		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023

Parent: ¹⁹¹Re: E=0.0; $J^{\pi} = (3/2^+, 1/2^+)$; $T_{1/2} = 9.8 \text{ min } 5$; $Q(\beta^-) = 2045 \ 10$; $\%\beta^-$ decay=100

¹⁹¹Re-J^{π}: From Adopted Level in ¹⁹¹Re. In 1985Ni12 (Fig. 4) listed it as $1/2^{+}[411], 3/2^{+}[402]$.

¹⁹¹Re was produced by the ¹⁹²Os(γ ,p)¹⁹¹Re reaction with the bremsstrahlung from 50 MeV electron beam at the JAERI, Japan. Sources were obtained by chemical separation from the irradiated natural osmium powder. Ge(Li), LEPS, β -anthracene scintillation counter. Measured E γ , I γ , γ - γ coin, β - γ coin, %I γ (235) by $4\pi\beta$. Deduced level scheme, β -feeding from I γ intensity balance at each level.

A poor fit of the proposed γ -ray placements in the level scheme by 1985Ni12 along with the different placements in the adopted dataset indicates that the level/decay scheme has significant problems. There were too many differing cases compared to adopted dataset. Evaluator cross referenced only the consistent levels with other reactions with respect to spin-parity and γ -ray placements. Observational notes are listed in the comments section.

 $E\beta^{-}(^{191}\text{Re})=1800 \text{ keV } 200 (1953\text{At}24) - \text{absorption measurement.}$

¹⁹¹Os Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2} @	Comments
$0 \\ 74.06 4 \\ 84.16 4 \\ 137.74^{\ddagger} 4$	9/2 ⁻ 3/2 ⁻ (1/2) ⁻ 5/2 ⁻	14.99 d 2 13.10 h 5	E(level), J^{π} : From 1985Ni12, level not reported in other studies and not adopted. See general comments on this dataset
141.59 <i>4</i> 175.57 <i>4</i> 272.92 <i>4</i> 326.44 [‡] 6	(3/2) ⁻ (11/2) ⁺ 5/2 ⁻		
410.58 <i>4</i> 417.21 <i>4</i>	$(7/2)^+$ $1/2^-, 3/2^-$		J^{π} : No assignment in 1985Ni12.
436.48 5 487.15 5 507.58 5 611.79 4 618.85 4	$(1/2, 3/2)^{-}$ $(3/2)^{-}$ $(3/2)^{-}$ $(3/2)^{-}$ $1/2^{-}, 3/2^{-}$ $(5/2)^{-}$		J^{π} : (1/2 ⁻ ,3/2 ⁻) in 1985Ni12.
639.06 [‡] 8 715.71 [‡] 5	(1/2,3/2)-		E(level), J^{π} : From 1985Ni12, level not reported in other studies and not adopted. E(level): From 1985Ni12, level not reported in other studies and not adopted.
747.04 5	$(3/2)^{-}$		E(lavel): Appears to be a doublet of 762.274 and 764.6614 in Adopted Lavels
793.97 5 823.98 6 824.98 [‡] 8 888.16 [‡] 6 916.67 [‡] 5 927.04 [‡] 7	(3/2) ⁻ +		J^{π} : (1/2 ⁻ ,3/2 ⁻) in 1985Ni12. J^{π} : No assignment in 1985Ni12.
937.84 8 958.37 6 995.77 6	(1/2,3/2)-		J^{π} : No assignment in 1985Ni12.
$1116.68 \ 8$ $1120.06^{\ddagger} \ 7$	(5/2)-		E(level): Comparable to 1118.001 excited level in the adopted dataset – however depopulating γ rays of this level are different compared to that of the adopted level.

Continued on next page (footnotes at end of table)

¹⁹¹**Re** β^- decay 1985Ni12 (continued)

¹⁹¹Os Levels (continued)

 $J^{\pi \#}$ E(level) 1127.89[‡] 10 1146.40[‡] 6 1229.93[‡] 8 1298.26 7 $(1/2, 3/2)^{-}$ 1338.83[‡] 8 1391.49[‡] 10

[†] From a least-squares fit to E γ . χ^2 =51.3, cf. χ^2_{crit} =1.6. It was a poor fit, where 37 γ out of 78 differ by 3 or more sigma from the calculated values. This is perhaps an indication of questionable placement for some of the γ rays in the level scheme. [‡] Reported only in 1985Ni12 (¹⁹¹Re β - Decay).

