s-wave capture.

[†] Deduced by evaluator from a least-squares-fit to γ -ray energies. [‡] From 1991Bo35, except where otherwise noted.

$\gamma(^{191}\text{Os})$

I γ normalization: From $\Sigma I \gamma$ (primary)=100.

ω

E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
^x 41.489 [‡] 5	≤10					M1 ^{&}		12.83 18	$\begin{array}{l} \alpha(L)=9.90 \ 14; \ \alpha(M)=2.273 \ 32 \\ \alpha(N)=0.555 \ 8; \ \alpha(O)=0.0957 \ 13; \ \alpha(P)=0.00711 \ 10 \\ \text{Mult.: from } \alpha(L1)\exp\geq 11, \ \alpha(L2)\exp\geq 1.7, \\ \alpha(M1)\exp\geq 3.6. \end{array}$
47.486 [‡] 5	≤10	131.938	5/2-	84.4561	1/2-	E2 ^{&}		126.4 18	$\begin{array}{l} \alpha(\text{L})=95.4 \ 13; \ \alpha(\text{M})=24.31 \ 34 \\ \alpha(\text{N})=5.81 \ 8; \ \alpha(\text{O})=0.850 \ 12; \ \alpha(\text{P})=0.000767 \ 11 \\ \text{Mult.: from } \alpha(\text{L}2)\exp\geq 5.0, \ \alpha(\text{L}3)\exp\geq 5.1, \\ \alpha(\text{M}2)\exp\geq 2.3, \ \alpha(\text{M}3)\exp\geq 1.6. \end{array}$
^x 49.584 [‡] 5	≤10					M1(+E2)&		5.×10 ¹ 5	α (L)=4.E1 4; α (M)=11 9 α (N)=2.5 22; α (O)=0.37 32; α (P)=0.0024 18 Mult.: from α (L1)exp \geq 5.1, α (L2)exp \geq 0.61, α (L3)exp \geq 0.76.
57.478 1	292 76	141.9348	3/2-	84.4561	1/2-	M1+E2	0.077 18	5.18 16	α (L)=3.99 <i>12</i> ; α (M)=0.923 <i>30</i> α (N)=0.225 <i>7</i> ; α (O)=0.0385 <i>11</i> ; α (P)=0.00271 <i>4</i> Mult.: from α (L1)exp=3.4 <i>9</i> , α (L2)exp=0.43 <i>11</i> , α (L3)exp=0.14 <i>4</i> , α (M1)exp=0.81 <i>20</i> , α (M2)exp=0.13 <i>3</i> , α (M3)exp=0.039 <i>10</i> .
57.551 <i>I</i>	37 6	131.938	5/2-	74.3836	3/2-	M1+E2	0.74 10	20.7 28	$\begin{array}{l} \alpha(L) = 15.7 \ 21; \ \alpha(M) = 3.9 \ 6 \\ \alpha(N) = 0.94 \ 13; \ \alpha(O) = 0.142 \ 19; \ \alpha(P) = 0.00189 \ 15 \\ \text{Mult.: from } \alpha(L1) \exp = 1.9 \ 3, \ \alpha(L2) \exp = 6.5 \ 10, \\ \alpha(L3) \exp = 6.6 \ 10, \ \alpha(M1) \exp = 0.80 \ 14. \end{array}$
67.550 2	65 19	141.9348	3/2-	74.3836	3/2-	M1+E2	0.19 4	3.76 <i>31</i>	$\alpha(L)=2.88\ 23;\ \alpha(M)=0.68\ 6$ $\alpha(N)=0.165\ 14;\ \alpha(O)=0.0275\ 21;\ \alpha(P)=0.001650\ 32$ Mult.: from $\alpha(L1)\exp=2.3\ 7,\ \alpha(L2)\exp=0.52\ 15,\ \alpha(L3)\exp=0.33\ 10,\ \alpha(M1)\exp=0.50\ 15,\ \alpha(M2)\exp=0.10\ 3,\ \alpha(M3)\exp=0.008\ 29$
74.379 9	5 1	74.3836	3/2-	0.0	9/2-	M3			Mult.: from α (L1)exp=340 50, α (L2)exp=73 10, α (L3)exp=700 100, α (M1)exp=100 10, α (M2)exp=26 4, α (M3)exp=210 30, α (M4)exp=3.7 6. Other data: α (M5)exp=3.7 6, α (N1)exp=26 4, α (N2)exp=6.0 8, α (N3)exp=54 7, α (N4)exp=1.6 2. Adopted multipolarity (M3+E4) in adopted gammas dataset is based on precise conversion electron data measured in ¹⁹¹ Os(13.10 h) IT decay.
108.573 18	10 3	519.398	7/2+,9/2+	410.8204	7/2+	M1		4.44 6	$\alpha(K)=3.67 5; \alpha(L)=0.597 8; \alpha(M)=0.1370 19$ $\alpha(N)=0.0334 5; \alpha(O)=0.00577 8; \alpha(P)=0.000429 6$ Mult from $\alpha(K)=0.00577 8; \alpha(L)=0.00429 6$
138.068 <i>3</i>	96 <i>23</i>	410.8204	7/2+	272.7536	5/2-	E1		0.1708 24	$\alpha(K)=0.1399\ 20;\ \alpha(L)=0.02391\ 33;\ \alpha(M)=0.00549\ 8$

				190	$OOS(n,\gamma) E=$	thermal=	1991Bo35 (c	ontinued)	
						$\gamma(^{191}\text{Os})$ (c	continued)		
E_{γ}^{\dagger}	I_{γ} #d	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [@]	δ^{b}	α^{c}	Comments
			<u> </u>						α(N)=0.001320 18; α(O)=0.0002158 30; α(P)=1.191×10-5 17 Eγ: A comparable 138.5 3 γ placement from 273 keV level in 1977Be15.
150.637 11	11 4	974.541		823.891	+				Mult.: from α (K)exp=0.056 <i>17</i> , α (L1)exp=0.038 <i>11</i> . Mult.: α (K)exp \leq 0.5 – E1,E2 can be assumed from the limit of conversion coefficient, upper limits of
157.385 10	5 2	471.650	5/2-	314.266	5/2-	M1		1.545 22	the conversion-electron intensity in 1991Bo35. $\alpha(K)=1.277 \ 18; \ \alpha(L)=0.2065 \ 29; \ \alpha(M)=0.0474 \ 7 \ \alpha(N)=0.01157 \ 16; \ \alpha(O)=0.001997 \ 28; \ \alpha(P)=0.0001487 \ 21$ With a form $\alpha(K)=0.07 \ 40 \ \alpha(L)=0.52 \ 22$
x160.050 <i>16</i> 172.328 <i>3</i>	12 2 81 <i>11</i>	314.266	5/2-	141.9348	3/2-	E1,E2 ^{<i>a</i>} M1+E2	1.04 11	0.86 4	Mult.: from $\alpha(K)\exp=0.9740$, $\alpha(L1)\exp=0.5222$. Mult.: from $\alpha(K)\exp\leq0.25$. $\alpha(K)=0.604$; $\alpha(L)=0.1975$; $\alpha(M)=0.048014$ $\alpha(N)=0.0116133$; $\alpha(O)=0.001844$; $\alpha(P)=6.7\times10^{-5}5$ Mult.: from $\alpha(K)\exp=0.548$, $\alpha(L1)\exp=0.07713$, $\alpha(L2)\exp=0.06311$, $\alpha(L3)\exp=0.03312$,
^x 172.884 21	21 7					E1 ^{<i>a</i>}		0.0960 13	α (M1)exp=0.039 11, α (M2)exp=0.018 3. α (K)=0.0790 11; α (L)=0.01312 18; α (M)=0.00301 4 α (N)=0.000725 10; α (O)=0.0001196 17; α (P)=6.95×10 ⁻⁶ 10 M b) = 6.95×10 ⁻⁶ 10
175.678 <i>1</i>	7.5×10 ² 10	175.6783	11/2+	0.0	9/2-	E1		0.0922 13	Mult.: from $\alpha(\mathbf{K}) \exp \leq 0.08$. $\alpha(\mathbf{K}) = 0.0759 \ 11; \ \alpha(\mathbf{L}) = 0.01258 \ 18; \ \alpha(\mathbf{M}) = 0.00288 \ 4$ $\alpha(\mathbf{N}) = 0.000695 \ 10; \ \alpha(\mathbf{O}) = 0.0001147 \ 16;$ $\alpha(\mathbf{P}) = 6.68 \times 10^{-6} \ 9$ \mathbf{E}_{γ} : A comparable 175.5 $\beta \gamma$ placement from 638 keV level in 1977Be15. Mult.: from $\alpha(\mathbf{K}) \exp = 0.053 \ 7, \ \alpha(\mathbf{L}1) \exp = 0.0043 \ 6,$ $\alpha(\mathbf{L}2) \exp = 0.0014 \ \beta, \ \alpha(\mathbf{L}3) \exp = 0.0029 \ 4,$
178.373 <i>3</i>	16 4	611.9588	1/2 ⁻ ,3/2 ⁻	433.590	1/2 ⁻ ,3/2 ⁻	M1		1.086 15	α (M1)exp=0.0022 5. α (K)=0.898 13; α (L)=0.1449 20; α (M)=0.0333 5 α (N)=0.00812 11; α (O)=0.001402 20; α (P)=0.0001045 15
180.675 <i>11</i>	17 6	688.819	5/2-	508.1465	3/2-	M1+E2	1.2 +13-5	0.71 16	Mult.: from α (K)exp=0.72 <i>18</i> , α (L1)exp=0.13 <i>3</i> . α (K)=0.49 <i>18</i> ; α (L)=0.169 <i>14</i> ; α (M)=0.041 <i>4</i> α (N)=0.00998 <i>99</i> ; α (O)=0.00157 <i>10</i> ; α (P)=5.3×10 ⁻⁵ 22
182.321 <i>3</i>	26 6	314.266	5/2-	131.938	5/2-	M1+E2	1.4 5	0.65 12	Mult.: from α (K)exp=0.49 <i>18</i> , α (L1)exp=0.047 <i>18</i> . δ : Using α (K)exp=0.49 <i>18</i> only. α (K)=0.43 <i>14</i> ; α (L)=0.166 <i>10</i> ; α (M)=0.0410 <i>32</i>