[#] From Adopted Levels, except where otherwise noted.

[@] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(654 10)	1391.49	0.039 9	7.50 11	av $E\beta = 202.8 \ 36$
(706 10)	1338.83	0.022 7	7.87 15	av E β =221.7 37
(747 10)	1298.26	0.042 7	7.678	av $E\beta = 236.5 \ 37$
(815 10)	1229.93	0.079 13	7.53 8	av $E\beta = 261.7 \ 38$
(899 10)	1146.40	0.23 3	7.21 7	av E β =293.2 39
(917 10)	1127.89	0.089 16	7.66 9	av $E\beta = 300.2 \ 39$
(925 10)	1120.06	0.013 4	8.50 14	av $E\beta = 303.2 \ 39$
(928 10)	1116.68	0.138 20	7.48 7	av $E\beta = 304.6 \ 39$
(964 10)	1081.08	0.173 21	7.44 6	av $E\beta = 318.2 \ 39$
(1049 10)	995.77	0.54 6	7.08 6	av $E\beta = 351.2 \ 40$
(1087 10)	958.37	0.36 5	7.31 7	av $E\beta = 365.9 \ 40$
(1107 10)	937.84	0.25 3	7.50 6	av $E\beta = 373.9 \ 40$
(1118 10)	927.04	0.146 21	7.75 7	av $E\beta = 378.1 \ 40$
(1128 10)	916.67	0.117 22	7.86 9	av E β =382.3 40
(1157 10)	888.16	0.115 16	7.91 7	av $E\beta = 393.7 \ 40$
(1221 10)	823.98	0.47 6	7.38 7	av $E\beta = 419.2 \ 41$
(1251 10)	793.97	0.93 10	7.12 6	av Eβ=431.3 <i>41</i>
(1282 10)	763.47	0.54 6	7.40 6	av Eβ=443.6 <i>41</i>
(1298 10)	747.04	0.59 7	7.38 6	av E β =450.3 41
(1329 10)	715.71	0.033 18	8.67 24	av E <i>β</i> =463.2 <i>41</i>
(1406 10)	639.06	0.119 13	8.20 6	av Eβ=494.2 41
(1426 10)	618.85	0.67 8	7.47 6	av E β =502.4 41
(1433 10)	611.79	0.82 9	7.39 6	av E β =505.4 42
(1558 10)	487.15	0.29 4	7.98 7	av E β =556.8 42
(1609 10)	436.48	0.82 9	7.58 6	av E β =577.9 42
(1719 10)	326.44	0.08 3	8.70 17	av E β =624.3 43
(1903 10)	141.59	26 <i>3</i>	6.36 6	av Eβ=702.3 43
(1907 10)	137.74	22 3	6.44 7	av Eβ=704.1 43
(1961 10)	84.16	22 3	6.48 7	av E β =726.8 43
(1971 10)	74.06	22 3	6.49 7	av Eβ=731.1 43

[†] From γ -ray intensity balance. β -feeding to g.s. 1st, and 2nd excited states are not known. In 1985Ni12, a feeding of 63 has been proposed in Fig. 4. The deduced value for this dataset was 66, equally divided by evaluator for three levels, uncertainty assumed to be that for the beta feeding at 141.59 keV level.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{191}\mathrm{Os})$

Iv normalization: From %Iv(235)=0.55 6 and Iv(235)(rel)=13.81 55 in 1985Ni12.