 $^{191}_{76}\mathrm{Os}_{115}\text{-}4$

					¹⁹⁰ Os(n,)) E=therma	l 1991B	035 (continue	ed)
						γ (¹⁹¹ Os) (continued	1)	
E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [@]	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
^x 184.649 2	34 5					E2(+M1)	2.1 4	0.54 4	α (N)=0.0099 7; α (O)=0.00155 8; α (P)=4.6×10 ⁻⁵ 17 Mult.: from α (K)exp=0.42 9, α (L1)exp=0.12 3, α (L2)exp=0.10 2. α (K)=0.32 4; α (L)=0.165 4; α (M)=0.0410 11 (N)=0.00098 2(α (C)=0.001510 20 (D) 2.2×10 ⁻⁵ 5
100 77()	16.4	462 522	7/0-	070 7506	5/2-	M1. F2	0.0.3	0.69.0	α (N)=0.00988 26; α (O)=0.001519 30; α (P)=3.3×10 5 5 Mult.: from α (K)exp=0.23 6, α (L1)exp=0.099 2 4, α (L2)exp=0.062 12.
189.776 3	16 4	462.532	1/2	272.7536	5/2	M1+E2	0.9 3	0.68 9	$\alpha(K)=0.50\ 10;\ \alpha(L)=0.136\ 6;\ \alpha(M)=0.0327\ 20$ $\alpha(N)=0.0079\ 5;\ \alpha(O)=0.00128\ 4;\ \alpha(P)=5.7\times10^{-5}\ 13$ Mult.: from $\alpha(K)\exp=0.58\ 15,\ \alpha(L)\exp=0.063\ 16.$
193.879 2	63 8	508.1465	3/2-	314.266	5/2-	M1		0.860 12	$\alpha(K)=0.712 \ I0; \ \alpha(L)=0.1147 \ I6; \ \alpha(M)=0.0263 \ 4$ $\alpha(N)=0.00642 \ 9; \ \alpha(O)=0.001109 \ I6; \ \alpha(P)=8.27\times10^{-5} \ I2$ Mult.: from $\alpha(K)$ exp=0.64 $8, \ \alpha(L1)$ exp=0.10 $I, \ \alpha(L)$ exp=0.025 $4, \ \alpha(M)$
194.808 <i>3</i>	37 5	611.9588	1/2-,3/2-	417.1528	1/2-,3/2-	M1+E2	0.80 16	0.66 5	$\alpha(\text{L2})\exp[-0.023, 4, \alpha(\text{M1})\exp[-0.030, 5]]$ $\alpha(\text{K})=0.50, 5; \alpha(\text{L})=0.1225, 29; \alpha(\text{M})=0.0293, 10$ $\alpha(\text{N})=0.00711, 22; \alpha(\text{O})=0.001158, 23; \alpha(\text{P})=5.6\times10^{-5}, 6$ Mult.: from $\alpha(\text{K})\exp[-0.47, 6, \alpha(\text{L1})\exp[-0.075, 11]]$,
x198.056 6	15 3	070 750(5/2-	74 2926	2/2-	E1,E2 ^{<i>a</i>}	164	0.47.6	α (L2)exp=0.031 9. Mult.: from α (K)exp \leq 0.13.
198.381 10	8 2	272.7536	5/2	/4.3836	3/2	MI+E2	1.0 4	0.47 0	$\alpha(K)=0.316; \alpha(L)=0.121630; \alpha(M)=0.030070$ $\alpha(N)=0.0072324; \alpha(O)=0.00113023; \alpha(P)=3.3\times10^{-5} 8$ Mult.: from $\alpha(K)\exp=0.318$.
204.037 5	16 4	637.617	1/2-,3/2-	433.590	1/2-,3/2-	M1+E2	0.39 27	0.69 8	$\alpha(K)=0.56\ 8;\ \alpha(L)=0.1012\ 27;\ \alpha(M)=0.0235\ 10$ $\alpha(N)=0.00573\ 23;\ \alpha(O)=0.000971\ 19;\ \alpha(P)=6.4\times10^{-5}\ 10$
^x 204.345 8	20 4					M1		0.743 10	Mult.: from α (K)exp=0.48 <i>10</i> , α (L1)exp=0.10 <i>2</i> . α (K)=0.615 <i>9</i> ; α (L)=0.0990 <i>14</i> ; α (M)=0.02270 <i>32</i> α (N)=0.00554 <i>8</i> ; α (O)=0.000957 <i>13</i> ; α (P)=7.136×10 ⁻⁵ <i>99</i>
220.467 7	25 <i>3</i>	637.617	1/2 ⁻ ,3/2 ⁻	417.1528	1/2 ⁻ ,3/2 ⁻	M1+E2	0.7 3	0.48 7	Mult.: from α (K)exp=0.89 12, α (L1)exp=0.13 2. α (K)=0.38 7; α (L)=0.0807 12; α (M)=0.0191 5 α (N)=0.00464 11; α (O)=0.000768 11; α (P)=4.3×10 ⁻⁵ 9 Mult.: from α (K)exp=0.37 6, α (L1)exp=0.083 12, α (L)=0.025 8
229.810 <i>3</i>	207 28	314.266	5/2-	84.4561	1/2-	E2		0.2095 29	$\alpha(\text{L}_2) \exp[-0.053 \text{ o.}]$ $\alpha(\text{K}) = 0.1180 \ 17; \ \alpha(\text{L}) = 0.0693 \ 10; \ \alpha(\text{M}) = 0.01738 \ 24$ $\alpha(\text{N}) = 0.00418 \ 6; \ \alpha(\text{O}) = 0.000638 \ 9; \ \alpha(\text{P}) = 1.132 \times 10^{-5} \ 16$ E_{γ} : A comparable 229.8 $3 \ \gamma$ unplaced in 1977Be15. Mult.: from $\alpha(\text{K}) \exp[-0.12 \ 2, \ \alpha(\text{L}) \exp[-0.019 \ 3, \ \beta(\text{L})]$
235.140 4	558 67	410.8204	7/2+	175.6783	11/2+	E2		0.1945 27	$\alpha(L2)\exp=0.035 5, \alpha(L3)\exp=0.018 3.$ $\alpha(K)=0.1111 16; \alpha(L)=0.0632 9; \alpha(M)=0.01583 22$ $\alpha(N)=0.00381 5; \alpha(O)=0.000582 8; \alpha(P)=1.070\times10^{-5} 15$ E_{γ} : A comparable 235.0 3 γ placement from 508 keV level in 1977Be15.

S

I.

					¹⁹⁰ Os(n, γ) E=therm	al 1991Bo35	(continued)	
						γ (¹⁹¹ C	s) (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [@]	δ^{b}	α^{c}	Comments
239.886 2	194 25	314.266	5/2-	74.3836	3/2-	M1+E2	0.99 12	0.331 19	Mult.: from α (K)exp=0.11 <i>I</i> , α (L1)exp=0.014 <i>2</i> , α (L2)exp=0.029 <i>4</i> , α (L3)exp=0.017 <i>2</i> , α (M1)exp=0.0039 <i>5</i> , α (M2)exp=0.0069 <i>8</i> , α (M3)exp=0.0052 <i>9</i> . α (K)=0.251 <i>19</i> ; α (L)=0.0609 <i>9</i> ; α (M)=0.01455 <i>20</i> α (N)=0.00353 <i>5</i> ; α (O)=0.000575 <i>9</i> ; α (P)=2.81×10 ⁻⁵ <i>23</i> Mult.: from α (K)exp=0.24 <i>3</i> , α (L1)exp=0.038 <i>5</i> ,
240.194 <i>4</i>	36 5	748.344	3/2-	508.1465	3/2-	M1		0.475 7	α (L2)exp=0.018 3, α (L3)exp=0.0082 22. α (K)=0.393 6; α (L)=0.0631 9; α (M)=0.01447 20 α (N)=0.00353 5; α (O)=0.000610 9; α (P)=4.55×10 ⁻⁵ 6
241.893 5	27 4	688.819	5/2-	446.926	7/2-	M1+E2	0.55 +28-31	0.40 5	Mult.: from α (K)exp=0.38 5, α (L1)exp=0.062 20. α (K)=0.32 5; α (L)=0.0606 13; α (M)=0.01417 20 α (N)=0.00345 5; α (O)=0.000580 16; α (P)=3.7×10 ⁻⁵ 6
^x 242.211 2	109 15					E2		0.1769 25	Mult.: from α (K)exp=0.32 5. α (K)=0.1028 14; α (L)=0.0561 8; α (M)=0.01404 20 α (N)=0.00338 5; α (O)=0.000517 7; α (P)=9.96×10 ⁻⁶ 14
^x 250.533 10	20 4					E1 ^{<i>a</i>}		0.0378 5	Mult.: from α (K)exp=0.099 <i>14</i> , α (L1)exp=0.020 <i>4</i> , α (L2)exp=0.023 <i>4</i> , α (L3)exp=0.013 <i>3</i> . α (K)=0.0314 <i>4</i> ; α (L)=0.00501 <i>7</i> ; α (M)=0.001146 <i>16</i> α (N)=0.000277 <i>4</i> ; α (O)=4.63×10 ⁻⁵ <i>6</i> ; α (P)=2.89×10 ⁻⁶
272.754 2	703 85	272.7536	5/2-	0.0	9/2-	E2		0.1219 <i>17</i>	Mult.: from α (K)exp≤0.02. α (K)=0.0755 <i>11</i> ; α (L)=0.0352 <i>5</i> ; α (M)=0.00876 <i>12</i> α (N)=0.002110 <i>30</i> ; α (O)=0.000326 <i>5</i> ; α (P)=7.46×10 ⁻⁶ <i>10</i>
275.219 <i>1</i>	513 64	417.1528	1/2 ⁻ ,3/2 ⁻	141.9348	3/2-	М1		0.327 5	Mult.: from $\alpha(K)exp=0.078 \ 9, \ \alpha(L1)exp=0.010 \ 1, \ \alpha(L2)exp=0.016 \ 2, \ \alpha(L3)exp=0.0098 \ 13, \ \alpha(M1)exp=0.0035 \ 5, \ \alpha(M2)exp=0.0042 \ 8, \ \alpha(M3)exp=0.0023 \ 6. \ \alpha(K)=0.271 \ 4; \ \alpha(L)=0.0433 \ 6; \ \alpha(M)=0.00993 \ 14 \ \alpha(N)=0.002425 \ 34; \ \alpha(O)=0.000419 \ 6; \ \alpha(P)=3.13\times10^{-5} \ 4 \ Mult.: from \ \alpha(K)exp=0.28 \ 4, \ \alpha(L1)exp=0.038 \ 6, \ \alpha(L2)exp=0.0027 \ 5. \ \alpha(L2)exp=0.0027 \ 5. \ \alpha(L3)exp=0.0027 \ 5. \ \alpha(L3)exp=0.0027$
^x 278.940 <i>18</i> 284.468 <i>10</i>	15 2 16 2	721.431	3/2-	436.966	1/2-,3/2-	M1		0.299 4	$\alpha(K)=0.2476 \ 35; \ \alpha(L)=0.0396 \ 6; \ \alpha(M)=0.00907 \ 13 \\ \alpha(N)=0.002215 \ 31; \ \alpha(O)=0.000383 \ 5; \ \alpha(P)=2.86\times10^{-5} $
287.846 16	17 2	721.431	3/2-	433.590	1/2-,3/2-	M1		0.289 4	⁴ Mult.: from α (K)exp=0.21 3, α (L1)exp=0.062 16. α (K)=0.2398 34; α (L)=0.0383 5; α (M)=0.00878 12 α (N)=0.002144 30; α (O)=0.000370 5; α (P)=2.77×10 ⁻⁵