ω

Eγ	$I_{\gamma}^{@}$	E _i (level)	J_i^π	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	$\alpha^{\#}$	Comments
47.55 3	1.80 26	763.47		715.71	<u> </u>				E_{γ} : Comparable 47.486 γ placed from 131.9 keV level in adopted dataset
57.49 2	100	141.59	(3/2)-	84.16	$(1/2)^{-}$	M1+E2	0.077 18	5.18 16	$\alpha(L)=3.99$ $12; \alpha(M)=0.922 30$ $\alpha(L)=0.225 7; \alpha(Q)=0.0285 11; \alpha(D)=0.00271 4$
67.51 3	19.30 85	141.59	(3/2)-	74.06	3/2-	M1+E2	0.19 4	3.76 <i>31</i>	$\alpha(N)=0.2257; \alpha(O)=0.038511; \alpha(P)=0.002714$ $\alpha(L)=2.8923; \alpha(M)=0.686$ $\alpha(N)=0.16514; \alpha(O)=0.027521; \alpha(P)=0.00165232$
111.12 [†] 5	0.64 9	618.85	$(5/2)^{-}$	507.58	$(3/2)^{-}$				
123.09 [†] 6	0.73 10	916.67		793.97	$(3/2)^{-}$				
124.62 [†] 5	0.67 9	611.79	1/2-,3/2-	487.15	$(3/2)^{-}$				
131.97 [†] 5	4.56 38	272.92	$5/2^{-}$	141.59	$(3/2)^{-}$				
137.83 5	2.72 28	137.74	5/2-	0	9/2-				E_{γ} : Comparable 137.068 γ placed from 410.8 keV level in adopted dataset.
172.31 5	2.72 25	888.16		715.71					E_{γ} : Comparable 172.328 γ placed from 314.3 keV level in adopted dataset.
175.66 5	16.23 75	175.57	$(11/2)^+$	0	9/2-	E1		0.0922 13	α (K)=0.0759 <i>11</i> ; α (L)=0.01258 <i>18</i> ; α (M)=0.00288 <i>4</i> α (N)=0.000695 <i>10</i> ; α (O)=0.0001147 <i>16</i> ; α (P)=6.69×10 ⁻⁶ <i>9</i>
180.80 [†] <i>10</i>	0.47 12	927.04		747.04	$(3/2)^{-}$				
182.24 5	2.62 27	618.85	(5/2)-	436.48	(1/2,3/2)-				E_{γ} : Comparable 182.321 γ placed from 314.3 keV level in adopted dataset.
193.95 5	1.65 21	611.79	1/2-,3/2-	417.21	1/2-,3/2-	M1+E2	0.80 16	0.67 5	α (K)=0.51 5; α (L)=0.1244 31; α (M)=0.0298 10 α (N)=0.00722 23; α (O)=0.001175 24; α (P)=5.7×10 ⁻⁵ 7
202.10 [†] 5	0.55 10	618.85	$(5/2)^{-}$	417.21	1/2-,3/2-				
229.73 4	5.77 41	1146.40		916.67					E_{γ} : Comparable 229.810 γ placed from 314.3 keV level in adopted dataset.
235.19 3	13.81 55	410.58	$(7/2)^+$	175.57	$(11/2)^+$				
239.89 5	6.91 45	747.04	$(3/2)^{-}$	507.58	$(3/2)^{-}$				E_{γ} : Comparable 239.886 γ placed from 314.3 keV level in adopted dataset.
242.25 5	10.09 50	326.44		84.16	(1/2)-				E_{γ} : Comparable 242.211 γ is unplaced in ¹⁹⁰ Os(n, γ) E=thermal.
272.81 ^{&} 5	11.54 <mark>&</mark>	272.92	5/2-	0	9/2-				I _{γ} : From Fig. 1. In Table I – 13.84 <i>61</i> from γ - γ coincidence measurements.
272.81 ^{&} 5	2.30 ^{&}	410.58	(7/2)+	137.74	5/2-	E2		0.1218 <i>17</i>	α(K)=0.0754 11; α(L)=0.0352 5; α(M)=0.00875 12 α(N)=0.002109 30; α(O)=0.000325 5; α(P)=7.46×10-6 10 Eγ: Multiply placed. Comparable 272.754γ from this level is not in the adopted dataset.