 $^{191}_{76}\mathrm{Os}_{115}$ -6

I						¹⁹⁰ Os(n,γ)	E=thermal	1991Bo	35 (continue	d)
							$\gamma(^{191}\text{Os})$	(continued	<u>)</u>	
	E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. [@]	δ^{b}	α ^C	Comments
	291.654 2	105 <i>15</i>	433.590	1/2-,3/2-	141.9348	3/2-	M1		0.279 4	4 Mult.: from α(K)exp=0.21 3, α(L1)exp=0.078 12. α(K)=0.2314 32; α(L)=0.0370 5; α(M)=0.00847 12 α(N)=0.002068 29; α(O)=0.000357 5; α(P)=2.67×10 ⁻⁵ 4 E _γ : A comparable 291.6 3 γ unplaced in 1977Be15. Mult.: from α(K)exp=0.29 5, α(L1)exp=0.042 11,
	295.034 <i>3</i>	108 <i>14</i>	436.966	1/2 ⁻ ,3/2 ⁻	141.9348	3/2-	M1		0.271 4	α (L2)exp=0.011 2. α (K)=0.2242 31; α (L)=0.0358 5; α (M)=0.00821 11 α (N)=0.002004 28; α (O)=0.000346 5; α (P)=2.59×10 ⁻⁵ 4 E _{γ} : A comparable 294.9 3 γ unplaced in 1977Be15. Mult.: from α (K)exp=0.26 3, α (L1)exp=0.032 5, α (L 2)exp=0.010 2
	^x 301.837 5	35 4					M1+E2	0.50 33	0.221 34	$\alpha(L2)\exp=0.010$ (2. $\alpha(K)=0.180$ 32; $\alpha(L)=0.0317$ 21; $\alpha(M)=0.0074$ 4 $\alpha(N)=0.00179$ 10; $\alpha(O)=0.000305$ 22; $\alpha(P)=2.1\times10^{-5}$ 4 Multi-from $\alpha(K)\exp=0.18$ 2
	302.67 4	12 2	1118.001	5/2-	815.429	3/2-	M1(+E2)	0.4 5	0.23 5	$\alpha(K)=0.195; \alpha(L)=0.032130; \alpha(M)=0.00746$ $\alpha(N)=0.0018114; \alpha(O)=0.00030932; \alpha(P)=2.2\times10^{-5}6$
	304.279 <i>3</i>	75 10	721.431	3/2-	417.1528	1/2-,3/2-	M1		0.2489 35	Mult.: from α (K)exp=0.19 5. α (K)=0.2063 29; α (L)=0.0329 5; α (M)=0.00754 11 α (N)=0.001841 26; α (O)=0.000318 4; α (P)=2.380×10 ⁻⁵ 33
	304.488 7	43 6	823.891	+	519.398	7/2+,9/2+	E2		0.0874 12	Mult.: from α (K)exp=0.27 4, α (L1)exp=0.043 8, α (M1)exp=0.0096 26. α (K)=0.0569 8; α (L)=0.02322 33; α (M)=0.00574 8 α (N)=0.001384 19; α (O)=0.0002152 30; α (P)=5.72×10 ⁻⁶ 8
	304.951 18	40 15	619.206	5/2-	314.266	5/2-	M1		0.2474 35	Mult.: from α (K)exp=0.061 <i>16</i> . α (K)=0.2050 <i>29</i> ; α (L)=0.0327 <i>5</i> ; α (M)=0.00750 <i>10</i> α (N)=0.001830 <i>26</i> ; α (O)=0.000316 <i>4</i> ; α (P)=2.365×10 ⁻⁵ <i>33</i>
	305.020 2	80 <i>16</i>	436.966	1/2 ⁻ ,3/2 ⁻	131.938	5/2-	(E2)		0.0870 12	Mult.: from α (K)exp=0.18 6, α (L1)exp=0.075 25. α (K)=0.0566 8; α (L)=0.02307 32; α (M)=0.00570 8 α (N)=0.001375 19; α (O)=0.0002138 30; α (P)=5.70×10 ⁻⁶ 8
	307.275 8	17 2	815.429	3/2-	508.1465	3/2-	M1+E2	1.3 3	0.144 20	Mult.: from α (K)exp=0.050 <i>15</i> , α (L2)exp=0.027 <i>9</i> , α (L3)exp=0.0037 <i>12</i> . α (K)=0.110 <i>19</i> ; α (L)=0.0260 <i>13</i> ; α (M)=0.00621 <i>25</i> α (N)=0.00151 <i>6</i> ; α (O)=0.000246 <i>13</i> ; α (P)=1.21×10 ⁻⁵ <i>23</i> Mult.: from α (K)exp=0.11 <i>2</i> , α (L1)exp=0.046 <i>12</i> .
	^x 308.501 <i>16</i>	20 3					M1+E2	0.8 4	0.18 4	δ: Using α (K)exp=0.11 2 only. α (K)=0.14 4; α (L)=0.0280 24; α (M)=0.0066 5

From ENSDF

 $^{191}_{76}\mathrm{Os}_{115}$ -7

	$\frac{190}{\text{Os}(n,\gamma)} \text{ E=thermal} \qquad 1991Bo35 \text{ (continued)}$													
						<u> </u>	(¹⁹¹ Os) (continue	d)						
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [@]	$\delta^{\boldsymbol{b}}$	α ^{c}	Comments					
311.375 26	11 2	748.344	3/2-	436.966	1/2 ⁻ ,3/2 ⁻	M1		0.2338 <i>33</i>	$\alpha(N)=0.00160 \ 12; \ \alpha(O)=0.000267 \ 26; \ \alpha(P)=1.6\times10^{-5} \ 4$ Mult.: from $\alpha(K)\exp=0.13 \ 2, \ \alpha(L1)\exp=0.028 \ 6.$ $\alpha(K)=0.1938 \ 27; \ \alpha(L)=0.0309 \ 4; \ \alpha(M)=0.00708 \ 10$ $\alpha(N)=0.001729 \ 24; \ \alpha(O)=0.000299 \ 4; \ \alpha(P)=2.235\times10^{-5} \ 31$ Mult.: from $\alpha(K)\exp=0.22 \ 4$					
314.082 12	16 <i>3</i>	1108.729	5/2-	794.659	3/2-	M1		0.2284 <i>32</i>	Mult.: from α (K)exp=0.22 4. α (K)=0.1893 27; α (L)=0.0302 4; α (M)=0.00692 10 α (N)=0.001689 24; α (O)=0.000292 4; α (P)=2.183×10 ⁻⁵ 31 Mult.: from α (K)exp=0.20 5, α (L1)exp=0.038 9.					
x314.307 <i>14</i> 314.750 <i>17</i>	12 <i>3</i> 11 <i>3</i>	748.344	3/2-	433.590	1/2-,3/2-	M1		0.2271 32	$\alpha(K)=0.1882\ 26;\ \alpha(L)=0.0300\ 4;\ \alpha(M)=0.00688\ 10$ $\alpha(N)=0.001679\ 24;\ \alpha(O)=0.000290\ 4;\ \alpha(P)=2.170\times10^{-5}\ 30$ $E_{\gamma}:\ A\ comparable\ 315.4\ 3\ \gamma\ unplaced\ in\ 1977Be15.$					
314.988 <i>3</i>	53 7	446.926	7/2-	131.938	5/2-	M1		0.2266 32	Mult.: from α (K)exp=0.25 7. α (K)=0.1878 26; α (L)=0.0300 4; α (M)=0.00686 10 α (N)=0.001676 23; α (O)=0.000290 4; α (P)=2.166×10 ⁻⁵ 30 E _{γ} : A comparable 315.4 3 γ unplaced in 1977Be15. Mult.: from α (K)exp=0.23 3, α (L1)exp=0.032 9, α (M1)ava=0.018 6					
x315.714 20	9 <i>3</i>					M1+E2	1.0 6	0.15 5	$\alpha(M1)\exp[-0.018 \ 0.$ $\alpha(K)=0.12 \ 5; \ \alpha(L)=0.0250 \ 34; \ \alpha(M)=0.0059 \ 7$ $\alpha(N)=0.00144 \ 17; \ \alpha(O)=0.00024 \ 4; \ \alpha(P)=1.3\times10^{-5} \ 6$ Mult : from $\alpha(K)\exp[-0.12 \ 4]$					
316.452 11	86 11	630.716	5/2-	314.266	5/2-	M1+E2	1.0 2	0.151 <i>16</i>						
320.594 14	16 <i>3</i>	462.532	7/2-	141.9348	3/2-	E2		0.0751 11	$\alpha(M1)\exp=0.003912$. $\alpha(K)=0.04997; \alpha(L)=0.0192027; \alpha(M)=0.004737$ $\alpha(N)=0.00114216; \alpha(O)=0.000178225; \alpha(P)=5.06\times10^{-6}7$ Multi-frame (K)-arg 0.04012					
327.833 10	19 <i>3</i>	815.429	3/2-	487.610	3/2-	M1		0.2035 28	Mult.: from $\alpha(K) \exp[=0.049\ 12]$. $\alpha(K) = 0.1687\ 24;\ \alpha(L) = 0.0269\ 4;\ \alpha(M) = 0.00615\ 9$ $\alpha(N) = 0.001503\ 21;\ \alpha(O) = 0.000260\ 4;\ \alpha(P) = 1.943 \times 10^{-5}\ 27$					
329.713 8	49 6	471.650	5/2-	141.9348	3/2-	M1(+E2)	0.53 28	0.172 23	Mult.: from α (K)exp=0.20 3. α (K)=0.140 21; α (L)=0.0245 16; α (M)=0.00567 33 α (N)=0.00138 8; α (O)=0.000235 17; α (P)=1.60×10 ⁻⁵ 26					
330.577 18	15 2	462.532	7/2-	131.938	5/2-	M1+E2	1.1 +5-3	0.128 22	Mult.: from α (K)exp=0.14 2, α (L1)exp=0.020 3. α (K)=0.100 20; α (L)=0.0213 16; α (M)=0.00504 31 α (N)=0.00122 8; α (O)=0.000202 16; α (P)=1.12×10 ⁻⁵ 25					
331.191 8	22 3	748.344	3/2-	417.1528	1/2 ⁻ ,3/2 ⁻	M1(+E2)	0.47 +24-30	0.175 20	Mult.: from α (K)exp=0.10 2. α (K)=0.143 18; α (L)=0.0245 14; α (M)=0.00566 29 α (N)=0.00138 7; α (O)=0.000236 15; α (P)=1.63×10 ⁻⁵ 22 Mult.: from α (K)exp=0.12 2, α (L1)exp=0.034 6.					

 ∞

From ENSDF

L.

					¹⁹⁰ Os(n,)	() E=therma	1991Bo35	(continued)	
						$\gamma(^{191}\text{Os})$	(continued)		
${\rm E_{\gamma}}^{\dagger}$	I_{γ} #d	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ^{b}	α^{c}	Comments
332.691 3	135 18	417.1528	1/2 ⁻ ,3/2 ⁻	84.4561	1/2-	M1		0.1956 27	$\begin{aligned} &\alpha(\text{K}) = 0.1621 \ 23; \ \alpha(\text{L}) = 0.0258 \ 4; \ \alpha(\text{M}) = 0.00591 \ 8 \\ &\alpha(\text{N}) = 0.001444 \ 20; \ \alpha(\text{O}) = 0.0002495 \ 35; \\ &\alpha(\text{P}) = 1.867 \times 10^{-5} \ 26 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.16 \ 2, \ \alpha(\text{L}1) \text{exp} = 0.024 \ 4, \end{aligned}$
339.206 2	72 9	611.9588	1/2 ⁻ ,3/2 ⁻	272.7536	5/2-	E2		0.0639 9	α (M1)exp=0.0044 <i>12</i> . α (K)=0.0433 <i>6</i> ; α (L)=0.01566 <i>22</i> ; α (M)=0.00385 <i>5</i> α (N)=0.000929 <i>13</i> ; α (O)=0.0001456 <i>20</i> ; α (P)=4.42×10 ⁻⁶ <i>6</i> Mult : from α (K)exp=0.037 <i>6</i> , α (L1)exp=0.010 <i>2</i>
339.706 4	105 14	471.650	5/2-	131.938	5/2-	M1+E2	0.7 3	0.145 23	$\begin{array}{l} \alpha(\text{L2})\exp[=0.010\ 3,\ \alpha(\text{L3})\exp[=0.0091\ 20, \\ \alpha(\text{K})=0.117\ 21;\ \alpha(\text{L})=0.0215\ 17;\ \alpha(\text{M})=0.00501\ 34 \\ \alpha(\text{N})=0.00122\ 9;\ \alpha(\text{O})=0.000206\ 18;\ \alpha(\text{P})=1.33\times10^{-5} \\ 25 \end{array}$
342.769 4	31 4	417.1528	1/2-,3/2-	74.3836	3/2-	E2(+M1)	2.4 +14-6	0.080 10	Mult.: from α (K)exp=0.12 2, α (L1)exp=0.016 3. α (K)=0.058 9; α (L)=0.0164 8; α (M)=0.00396 16 α (N)=0.00096 4; α (O)=0.000154 8; α (P)=6.2×10 ⁻⁶ 11
343.712 9	19 <i>3</i>	519.398	7/2+,9/2+	175.6783	11/2+	(E2)		0.0615 9	Mult.: from α (K)exp=0.059 12, α (L1)exp=0.0076 20. α (K)=0.0419 6; α (L)=0.01494 21; α (M)=0.00367 5 α (N)=0.000885 12; α (O)=0.0001389 19; α (P)=4.29×10 ⁻⁶ 6 Mult.: E2 or E1 from α (K)exp≤0.047. Level scheme requires E2
345.674 2	104 <i>15</i>	487.610	3/2-	141.9348	3/2-	M1+E2	0.8 3	0.131 22	$\alpha(K)=0.105\ 20;\ \alpha(L)=0.0199\ 17;\ \alpha(M)=0.00465\ 34$ $\alpha(N)=0.00113\ 8;\ \alpha(O)=0.000190\ 17;\ \alpha(P)=1.19\times10^{-5}$ 24
347.512 4	43 6	764.6619	3/2+,(5/2+)	417.1528	1/2-,3/2-	E1		0.01729 24	Mult.: from α (K)exp=0.11 2, α (L1)exp=0.015 3. α (K)=0.01439 20; α (L)=0.002238 31; α (M)=0.000511 7 α (N)=0.0001236 17; α (O)=2.085×10 ⁻⁵ 29; α (P)=1.371×10 ⁻⁶ 19 Mult.: from α (K)exp=0.018 4
349.135 2	168 24	433.590	1/2 ⁻ ,3/2 ⁻	84.4561	1/2-	M1		0.1718 24	$\alpha(K) = 0.1424 \ 20; \ \alpha(L) = 0.02265 \ 32; \ \alpha(M) = 0.00519 \ 7$ $\alpha(N) = 0.001267 \ 18; \ \alpha(O) = 0.0002189 \ 31;$ $\alpha(P) = 1.639 \times 10^{-5} \ 23$ Mult.: from $\alpha(K) \exp = 0.13 \ 2, \ \alpha(L1) \exp = 0.019 \ 3,$ $\alpha(L2) \exp = 0.0010 \ 0.$
352.512 5	147 20	436.966	1/2 ⁻ ,3/2 ⁻	84.4561	1/2-	M1+E2	1.7 +6-4	0.086 <i>13</i>	α(L2)exp=0.0019 9. α (K)=0.065 11; α (L)=0.0158 10; α (M)=0.00379 20 α (N)=0.00092 5; α (O)=0.000149 10; α (P)=7.1×10 ⁻⁶ 14 E _γ : A comparable 353.7 3 γ placement from 488 keV level in 1977Be15. Mult.: from α (K)exp=0.065 9, α (L2)exp=0.0082 15, α (M1)exp=0.0027 9.

From ENSDF

 $^{191}_{76}\mathrm{Os}_{115}\text{-}9$

 $^{191}_{76}\mathrm{Os}_{115}\text{-}9$

					¹⁹⁰ Os(\mathbf{n}, γ)	E=thermal	1991Bo35	(continued)	
						$\gamma(^{191}\text{Os})$ (continued)		
${\rm E}_{\gamma}^{\dagger}$	I_{γ} #d	E _i (level)	J_i^π	E_f	J_f^π	Mult.@	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
353.841 1	391 62	764.6619	3/2+,(5/2+)	410.8204	7/2+	E2		0.0567 8	$\alpha(K)=0.0390 5; \alpha(L)=0.01348 19; \alpha(M)=0.00330 5$ $\alpha(N)=0.000797 11; \alpha(O)=0.0001254 18;$ $\alpha(P)=4.00\times10^{-6} 6$ F : $\Lambda = compare he 353.7.3 cm placement from 488 keV$
355.670 2	101 12	487.610	3/2-	131.938	5/2-	M1+E2	0.5 4	0.142 27	Ey: A comparatic 555.75 y practicult from 466 keV level in 1977Be15. Mult.: from α (K)exp=0.038 6, α (L1)exp=0.0034 7, α (L2)exp=0.0046 8, α (M2)exp=0.0017 4. α (K)=0.116 24; α (L)=0.0199 21; α (M)=0.0046 4 α (N)=0.00112 11; α (O)=0.000191 21; α (P)=1.33×10 ⁻⁵ 29
^x 358.781 16	14 <i>3</i>					M1+E2	1.53 35	0.086 13	Mult.: from α (K)exp=0.093 15, α (L1)exp=0.020 3, α (M1)exp=0.0046 10. α (K)=0.066 11; α (L)=0.0153 10; α (M)=0.00364 21 α (N)=0.00088 5; α (O)=0.000145 10; α (P)=7.3×10 ⁻⁶ 14
359.210 <i>3</i>	74 10	433.590	1/2-,3/2-	74.3836	3/2-	M1+E2	2.0 +7-4	0.075 9	Mult.: from α (K)exp=0.066 15. α (K)=0.056 8; α (L)=0.0144 7; α (M)=0.00346 14 α (N)=0.00084 4; α (O)=0.000136 7; α (P)=6.1×10 ⁻⁶ 9
362.588 2	111 <i>16</i>	436.966	1/2 ⁻ ,3/2 ⁻	74.3836	3/2-	M1+E2	1.0 3	0.104 18	Mult.: from α (K)exp=0.054 8, α (L1)exp=0.013 4. α (K)=0.083 16; α (L)=0.0164 14; α (M)=0.00385 29 α (N)=0.00094 7; α (O)=0.000156 14; α (P)=9.3×10 ⁻⁶ 19
364.864 <i>3</i>	115 <i>16</i>	637.617	1/2-,3/2-	272.7536	5/2-	E2(+M1)	3.2 2	0.0610 14	Mult.: from α (K)exp=0.086 <i>12</i> , α (L1)exp=0.012 <i>3</i> , α (L2)exp=0.0059 <i>15</i> . α (K)=0.0442 <i>12</i> ; α (L)=0.01282 <i>20</i> ; α (M)=0.00311 <i>5</i> α (N)=0.000752 <i>11</i> ; α (O)=0.0001200 <i>19</i> ; α (N)=4.60×10 ⁻⁶ <i>14</i>
366.210 <i>1</i>	362 50	508.1465	3/2-	141.9348	3/2-	M1+E2	0.49 16	0.132 10	Mult.: from α (K)exp=0.041 6, α (L1)exp=0.0073 21, α (L2)exp=0.0039 8. α (K)=0.108 9; α (L)=0.0184 9; α (M)=0.00424 18 α (N)=0.00103 4; α (O)=0.000177 9; α (P)=1.23×10 ⁻⁵
^x 370.237 9	23 3					M1		0.1468 21	Mult.: from α (K)exp=0.10 <i>I</i> , α (L1)exp=0.015 <i>2</i> , α (L2)exp=0.0020 <i>3</i> , α (M1)exp=0.0036 <i>9</i> . α (K)=0.1217 <i>17</i> ; α (L)=0.01933 <i>27</i> ; α (M)=0.00443 <i>6</i> α (N)=0.001081 <i>15</i> ; α (O)=0.0001868 <i>26</i> ; α (P)=1 399×10 ⁻⁵ <i>20</i>
370.981 23	14 <i>3</i>	804.551	5/2 ⁻ ,7/2 ⁻	433.590	1/2-,3/2-				Mult.: from α (K)exp=0.12 2, α (L1)exp=0.027 8. E _{γ} : A comparable 371.3 5 γ placement from 1093 keV level in 1977Be15.
376.208 9	23 5	508.1465	3/2-	131.938	5/2-	M1+E2	0.8 +4-3	0.104 19	$\alpha(K)=0.084$ 17; $\alpha(L)=0.0155$ 15; $\alpha(M)=0.00362$ 32