 $^{191}_{76}\mathrm{Os}_{115}\text{-}3$

 $^{191}_{76}\mathrm{Os}_{115}\text{--}3$

					¹⁹¹ Re	β^{-} decay	1985Ni12	(continued)	
						<u>γ(¹⁹¹</u> Ο	s) (continued	1)	
E_{γ}	$I_{\gamma}^{@}$	E _i (level)	J_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α #	Comments
									I _{γ} : From Fig. 1. In Table I – 13.84 <i>61</i> from γ - γ coincidence measurements.
275.30 <i>5</i> 291.70 <i>5</i>	17.45 72 2.54 <i>32</i>	417.21 1116.68	1/2 ⁻ ,3/2 ⁻ (5/2) ⁻	141.59 824.98	(3/2)-				E_{γ} : Comparable 291.654 γ placed from 433.6 keV level in
294.92 5	8.47 40	436.48	(1/2,3/2)-	141.59	(3/2)-	M1		0.271 4	adopted dataset. $\alpha(K)=0.2245 \ 31; \ \alpha(L)=0.0358 \ 5; \ \alpha(M)=0.00821 \ 12$ $\alpha(L)=0.002006 \ 28; \ \alpha(D)=0.000247 \ 5; \ \alpha(D)=2.50\times 10^{-5} \ 4$
302.91 7	2 22 32	1127 89		824 98					$\alpha(N)=0.002006\ 28;\ \alpha(O)=0.000347\ 5;\ \alpha(P)=2.39\times10^{-5}\ 4$
304.77 ^{&†} 7	3.31 ^{&}	715.71		410.58	$(7/2)^+$				E_{γ} : Possible doublet of 304.488 γ (from 519.4) and 304.951 (from 619.2).
									I _{γ} : From Fig. 1. In Table I – 9.92 47 from γ - γ coincidence measurements.
304.77 ^{&†} 7	6.61 ^{&}	916.67		611.79	1/2-,3/2-				E_{γ} : Possible doublet of 304.488 γ (from 519.4) and 304.951 (from 619.2).
									I_{γ} : From Fig. 1. In Table I – 9.92 47 from γ - γ coincidence measurements
314.86 7	3.20 33	927.04		611.79	1/2-,3/2-				E_{γ} : A comparable 314.988 γ placed from 446.9 keV level in adopted dataset.
316.75 7	0.81 11	823.98	+	507.58	$(3/2)^{-}$				E_{γ} : Closer 316.452 γ placed from 630.7 keV level in
329.59 5	9.40 45	747.04	(3/2)-	417.21	1/2-,3/2-				E _{γ} : Comparable 329.713 γ placed from 471.6 keV level in adopted dataset.
332.52 6	4.64 32	417.21	1/2-,3/2-	84.16	(1/2)-	M1		0.1958 27	$\alpha(K)=0.1623\ 23;\ \alpha(L)=0.0258\ 4;\ \alpha(M)=0.00592\ 8$
									26
339.61 6	22.96 62	611.79	1/2-,3/2-	272.92	5/2-	E2		0.0636 9	$\alpha(K)=0.0431 6; \alpha(L)=0.01559 22; \alpha(M)=0.00383 5$ $\alpha(K)=0.000025 L3; \alpha(C)=0.0001450 20; \alpha(R)=4.41\times10^{-6} 6$
345.75 7	2.47 31	763.47		417.21	1/2-,3/2-				E_{γ} : Comparable 345.674 γ placed from 487.6 keV level in adopted dataset and 349.674 γ (349.13 γ (1985Ni12)) from
349.13 8	0.79 11	487.15	(3/2)-	137.74	5/2-				this level instead. E_{γ} : Comparable 349.135 γ placed from 433.6 keV level in
									adopted dataset and 345.674γ (345.75γ ($1985Ni12$)) from this level instead
352.40 6	7.07 41	436.48	(1/2,3/2)-	84.16	$(1/2)^{-}$	M1+E2	1.7 +6-4	0.086 13	$\alpha(\mathbf{K}) = 0.065 \ 11; \ \alpha(\mathbf{L}) = 0.0158 \ 10; \ \alpha(\mathbf{M}) = 0.00379 \ 20$ $\alpha(\mathbf{K}) = 0.0002 \ 5; \ \alpha(\mathbf{Q}) = 0.000149 \ 10; \ \alpha(\mathbf{R}) = 7.1 \times 10^{-6} \ 14$
353.74 5	9.14 <i>41</i>	763.47		410.58	$(7/2)^+$				<i>u</i> (1)=0.00092 5; <i>u</i> (0)=0.000149 10; <i>u</i> (1)=7.1×10 14
x355.31 8	3.00 42								E_{γ} : Closer 355.670 γ placed from 487.6 keV level in adopted dataset.
362.37 7	4.56 33	436.48	(1/2,3/2)-	74.06	3/2-	M1+E2	1.0 3	0.104 18	$\alpha(K)=0.083 \ 16; \ \alpha(L)=0.0164 \ 14; \ \alpha(M)=0.00386 \ 29 \ \alpha(N)=0.00094 \ 7; \ \alpha(O)=0.000157 \ 14; \ \alpha(P)=9.3\times10^{-6} \ 19$