				¹⁹⁰ O	$s(n,\gamma)$ E=ther	rmal 1991	Bo35 (continue	ed)	
					$\gamma(^{19})$	¹ Os) (continu	ed)		
E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [@]	δ^{b}	α^{c}	Comments
378.47 4	15 3	815.429	3/2-	436.966	1/2-,3/2-	M1+E2	1.3 +8-4	0.081 17	$\alpha(N)=0.00088 \ 8; \ \alpha(O)=0.000149 \ 16; \\ \alpha(P)=9.5\times10^{-6} \ 20 \\ Mult.: \ from \ \alpha(K)exp=0.079 \ 18, \\ \alpha(L1)exp=0.014 \ 4. \\ \alpha(K)=0.063 \ 15; \ \alpha(L)=0.0135 \ 14; \\ \alpha(M)=0.00319 \ 30 \\ \alpha(N)=0.00077 \ 7; \ \alpha(O)=0.000128 \ 14; \\ \alpha(D)=7 \ 1\times10^{-6} \ 18 \\ \ \alpha(D)=7 \ 1\times10^{-6} \ 10^{-6} $
386.847 12	15 2	1202.264	1/2 ⁻ ,3/2 ⁻	815.429	3/2-	M1(+E2)	0.2 5	0.127 25	Mult.: from α (K)exp=0.063 15. α (K)=0.105 22; α (L)=0.0169 21; α (M)=0.0039 4 α (N)=0.00095 11; α (O)=0.000163 22; α (P)=1.21×10 ⁻⁵ 27 E _{γ} : A comparable 386.2 10 γ unplaced in
387.200 7	22 3	471.650	5/2-	84.4561	1/2-	E2		0.0442 6	1977Be15. Mult.: from α (K)exp=0.084 24, α (L1)exp=0.043 11. α (K)=0.0312 4; α (L)=0.00987 14; α (M)=0.002405 34 α (N)=0.000581 8; α (O)=9.21×10 ⁻⁵ 13; α (P)=3.24×10 ⁻⁶ 5
397.273 5	72 8	471.650	5/2-	74.3836	3/2-	M1+E2	≈3	≈0.0493	Mult.: from α (K)exp=0.025 7. α (K) \approx 0.0365; α (L) \approx 0.00974; α (M) \approx 0.002347
403.157 2	185 <i>19</i>	487.610	3/2-	84.4561	1/2-	M1+E2	1.03 14	0.077 6	$\alpha(N) \approx 0.000568; \ \alpha(O) \approx 9.15 \times 10^{-5}; \alpha(P) \approx 3.91 \times 10^{-6} Mult.: from \alpha(K)exp=0.037 6, \alpha(L1)exp=0.018 5. \alpha(K)=0.062 5; \ \alpha(L)=0.0119 5; \alpha(M)=0.00279 11 \alpha(N)=0.000677 27; \ \alpha(O)=0.000113 5; \alpha(P)=6.9 \times 10^{-6} 6 Mult.: from \alpha(K)exp=0.061 7, $
410.811 <i>13</i> 412.033 <i>4</i>	13 2 35 5	410.8204 1176.695	7/2 ⁺ 1/2 ⁺ ,3/2 ⁺ ,(5/2 ⁺)	0.0 764.6619	9/2 ⁻ 3/2 ⁺ ,(5/2 ⁺)	M1+E2	2.2 +23-7	0.050 10	α (L1)exp=0.0088 <i>10</i> . α (K)=0.038 <i>9</i> ; α (L)=0.0091 <i>9</i> ; α (M)=0.00218 <i>19</i> α (N)=0.00053 <i>5</i> ; α (O)=8.6×10 ⁻⁵ <i>9</i> ;
413.070 3	112 <i>12</i>	823.891	+	410.8204	7/2+	E2		0.0371 5	α (P)=4.1×10 ⁻⁶ <i>11</i> Mult.: from α (K)exp=0.038 8. α (K)=0.0267 4; α (L)=0.00794 <i>11</i> ;

 $^{191}_{76}\mathrm{Os}_{115}\text{-}11$

L.

				¹⁹⁰ O	s(n,γ) E=therma	al 1991Bo	35 (continued	<u>d)</u>					
γ ⁽¹⁹¹ Os) (continued)													
E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	${ m J}^{\pi}_i$	E_{f}	J_f^π	Mult.@	$\delta^{\boldsymbol{b}}$	α^{c}	Comments				
413.228 6	154 24	487.610	3/2-	74.3836	3/2-	M1(+E2)	0.3 3	0.104 13	$\alpha(M)=0.001928\ 27$ $\alpha(N)=0.000466\ 7;\ \alpha(O)=7.42\times10^{-5}\ 10;$ $\alpha(P)=2.79\times10^{-6}\ 4$ Mult.: from $\alpha(K)\exp=0.033\ 4,$ $\alpha(L2)\exp=0.0071\ 10.$ $\alpha(K)=0.086\ 12;\ \alpha(L)=0.0139\ 12;$ $\alpha(M)=0.00318\ 25$ $\alpha(N)=0.00078\ 6;\ \alpha(O)=0.000134\ 12;$ $\alpha(P)=9.8\times10^{-6}\ 14$				
414.310 9	24 3	1176.695	1/2+,3/2+,(5/2+)	762.375	3/2+,5/2+,7/2+	M1+E2	1.4 +8-4	0.061 12	Mult.: from α (K)exp=0.067 <i>10</i> , α (L1)exp=0.016 <i>2</i> , α (M1)exp=0.0046 <i>11</i> . α (K)=0.048 <i>11</i> ; α (L)=0.0100 <i>11</i> ; α (M)=0.00237 <i>23</i> α (N)=0.00058 <i>6</i> ; α (O)=9.5×10 ⁻⁵ <i>11</i> ;				
423.693 2	124 <i>15</i>	508.1465	3/2-	84.4561	1/2-	M1		0.1025 14	$\alpha(P) = 5.3 \times 10^{-6} \ 13$ Mult.: from $\alpha(K) \exp[=0.049 \ 11.$ $\alpha(K) = 0.0851 \ 12; \ \alpha(L) = 0.01346 \ 19;$ $\alpha(M) = 0.000752 \ 11; \ \alpha(O) = 0.0001300 \ 18;$ $\alpha(P) = 9.76 \times 10^{-6} \ 14$				
428.340 <i>19</i> 432.242 <i>12</i>	18 <i>3</i> 30 <i>5</i>	1176.695 574.167	1/2 ⁺ ,3/2 ⁺ ,(5/2 ⁺) 5/2 ⁻	748.344 141.9348	3/2 ⁻ 3/2 ⁻	M1+E2	0.9 4	0.068 <i>16</i>	Mult.: from α (K)exp=0.081 <i>10</i> , α (L1)exp=0.019 <i>5</i> . α (K)=0.055 <i>14</i> ; α (L)=0.0101 <i>15</i> ; α (M)=0.00235 <i>31</i>				
433.768 <i>3</i>	59 7	508.1465	3/2-	74.3836	3/2-	M1+E2	1.2 3	0.059 9	$\alpha(N)=0.00057 \ 8; \ \alpha(O)=9.7\times10^{-5} \ 15; \alpha(P)=6.2\times10^{-6} \ 17 Mult.: from \ \alpha(K)exp=0.054 \ 11. \alpha(K)=0.047 \ 8; \ \alpha(L)=0.0092 \ 8; \alpha(M)=0.00215 \ 18 \alpha(N)=0.00025 \ 4; \ \alpha(O)=8 \ 7\times10^{-5} \ 8; $				
434.086 5	35 5	748.344	3/2-	314.266	5/2-	M1		0.0962 13	$\alpha(P)=5.2\times10^{-6} \ 10$ Mult.: from $\alpha(K)\exp=0.045 \ 7$, $\alpha(L1)\exp=0.012 \ 4$. $\alpha(K)=0.0798 \ 11$; $\alpha(L)=0.01261 \ 18$; $\alpha(M)=0.00289 \ 4$ $\alpha(N)=0.000705 \ 10$; $\alpha(Q)=0.0001219 \ 17$:				
442.226 6	54 7	574.167	5/2-	131.938	5/2-	M1+E2	0.47 32	0.081 12	$\alpha(P)=9.15\times10^{-6} \ 13$ Mult.: from $\alpha(K)$ exp=0.075 11. $\alpha(K)=0.066 \ 11; \ \alpha(L)=0.0110 \ 12;$ $\alpha(M)=0.00253 \ 25$				

 $^{191}_{76}\mathrm{Os}_{115}$ -12

					¹⁹⁰ Os(n,	(γ) E=therm	nal <mark>1991B</mark>	o35 (continued	d)		
$\gamma(^{191}\text{Os})$ (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\boldsymbol{b}}$	α^{c}	Comments		
446.935 24	13 2	446.926	7/2-	0.0	9/2-	M1+E2	1.2 +7-4	0.054 12	 α(N)=0.00062 6; α(O)=0.000106 12; α(P)=7.6×10⁻⁶ 13 E_γ: A comparable 442.4 5 γ placement from 442 keV level in 1977Be15. Mult.: from α(K)exp=0.066 8, α(L1)exp=0.0097 17. α(K)=0.043 10; α(L)=0.0084 11; α(M)=0.00197 24 		
448.670 10	23 4	721.431	3/2-	272.7536	5/2-	M1+E2	1.3 +6-4	0.052 11	α (N)=0.00048 6; α (O)=8.0×10 ⁻⁵ 11; α (P)=4.8×10 ⁻⁶ 12 Mult.: from α (K)exp=0.043 10. α (K)=0.041 9; α (L)=0.0081 10; α (M)=0.00190 21 α (N)=0.00046 5: α (O)=7.7×10 ⁻⁵ 10; α (P)=4.6×10 ⁻⁶ 11		
453.88 <i>3</i> 462.536 <i>5</i>	92 385	1202.264 462.532	1/2 ⁻ ,3/2 ⁻ 7/2 ⁻	748.344 0.0	3/2 ⁻ 9/2 ⁻	M1+E2	0.7 4	0.064 <i>13</i>	Mult.: from $\alpha(K)$ =0.052 12; $\alpha(L)$ =0.0090 13; $\alpha(M)$ =0.00207 27		
^x 462.954 8	17 <i>3</i>					M1+E2	0.7 5	0.064 16	$\alpha(N)=0.00051$ 7; $\alpha(O)=8.6\times10^{-5}$ 13; $\alpha(P)=5.9\times10^{-6}$ 14 Mult.: from $\alpha(K)\exp=0.053$ 8. $\alpha(K)=0.052$ 14; $\alpha(L)=0.0089$ 15; $\alpha(M)=0.00207$ 32 $\alpha(N)=0.00050$ 8; $\alpha(O)=8.6\times10^{-5}$ 15; $\alpha(P)=5.9\times10^{-6}$ 16		
470.028 14	12 2	611.9588	1/2-,3/2-	141.9348	3/2-	M1+E2	0.6 4	0.064 12	Mult.: from α (K)exp=0.053 <i>10</i> . α (K)=0.053 <i>11</i> ; α (L)=0.0089 <i>12</i> ; α (M)=0.00205 <i>25</i> α (N)=0.00050 <i>6</i> ; α (O)=8.6×10 ⁻⁵ <i>12</i> ; α (P)=6.0×10 ⁻⁶ <i>13</i> Mult : from α (K)exp=0.054 <i>10</i>		
475.58 7 477.266 11	17 2 33 4	748.344 619.206	3/2 ⁻ 5/2 ⁻	272.7536 141.9348	5/2 ⁻ 3/2 ⁻	M1+E2	0.70 <i>30</i>	0.059 9	$\alpha(K)=0.048 \ 8; \ \alpha(L)=0.0082 \ 9; \ \alpha(M)=0.00190 \ 20 \\ \alpha(N)=0.00046 \ 5; \ \alpha(O)=7.9\times10^{-5} \ 9; \ \alpha(P)=5.4\times10^{-6} \ 10 \\ Mult.: \ from \ \alpha(K)exp=0.048 \ 6.$		
480.034 <i>17</i> 480.781 <i>9</i>	11 2 18 2	611.9588 1092.739	1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻	131.938 611.9588	5/2 ⁻ 1/2 ⁻ ,3/2 ⁻	M1+E2	0.7 3	0.058 9	$\alpha(K)=0.047 \ 8; \ \alpha(L)=0.0081 \ 9; \ \alpha(M)=0.00186 \ 20 \ \alpha(N)=0.00045 \ 5; \ \alpha(O)=7.7\times10^{-5} \ 9; \ \alpha(P)=5.3\times10^{-6} \ 10 \ E_{\gamma}$: A comparable 480.5 6 γ has an additional placement from 1202 keV level in 1977Be15. Mult : from $\alpha(K)$ exp=0.048 7.		
486.215 <i>23</i> 487.271 <i>18</i>	14 <i>3</i> 12 <i>2</i>	1280.851 619.206	5/2+ 5/2 ⁻	794.659 131.938	3/2 ⁻ 5/2 ⁻	M1+E2	0.8 4	0.053 12	$\alpha(K)=0.043 \ 10; \ \alpha(L)=0.0075 \ 12; \ \alpha(M)=0.00173 \ 25 \ \alpha(N)=0.00042 \ 6; \ \alpha(O)=7.2 \times 10^{-5} \ 12; \ \alpha(P)=4.9 \times 10^{-6} \ 12$		
^x 488.563 10	24 5					M1+E2	0.83 35	0.052 10	Mult.: from α (K)exp=0.042 9. α (K)=0.042 9; α (L)=0.0073 10; α (M)=0.00170 22 α (N)=0.00041 5; α (O)=7.0×10 ⁻⁵ 10; α (P)=4.7×10 ⁻⁶ 11		
489.706 <i>13</i>	24 4	574.167	5/2-	84.4561	1/2-	E2		0.02399 <i>34</i>	Mult.: from α (K)exp=0.042 7. α (K)=0.01796 25; α (L)=0.00461 6; α (M)=0.001108 16 α (N)=0.000268 4; α (O)=4.33×10 ⁻⁵ 6; α (P)=1.903×10 ⁻²⁷ Mult.: from α (K)exp=0.017 4.		

				¹⁹⁰ Os (\mathbf{n}, γ) E=therm	nal 1991Bo35 ((continued)		
				γ ⁽¹⁹¹	Os) (continued)			
E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	J_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
495.679 3	85 11	637.617	1/2 ⁻ ,3/2 ⁻	141.9348 3/2-	M1		0.0678 9	$\alpha(K)=0.0564 \ 8; \ \alpha(L)=0.00887 \ 12; \\ \alpha(M)=0.002028 \ 28 \\ \alpha(N)=0.000495 \ 7; \ \alpha(O)=8.57\times10^{-5} \ 12; \\ \alpha(P)=6.44\times10^{-6} \ 9 \\ Mult : \ from \ \alpha(K)exp=0.052 \ 7 \\ \end{cases}$
499.778 6	144 <i>16</i>	574.167	5/2-	74.3836 3/2-	M1+E2	0.7 2	0.052 6	α(L1)exp=0.0067 14. α(K)=0.043 5; α(L)=0.0072 6; α(M)=0.00167 12 α(N)=0.000408 31; α(O)=7.0×10 ⁻⁵ 6; α(P)=4.8×10 ⁻⁶ 6 E _γ : A comparable 499.8 4 γ unplaced in 1977Be15. Mult.: from α(K)exp=0.049 6,
518.481 7	34 6	1280.851	5/2+	762.375 3/2+,5/2+,	7/2 ⁺ M1+E2	1.5 +6-4	0.033 6	$\alpha(L1)\exp=0.012\ 2.$ $\alpha(K)=0.026\ 5;\ \alpha(L)=0.0051\ 6;$ $\alpha(M)=0.00120\ 13$ $\alpha(N)=0.000291\ 31;\ \alpha(O)=4.9\times10^{-5}\ 6;$ $\alpha(P)=2.9\times10^{-6}\ 6$
527.498 2	1.0×10 ³ 1	611.9588	1/2 ⁻ ,3/2 ⁻	84.4561 1/2-	M1+E2	0.5 2	0.050 5	Mult.: from α (K)exp=0.026 4. α (K)=0.041 4; α (L)=0.0068 5; α (M)=0.00155 11 α (N)=0.000379 27; α (O)=6.5×10 ⁻⁵ 5; α (P)=4.7×10 ⁻⁶ 5 Mult.: from α (K)exp=0.042 4, α (L)exp=0.0060 7
531.580 16	14 3	1143.544	1/2-,3/2-	611.9588 1/2 ⁻ ,3/2 ⁻	M1 - E2	073	0.042.7	(1)(2) = 0.00007.
331.374 3	383 39	011.9388	1/2 ,5/2	14.3830 <i>3</i> /2	M1+E2	0.7 3	0.043 /	$\alpha(\mathbf{K})=0.035 \text{ o}; \alpha(\mathbf{L})=0.0060 7;$ $\alpha(\mathbf{M})=0.00137 15$ $\alpha(\mathbf{N})=0.00033 4; \alpha(\mathbf{O})=5.7\times10^{-5} 7;$ $\alpha(\mathbf{P})=4.0\times10^{-6} 7$ Mult.: from $\alpha(\mathbf{K})\exp=0.036 4,$ $\alpha(\mathbf{L})\exp=0.0087 10.$ δ : Using $\alpha(\mathbf{K})\exp=0.036 4$ only.
539.101 <i>13</i> 542.706 <i>17</i>	28 <i>4</i> 21 <i>3</i>	1176.695 815.429	$1/2^+, 3/2^+, (5/2^+)$ $3/2^-$	637.617 1/2 ⁻ ,3/2 ⁻ 272.7536 5/2 ⁻				6 · · · · · · · · · · · · · · · · · · ·
544.821 5	68 8	619.206	5/2-	74.3836 3/2-	M1+E2	0.9 3	0.038 6	α (K)=0.031 5; α (L)=0.0053 7; α (M)=0.00123 14 α (N)=0.000300 35; α (O)=5.1×10 ⁻⁵ 6; α (P)=3.4×10 ⁻⁶ 6 E _{γ} : A comparable 545.3 5 γ unplaced in 1977Be15.