4

					¹⁹¹ R	β^{-} decay	1985Ni1	2 (continued)			
	$\gamma(^{191}\text{Os})$ (continued)											
Eγ	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	$\alpha^{\#}$	Comments			
366.13 ^{&} 7	2.86 ^{&}	507.58	(3/2)-	141.59	(3/2)-				I_{γ} : From Fig. 1. In Table I – 5.84 32 from γ - γ coincidence measurements.			
366.13 ^{&} 7	2.98 ^{&}	639.06	(1/2,3/2)-	272.92	5/2-				E_{γ} : Placement of comparable 366.210γ from this level is absent in adopted dataset for this multiply placed 366.13γ in this dataset. I_{γ} : From Fig. 1. In Table I – 5.84 32 from γ-γ coincidence measurements.			
377.35 [†] 8	2.56 24	793.97	(3/2)-	417.21	1/2-,3/2-				E_{γ} : Possible doublet of 376.208 γ (from 508.1) and 378.47 γ (from 815.4) in adopted dataset.			
403.19 7	5.69 <i>33</i>	487.15	(3/2) ⁻	84.16	$(1/2)^{-}$	M1+E2	1.03 14	0.077 6	$\alpha(\mathbf{K})=0.0625; \alpha(\mathbf{L})=0.01195; \alpha(\mathbf{M})=0.0027811$ $\alpha(\mathbf{N})=0.00067727; \alpha(\mathbf{O})=0.0001135; \alpha(\mathbf{P})=6.9\times10^{-6}6$			
413.22 5	10.63 51	823.98	+	410.58	$(7/2)^+$	E2		0.0371 5	$\alpha(K)=0.0267 4; \alpha(L)=0.00793 11; \alpha(M)=0.001926 27$ $\alpha(N)=0.000466 7; \alpha(Q)=7.41 \times 10^{-5} 10; \alpha(P)=2.79 \times 10^{-6} 4$			
423.81 7	2.86 21	507.58	(3/2)-	84.16	(1/2)-	M1		0.1025 14	$\alpha(N) = 0.000000 \ /, \ \alpha(C) = 0.11410 \ / \ 10, \ \alpha(T) = 2.175410 \ / \ 4$ $\alpha(K) = 0.0850 \ 12; \ \alpha(L) = 0.01345 \ 19; \ \alpha(M) = 0.00308 \ 4$ $\alpha(N) = 0.000751 \ 10, \ \alpha(N) = 0.00308 \ / \ 10, \ \alpha(N) = 0.00308 $			
434.03 8	1.94 18	507.58	(3/2)-	74.06	3/2-	M1+E2	1.2 3	0.059 9	$\alpha(N)=0.000751 \ 11; \ \alpha(O)=0.0001299 \ 18; \ \alpha(P)=9.75\times10^{-6} \ 14$ $\alpha(K)=0.047 \ 8; \ \alpha(L)=0.0092 \ 8; \ \alpha(M)=0.00215 \ 18$ $\alpha(N)=0.00052 \ 4; \ \alpha(O)=8.7\times10^{-5} \ 8; \ \alpha(P)=5.2\times10^{-6} \ 10$			