 $^{191}_{76}\mathrm{Os}_{115}\text{-}14$

					¹⁹⁰ Os (\mathbf{n}, γ) E=thermal		1991Bo35 (continued)		
						$\gamma(^{191}\text{Os})$	(continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [@]	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
^x 546.055 10	25 4					M1+E2	0.9 4	0.037 9	Mult.: from $\alpha(K)\exp=0.030$ 4, $\alpha(L1)\exp=0.0086$ 13. δ : Using $\alpha(K)\exp=0.036$ 4 only. $\alpha(K)=0.030$ 7; $\alpha(L)=0.0053$ 9; $\alpha(M)=0.00122$ 19 $\alpha(N)=0.00030$ 5; $\alpha(O)=5.1\times10^{-5}$ 9; $\alpha(P)=3.4\times10^{-6}$ 9 Mult.: from $\alpha(K)\exp=0.021$ 6
546.871 <i>13</i>	21 6	688.819	5/2-	141.9348	3/2-	M1+E2	1.2 +10-5	0.032 9	$\alpha(K)=0.026 \ 8; \ \alpha(L)=0.0048 \ 9; \ \alpha(M)=0.00111 \ 20$ $\alpha(N)=0.00027 \ 5; \ \alpha(O)=4.5\times10^{-5} \ 9; \ \alpha(P)=2.9\times10^{-6} \ 9$
553.158 10	20 2	637.617	1/2 ⁻ ,3/2 ⁻	84.4561	1/2-	M1(+E2)	0.4 4	0.046 8	Mult.: from α (K)exp=0.026 7. α (K)=0.038 7; α (L)=0.0062 9; α (M)=0.00141 19 α (N)=0.00035 5; α (O)=5.9×10 ⁻⁵ 9; α (P)=4.4×10 ⁻⁶ 9 Mult.: from α (K)exp=0.038 7
556.32 <i>3</i>	60 8	630.716	5/2-	74.3836	3/2-	M1+E2	0.7 3	0.039 6	$\alpha(K)=0.032 \ 5; \ \alpha(L)=0.0054 \ 7; \ \alpha(M)=0.00125 \ 14$ $\alpha(N)=0.000305 \ 35; \ \alpha(O)=5.2\times10^{-5} \ 6; \ \alpha(P)=3.7\times10^{-6}$
556.857 <i>21</i> 563.789 <i>25</i>	19 <i>4</i> 16 2	688.819 974.541	5/2-	131.938 410.8204	5/2 ⁻ 7/2 ⁺				Mult.: from $\alpha(K)\exp=0.033$ 4. Mult.: $\alpha(K)\exp\leq0.03 - E1,E2$ can be assumed from the limit of conversion coefficient, upper limits of the conversion-electron intensity in 1991Bo35.
564.65 <i>3</i> 579.494 <i>5</i>	15 2 53 8	1202.264 721.431	1/2 ⁻ ,3/2 ⁻ 3/2 ⁻	637.617 141.9348	1/2 ⁻ ,3/2 ⁻ 3/2 ⁻	M1+E2	0.7 4	0.036 7	$\alpha(K)=0.029\ 6;\ \alpha(L)=0.0049\ 8;\ \alpha(M)=0.00112\ 17$ $\alpha(N)=0.00027\ 4;\ \alpha(O)=4.7\times10^{-5}\ 7;\ \alpha(P)=3.3\times10^{-6}\ 7$ Mult.: from $\alpha(K)$ exp=0.029 5.
589.39 6 590.190 8	12 2 25 4	721.431 1077.801	3/2 ⁻ 1/2 ⁻ ,3/2 ⁻	131.938 487.610	5/2 ⁻ 3/2 ⁻	M1+E2	1.1 2	0.0279 28	$\alpha(K)=0.0227 \ 24; \ \alpha(L)=0.00399 \ 30; \ \alpha(M)=0.00093 \ 7$ $\alpha(N)=0.000225 \ 16; \ \alpha(O)=3.82\times10^{-5} \ 29; \alpha(P)=2.54\times10^{-6} \ 28$
600.576 8	31 4	1108.729	5/2-	508.1465	3/2-	M1+E2	1.8 +10-5	0.021 4	Mult.: from α (K)exp=0.023 2. α (K)=0.0168 31; α (L)=0.0032 4; α (M)=0.00075 9 α (N)=0.000182 21; α (O)=3.0×10 ⁻⁵ 4; α (P)=1.9×10 ⁻⁶ 4
x603.459 22 604.41 3 614.436 11	17 3 13 5 22 3	688.819 688.819	5/2 ⁻ 5/2 ⁻	84.4561 74.3836	1/2 ⁻ 3/2 ⁻	M1+E2	0.6 <i>3</i>	0.032 5	Mult.: from $\alpha(K)\exp=0.017$ 3. $\alpha(K)=0.027$ 4; $\alpha(L)=0.0043$ 5; $\alpha(M)=0.00100$ 11 $\alpha(N)=0.000243$ 27; $\alpha(O)=4.2\times10^{-5}$ 5; $\alpha(P)=3.0\times10^{-6}$ 5
622.699 <i>21</i>	14 <i>3</i>	764.6619	3/2+,(5/2+)	141.9348	3/2-				Mult.: from α (K)exp=0.026 4.

From ENSDF

 $^{191}_{76}\mathrm{Os}_{115}\text{-}15$

н

				¹⁹⁰ Os	s(n ,γ)]	E=thermal	1991Bo35 (c	ontinued)	
						$\gamma(^{191}\text{Os})$	(continued)		
E_{γ}^{\dagger}	I_{γ} #d	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult.@	δ^{b}	α^{C}	Comments
636.974 <i>4</i>	100 13	721.431	3/2-	84.4561	1/2-	M1+E2	1.1 3	0.023 4	$\alpha(K)=0.0188 \ 31; \ \alpha(L)=0.0033 \ 4; \ \alpha(M)=0.00075 \ 9$ $\alpha(N)=0.000184 \ 21; \ \alpha(O)=3.1\times10^{-5} \ 4; \ \alpha(P)=2.1\times10^{-6}$ 4 Mult : from $\alpha(K)\exp=0.019 \ 3$
^x 638.444 <i>14</i> 644.77 <i>3</i> 647.051 <i>17</i>	22 4 13 3 25 4	959.015 721.431	1/2 ⁻ ,3/2 ⁻ 3/2 ⁻	314.266 74.3836	5/2 ⁻ 3/2 ⁻	M1+E2	1.0 3	0.023 4	$\alpha(K)=0.0190 \ 32; \ \alpha(L)=0.0032 \ 4; \ \alpha(M)=0.00075 \ 9$ $\alpha(N)=0.000182 \ 22; \ \alpha(O)=3.1\times10^{-5} \ 4; \ \alpha(P)=2.1\times10^{-6}$
652.728 7	46 7	794.659	3/2-	141.9348	3/2-	M1+E2	1.0 4	0.023 5	Mult.: from α (K)exp=0.019 3. α (K)=0.019 4; α (L)=0.0032 5; α (M)=0.00073 12 α (N)=0.000178 29; α (O)=3.0×10 ⁻⁵ 5; α (P)=2.1×10 ⁻⁶
655.441 <i>21</i>	29 6	1118.001	5/2-	462.532	7/2-	M1+E2	0.9 +6-4	0.024 5	Mult.: from α (K)exp=0.019 4. α (K)=0.019 4; α (L)=0.0032 6; α (M)=0.00075 13 α (N)=0.000183 31; α (O)=3.1×10 ⁻⁵ 6; α (P)=2.2×10 ⁻⁶
662.67 ^e 7 662.67 ^e 7 663.883 4	12 ^e 3 12 ^e 3 138 21	794.659 804.551 748.344	3/2 ⁻ 5/2 ⁻ ,7/2 ⁻ 3/2 ⁻	131.938 141.9348 84.4561	5/2 ⁻ 3/2 ⁻ 1/2 ⁻	M1+E2	1.4 +9-4	0.019 4	Mult.: from α (K)exp=0.019 4. α (K)=0.0150 31; α (L)=0.0027 4; α (M)=0.00062 9 α (N)=0.000151 22; α (O)=2.6×10 ⁻⁵ 4; α (P)=1.7×10 ⁻⁶ 4
x									Mult.: from $\alpha(K)$ exp=0.015 3.
x667.67 3 668.52 4 x669.513 15	35 5 21 3 29 5	1176.695	1/2+,3/2+,(5/2+)	508.1465	3/2-				
673.94 <i>3</i> 683.49 <i>3</i>	39 6 19 4 20 3	748.344 815.429	3/2 ⁻ 3/2 ⁻	74.3836 131.938	3/2 ⁻ 5/2 ⁻				
694.09 <i>4</i> <i>x</i> 695.36 <i>3</i>	20.3 21.6 20.3	1202.264	1/2-,3/2-	508.1465	3/2-				
706.649 <i>17</i> 710.202 <i>17</i>	44 6 33 <i>4</i>	1280.851 794.659	5/2+ 3/2 ⁻	574.167 84.4561	5/2 ⁻ 1/2 ⁻	M1+E2	0.65 +37-34	0.022 4	α (K)=0.0180 30; α (L)=0.0029 4; α (M)=0.00067 9 α (N)=0.000163 22; α (O)=2.8×10 ⁻⁵ 4; α (P)=2.0×10 ⁻⁶
^x 719.525 <i>13</i>	54 10					M1+E2	1.0 4	0.018 4	Mult.: from α (K)exp=0.018 3. α (K)=0.0147 32; α (L)=0.0025 4; α (M)=0.00057 9 α (N)=0.000138 23; α (O)=2.4×10 ⁻⁵ 4; α (P)=1.6×10 ⁻⁶ 4 Mult.: from α (K)exp=0.015 3.

					¹⁹⁰ Os(n, γ) E=thermal	1991	Bo35 (continu	ed)
						$\gamma(^{191}\text{Os})$	(continu	led)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} #d	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.@	δ ^b	α^{c}	Comments
720.276 11	88 14	794.659	3/2-	74.3836	3/2-	E2(+M1)	2.6 3	0.012 14	$\alpha(\text{K})=0.010 \ 12; \ \alpha(\text{L})=0.0018 \ 16; \ \alpha(\text{M})=4.2\times10^{-4} \ 35$ $\alpha(\text{N})=1.0\times10^{-4} \ 8; \ \alpha(\text{O})=1.7\times10^{-5} \ 15; \ \alpha(\text{P})=1.0\times10^{-6} \ 14$ Mult.: from $\alpha(\text{K})$ exp=0.0095 $\ 15$.
726.397 20 ^x 767.828 8	31 <i>6</i> 64 <i>6</i>	1143.544	1/2-,3/2-	417.1528	1/2-,3/2-	E2(+M1)	1.8 <i>3</i>	0.0117 10	$\alpha(K)=0.0095 \ 8; \ \alpha(L)=0.00168 \ 11; \ \alpha(M)=0.000389 \ 25 \ \alpha(N)=9.5\times10^{-5} \ 6; \ \alpha(O)=1.60\times10^{-5} \ 11; \ \alpha(P)=1.05\times10^{-6} \ 10 \ Mult : from \ \alpha(K)=0.0095 \ 15$
768.664 <i>20</i> *773.53 <i>9</i>	23 5 27 3	1202.264	1/2-,3/2-	433.590	1/2-,3/2-				Mutt., Holli u(K)exp=0.0055 15.
785.102 25 *787.36 4	36 5 49 8	1202.264	1/2-,3/2-	417.1528	1/2-,3/2-				
793.29 <i>13</i>	24 4	1280.851	5/2+	487.610	3/2-				
804.47 4	27 4	804.551	$5/2^{-},7/2^{-}$	0.0	9/2 ⁻	F0		0.00750.10	
817.076 23	/1 8	959.015	1/2 ,3/2	141.9348	3/2	E2		0.00750 10	$\alpha(\text{K})=0.00602 \ 8; \ \alpha(\text{L})=0.001133 \ 70; \ \alpha(\text{M})=0.000265 \ 4$ $\alpha(\text{N})=6.43\times10^{-5} \ 9; \ \alpha(\text{O})=1.075\times10^{-5} \ 15; \ \alpha(\text{P})=6.47\times10^{-7}$ 9
									Mult.: from α (K)exp=0.0061 9.
818.28 3	39 <i>5</i>	1280.851	5/2+	462.532	7/2-				
826.77 5	18 6	1298.436	1/2-,3/2-	471.650	5/2-				
×837.08 3	39 5					$M1(\pm E2)$	067	0.014.4	$\alpha(K) = 0.0110.21; \alpha(L) = 0.0010.4; \alpha(M) = 0.00042.0$
**847.339 20	42 0					MII(+E2)	0.0 7	0.014 4	$\alpha(K)=0.0119$ 31; $\alpha(L)=0.0019$ 4; $\alpha(M)=0.00043$ 9 $\alpha(N)=0.000106$ 23; $\alpha(O)=1.8\times10^{-5}$ 4; $\alpha(P)=1.3\times10^{-6}$ 4 Mult.: from $\alpha(K)\exp=0.012$ 3.
874.54 <i>3</i>	64 7	959.015	1/2-,3/2-	84.4561	1/2-	M1+E2	1.2 8	0.010 4	$\alpha(K)=0.008 \ 4; \ \alpha(L)=0.0014 \ 5; \ \alpha(M)=3.2\times10^{-4} \ 11 \ \alpha(N)=7.8\times10^{-5} \ 27; \ \alpha(O)=1.3\times10^{-5} \ 5; \ \alpha(P)=9.E-7 \ 4 \ Mult.; \ from \ \alpha(K)exp=0.0085 \ 36.$
881.31 <i>3</i> <i>x</i> 889.38 <i>4</i> <i>x</i> 896.38 <i>4</i> <i>x</i> 899.73 <i>5</i> <i>x</i> 916.30 <i>11</i> <i>x</i> 919.92 <i>7</i> <i>x</i> 92.71 <i>4</i>	44 5 38 5 33 5 41 11 37 5 28 5 25 7	1298.436	1/2 ⁻ ,3/2 ⁻	417.1528	1/2 ⁻ ,3/2 ⁻				
922.71 4 950.79 3	35 7 59 7	1092.739	1/2-,3/2-	141.9348	3/2-	M1+E2	0.7 4	0.0104 18	α (K)=0.0086 <i>15</i> ; α (L)=0.00136 <i>21</i> ; α (M)=0.00031 <i>5</i> α (N)=7.6×10 ⁻⁵ <i>12</i> ; α (O)=1.31×10 ⁻⁵ <i>21</i> ; α (P)=9.6×10 ⁻⁷ <i>18</i> Multiple from α (K) and α 0.0096 <i>12</i>
993.28 6 1003.45 5 *1030.62 9 *1050.57 3 *1060.11 5	42 7 42 5 37 6 63 7 56 <i>13</i>	1077.801 1077.801	1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻	84.4561 74.3836	1/2 ⁻ 3/2 ⁻				Mult.: from $\alpha(\mathbf{K}) \exp = 0.0086$ 13.

From ENSDF

 $^{191}_{76}\mathrm{Os}_{115}\text{--}17$

Т

				190	$OOS(n,\gamma)$ E=therms	al 1991Bo	35 (continue	<u>d)</u>				
$\gamma(^{191}\text{Os})$ (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\#d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.@	α ^C	Comments				
^x 1069.01 4 ^x 1089.54 5 ^x 1102.680 21 ^x 1111.65 4 1156.46 3	69 8 59 8 149 20 69 12 121 14	1298.436	1/23/2-	141.9348	3/2-	E2(+M1)	0.0058 20	$\alpha(K)=0.0048$ 17; $\alpha(L)=7.5\times10^{-4}$ 24; $\alpha(M)=1.7\times10^{-4}$ 5				
					-,-	(')		$\alpha(N) = 4.2 \times 10^{-5} \ 13; \ \alpha(O) = 7.2 \times 10^{-6} \ 24; \ \alpha(P) = 5.3 \times 10^{-7} \ 20; \ \alpha(IPF) = 1.8 \times 10^{-6} \ 4$ Mult: from $\alpha(K) = 0.0034 \ 6$				
1214.01 5 x1221.25 8 x1233.42 6 x1255.20 4 x1257.40 5 x1259.50 5 x1263.83 8 x1265.70 6 x1267.67 6 x1268.07 8	101 18 58 17 92 15 145 19 128 15 134 15 137 18 134 15 118 15 125 16	1298.436	1/2 ⁻ ,3/2 ⁻	84.4561	1/2-			Munt., from <i>a</i> (R)exp=0.0034 0.				
1268.07 8 4460.31 10 4530.87 10 4556.49 10 4582.5 5 4615.8 5 4665.8 5 4665.8 5 4665.8 5 4665.8 5 4665.8 5 4675.2 5 4680.5 5 4993.4 5 5010.41 10 5037.34 10 5120.7 5 5146.79 10 5250.66 10 5271.03 10 5322.8 5 5341.60 10 5617.1 5 5674.35 10 5684.35 10	$\begin{array}{c} 125 \ 10 \\ 115 \ 1 \\ 85 \ 1 \\ 170 \ 2 \\ 9 \ 1 \\ 42 \ 1 \\ 52 \ 2 \\ 14 \ 1 \\ 52 \ 2 \\ 14 \ 1 \\ 18 \ 1 \\ 25 \ 1 \\ 22 \ 1 \\ 181 \ 2 \\ 183 \ 2 \\ 45 \ 1 \\ 1993 \ 20 \\ 112 \ 2 \\ 369 \ 4 \\ 13 \ 1 \\ 398 \ 4 \\ 36 \ 1 \\ 151 \ 2 \\ 850 \ 8 \end{array}$	(5758.83) (5758.83)	$1/2^{+}$ $1/2^{+}$	$\begin{array}{c} 1298.436\\ 1227.90\\ 1202.264\\ 1176.695\\ 1143.544\\ 1092.739\\ 1083.6\\ 1077.801\\ 794.659\\ 764.6619\\ 748.344\\ 721.431\\ 637.617\\ 611.9588\\ 508.1465\\ 487.610\\ 436.966\\ 417.1528\\ 141.9348\\ 84.4561\\ 74.3836\\ \end{array}$	$\frac{1/2^{-},3/2^{-}}{1/2^{+},3/2^{+},(5/2^{+})}$ $\frac{1/2^{+},3/2^{+},(5/2^{+})}{1/2^{-},3/2^{-}}$ $\frac{1/2^{-},3/2^{-}}{3/2^{+},(5/2^{+})}$ $\frac{3/2^{+},(5/2^{+})}{3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$ $\frac{3/2^{-}}{1/2^{-},3/2^{-}}$							

From ENSDF

 $^{191}_{76}\mathrm{Os}_{115}\text{--}18$

 $^{191}_{76}\mathrm{Os}_{115}\text{--}18$

L.

¹⁹⁰Os(n,γ) E=thermal **1991Bo35** (continued)

γ ⁽¹⁹¹Os) (continued)

- [†] From 1991Bo35. Primary gamma-ray energy ($E\gamma>4$ MeV) uncertainties were assigned by the evaluator as 0.1 and 0.5 keV for strong and weak transitions, respectively. In 1991Bo35, $\Delta E\gamma$ are reported within 0.02 to 0.1 keV. A number of primary gammas in 1977Be15 and 1977Ca19 are not reported in 1991Bo35. Those primary gammas are not listed in this dataset.
- [‡] From conversion-electron data only (1991Bo35).
- [#] From 1991Bo35, relative to $I\gamma(527.5)=1000$.
- [@] From 1991Bo35, based on experimental conversion coefficients and subshell ratios.
- [&] From 1991Bo35, based on subshell ratios and limits on conversion coefficients obtained from upper limits on γ -ray intensities and transition intensity balances.
- ^a From limits on conversion coefficients obtained from upper limits on conversion-electron intensities in 1991Bo35.
- ^b Deduced by evaluator from conversion electron data (1991Bo35), listed in comments, using the BriccMixing code.
- ^c Additional information 1.
- ^d For intensity per 100 neutron captures, multiply by 0.2048 10.
- ^e Multiply placed with undivided intensity.
- $x \gamma$ ray not placed in level scheme.

 $^{191}_{76}\mathrm{Os}_{115}$

¹⁹⁰**Os**(\mathbf{n}, γ) **E=thermal** 1991Bo35

Legend

¹⁹¹₇₆Os₁₁₅

From ENSDF

 $^{191}_{76}\mathrm{Os}_{115}$

22

 $^{191}_{76}\mathrm{Os}_{115}\text{--}22$

1 0/

23

 $^{191}_{76}\mathrm{Os}_{115}\text{--}23$

¹⁹⁰**Os(n**,γ) **E=thermal 1991Bo35**

 $^{191}_{76}\mathrm{Os}_{115}$