443.20 [†] 10	0.69 8	618.85	$(5/2)^{-}$	175.57	$(11/2)^+$							
462.69 [†] 8	0.91 10	1081.08		618.85	(5/2)-				E_{γ} : Possible doublet of 462.536 γ (from 462.5) and 462.954 (unplaced in (n, γ) E=Thermal).			
477.36 7	5.18 <i>31</i>	618.85	$(5/2)^{-}$	141.59	(3/2)-	M1+E2	0.70 30	0.059 9	$\alpha(K)=0.048 \ 8; \ \alpha(L)=0.0082 \ 9; \ \alpha(M)=0.00190 \ 20 \ \alpha(N)=0.00046 \ 5; \ \alpha(Q)=7.9\times10^{-5} \ 9; \ \alpha(R)=5.4\times10^{-6} \ 10$			
487.10 8	1.07 21	487.15	$(3/2)^{-}$	0	9/2-				E_{γ} : Comparable 487.271 γ placed from 619.2 keV level in			
^x 495.44 8	0.38 5								E_{γ} : Closer 495.679 γ is placed from 637.6 keV level in adopted dataset			
499.48 [†] 8 ^x 499.70 <i>10</i>	0.72 9 0.47 <i>11</i>	916.67		417.21	1/2-,3/2-				E_{γ} : Comparable 499.70γ placed from 574.2 keV level in adopted dataset			
527.26 7	6.18 32	937.84		410.58	$(7/2)^+$				adopted dataset. E_{γ} : Closer 527.498 γ placed from 611.9 keV level in adopted			
537.40 8	2.34 21	611.79	1/2-,3/2-	74.06	3/2-	M1+E2	0.7 3	0.043 7	$\alpha(K) = 0.035 \ 6; \ \alpha(L) = 0.0060 \ 7; \ \alpha(M) = 0.00137 \ 15$			
539.07 8	2.19 20	715.71		175.57	(11/2)+				$\alpha(N)=0.000334; \alpha(O)=5.7\times10^{-5}7; \alpha(P)=4.0\times10^{-6}7$ E _{γ} : Comparable 539.101 γ placed from 1176.7 keV level in adopted dataset			
544.58 8	6.95 <i>39</i>	618.85	(5/2)-	74.06	3/2-	M1+E2	0.9 <i>3</i>	0.038 6	$\alpha(K)=0.0315; \alpha(L)=0.00537; \alpha(M)=0.0012314$ $\alpha(N)=0.0030035; \alpha(Q)=51\times10^{-5}6; \alpha(P)=35\times10^{-6}6$			
552.07 [†] 8	2.14 21	824.98		272.92	5/2-							
583.10 [†] 10	0.15 8	1298.26	(1/2,3/2)-	715.71								

From ENSDF

 $^{191}_{76}\mathrm{Os}_{115}\text{-}5$

					191	$\operatorname{Re} \beta^-$ decay	1985Ni12 (co	ntinued)	
Eγ	Ι _γ @	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. [‡]	δ^{\ddagger}	α [#]	Comments
618.93 [†] 8 644.45 8	0.45 <i>11</i> 0.98 <i>18</i>	618.85 1391.49	(5/2)-	0 747.04	9/2 ⁻ (3/2) ⁻				E _γ : Closer 644.77γ placed from 959.0 keV level in adopted dataset.
652.41 8	7.30 <i>38</i>	793.97	(3/2)-	141.59	(3/2)-	M1+E2	1.0 4	0.023 5	$\alpha(K)=0.019$ 4; $\alpha(L)=0.0032$ 5; $\alpha(M)=0.00073$ 12 $\alpha(N)=0.000178$ 30; $\alpha(O)=3.0\times10^{-5}$ 5; $\alpha(P)=2.1\times10^{-6}$
663.41 8	3.42 24	1081.08		417.21	1/2-,3/2-				E_{γ} : Closer 663.883 γ placed from 748.3 keV level in adopted dataset.
669.25 8	8.14 <i>42</i>	995.77		326.44					E_{γ} : Closer 669.513 γ is unplaced in ¹⁹⁰ Os(n, γ) E=thermal.
684.04 [†] 8	0.26 9	1120.06		436.48	$(1/2, 3/2)^{-}$				
709.86 8	4.29 31	793.97	(3/2)-	84.16	(1/2)-	M1+E2	0.65 +37-34	0.022 4	$\begin{array}{l} \alpha(\text{K}) = 0.0181 \ 30; \ \alpha(\text{L}) = 0.0029 \ 4; \ \alpha(\text{M}) = 0.00067 \ 9 \\ \alpha(\text{N}) = 0.000163 \ 22; \ \alpha(\text{O}) = 2.8 \times 10^{-5} \ 4; \ \alpha(\text{P}) = 2.0 \times 10^{-6} \\ 4 \end{array}$
719.94 8	9.48 <i>43</i>	793.97	(3/2) ⁻	74.06	3/2-	E2(+M1)	2.6 3	0.0119 5	$\alpha(K)=0.0096 \ 4; \ \alpha(L)=0.00179 \ 6; \ \alpha(M)=0.000417 \ 13 \ \alpha(N)=0.0001014 \ 33; \ \alpha(O)=1.70\times10^{-5} \ 6; \ \alpha(P)=1.04\times10^{-6} \ 5$
816.76 8	4.78 31	958.37	$(1/2, 3/2)^{-}$	141.59	$(3/2)^{-}$				
843.74 8	0.92 8	1116.68	(5/2)-	272.92	5/2-				
853.87† 8	2.69 28	995.77		141.59	$(3/2)^{-}$				
858.63 8	0.23 8	995.77		137.74	5/2-				
^x 868.72 [†] 8	0.16 7								
874.12 8	4.16 <i>34</i>	958.37	(1/2,3/2)-	84.16	(1/2)-	M1+E2	1.2 8	0.010 4	α (K)=0.008 4; α (L)=0.0014 5; α (M)=3.2×10 ⁻⁴ 11 α (N)=7.9×10 ⁻⁵ 27; α (O)=1.3×10 ⁻⁵ 5; α (P)=9.E-7 4
880.80 8	0.18 5	1298.26	$(1/2, 3/2)^{-}$	417.21	$1/2^-, 3/2^-$				
884.42 [†] 8	0.16 5	958.37	$(1/2, 3/2)^{-}$	74.06	3/2-				
888.52† 8	0.16 6	888.16		0	9/2-				
911.38 [†] 8	2.40 28	995.77		84.16	$(1/2)^{-}$				
916.10 8	0.65 8	916.67		0	9/2-				E_{γ} : A comparable 916.30 γ is unplaced in ¹⁹⁰ Os(n, γ)
^x 950.35 8	0.46 10								E=thermal. E_{γ} : A comparable 950.79 γ placed from 1092.7 keV level in adopted dataset.
^x 999.85 [†] 8	0.21 10								-
1035.31 [†] 9	0.07 3	1120.06		84.16	$(1/2)^{-}$				
1146.03 [†] 9	0.21 10	1229.93		84.16	$(1/2)^{-}$				
1155.61 [†] 9	1.76 21	1229.93		74.06	3/2-				
1213.94 10	0.72 10	1298.26	$(1/2, 3/2)^{-}$	84.16	$(1/2)^{-}$				

6

 $^{191}_{76}\mathrm{Os}_{115}$ -6

L

$\gamma(^{191}\text{Os})$ (continued)

E_{γ}	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	t 6
1254.23 [†] 10	0.25 10	1338.83		84.16 (1/2	<u>'</u>) ⁻
1265.20 10	0.30 11	1338.83		74.06 3/2	E_{γ} : Closer 1265.70 γ is unplaced in (n,γ) E=Thermal.

Comments

[†] Reported only in 1985Ni12 (¹⁹¹Re β - Decay). Not adopted.

[‡] From Adopted Gammas, for consistent placement and spin-parity assignments compared to that in the adopted dataset. See general comments on this dataset.

Additional information 1.
@ For absolute intensity per 100 decays, multiply by 0.0399 41.
& Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

8

Decay Scheme (continued)

