¹⁹¹Os β^- decay (15.4 d) 1969Ma07,2005Ni12

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	V. R. Vanin et al.	NDS 108, 2393 (2007)	1-Dec-2006

Parent: ¹⁹¹Os: E=0; $J^{\pi}=9/2^-$; $T_{1/2}=15.4 \text{ d } I$; $Q(\beta^-)=312.7 II$; $\%\beta^-$ decay=100.0 1969Ma07: ¹⁹⁰Os(n, γ);Ge(Li); double focusing magnetic spec; ce-ce delayed coin. 2005Ni12: ¹⁹⁰Os(n, γ); accurately calibrated HPGe (2002Ha61).

 $I(L_{\beta} \ge 10.394 \ 35, I(L_{\alpha} \ge 10.281 \ 34, I(L_{\gamma} \ge 10.991 \ 11, I(L_{1} \ge 10.911 \ 10, Ge(Li) \ (1989BeYR).$

Measured I(L₁ x ray)/I(K x ray)=0.0312 *19*, I(L₁ x ray)/I(129 γ)=0.0608 *41*, Si(Li), germanium detector. Deduced L1 atomic fluorescence yield ω (L1)=0.152 *14* (1993Ma52).

¹⁹¹Ir Levels

E(level)&	J^{π}^{\dagger}	T _{1/2}	Comments
0.0 [‡]	3/2+	stable	
82.423 [#] 10	1/2+		From ce(L)(47.0):ce(L)(82.4) exp=96 20:32 3 (1969Ma07 with uncertainty in ce(L)(47.0) including 20% for E(ce) energy range, see comment on I γ), it is deduced 0.09 7 % β^- feeding for this level.
129.432 [‡] 5	5/2+	122 ps 6	T _{1/2} : coincidence peak centroid shift method, weighted average of: 126 <i>11</i> (1969Ma07), 125 <i>12</i> (1966Ra01), 80 <i>16</i> (1962Be46) ce-β; 131 <i>10</i> (1962Li12) ce-ce in ¹⁹¹ Pt ε decay. Not included in adopted value 89.9 ps 9, method subject to discriminator walk.
171.278 [@] 23	$11/2^{-}$	4.899 s 23	$T_{1/2}$: from ¹⁹¹ Ir IT _{1/2} decay.

[†] From Adopted Levels.

[‡] Band(A): 3/2[402].

[#] Band(B): 1/2[400] (possibly mixed with K-2 γ -vibration coupled to 3/2[402]).

[@] Band(C): 11/2[505].

[&] From a least-squares fit to γ -ray energies.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments					
143 <i>3</i>	171.278	100	5.325 11	av Eβ=37.5 3 E(decay): from 1958Na15. Other values: 142 keV 3 (1948Sa18); 143 keV 2 (1951Ko17); 135 keV 5 (1958Jo22); 125 keV 3 (1960Fe03); 147 keV 3 (1963Pl01).					

[†] Absolute intensity per 100 decays.

 $\gamma(^{191}\mathrm{Ir})$

I γ normalization: I γ given in photons per decay.

Others: 1948Ka08, 1948Sa18, 1950Ch11, 1950Bu51, 1951Ko17, 1952Jo23, 1952Sw57, 1953Hi03, 1954Bu02, 1954Mc10, 1954Na34, 1955Mi04, 1956Ca50, 1958Na15, 1958Du76, 1958Jo22, 1958Cl42, 1960Fe03, 1964De06, 1967Ag07, 1970Mi15.

Angular correlation measurements: ce $\gamma(\theta)$ (1964De06), $X\gamma(\theta)$ (1971Ge14). Mult(41.85 γ): from ce(L1):ce(L2):ce(M1):ce(M2):ce(M3):ce(M5) exp=3.86 *39*:214 *5*: 216.8 *17*:1.3 *8*:59.7 *7*:62.4

12:3.37 *15*:5.81 *41* (1971P105). Other values: ce(L1):ce(L2):ce(L3) exp=25:100:108, ce(L)/ce(M) exp=3.5 *3*, ce(M1):ce(M2):ce(M3):ce(M4):ce(M5) exp=2:100:100:6:12 (1966Ma50); ce(L1):ce(L2):ce(L3):ce(M) exp=1.1 2:100 5:108 5:60 5 (1969Ma07); ce(L1)/ce(L3) exp=0.0183 *13*, ce(L2)/ce(L3) exp=0.987 *16*, ce(M1)/ce(M3) exp=0.0178 *15*, ce(M2)/ce(M3) exp=0.971 *23*, ce(M4)/ce(M3) exp=0.0649 *38*, ce(M5)/ce(M3) exp=0.0937 *51*, ce(N3)/ce(M3) exp=0.240 *13*, ce(N1)+ce(N2)/ce(N3) exp=1.08 7, ce(N4)/ce(N5) exp=0.175 *12*, ce(O)+ce(p)/ce(N3) exp=0.367 *18* (1972Br02); α (exp)=(1.35+2.11-0.52)E4 (1965La05).

¹⁹¹Os β^- decay (15.4 d) **1969Ma07,2005Ni12** (continued)

$\gamma(^{191}$ Ir) (continued)

 $\alpha(\exp)=13709 \ 1900; \ \alpha(L)\exp=11700 \ 2100 \ (1986Bh02).$

All δ from Ice data were recalculated by the evaluator using adopted theoretical α (2002Ba85).

- $\delta(82.427\gamma)$: the adopted value was calculated by evaluator from conversion electron measurements and sign from Mossbauer ON in ¹⁹¹Pt ε decay. In ¹⁹¹Os β^- decay: δ =0.88 7 from Ce(L1):Ce(L2):Ce(L3) exp=67 *10*:150 *20*:120 *15* (1969Ma07). Other ce data: Ce(L1):Ce(L2):Ce(L3) exp=1.6:3:2 (1963Pl01); Ce(L2)/Ce(L3) exp=2.2 (1967Pl01).
- δ (129.431γ): the adopted value combines different types of measurements, see Adopted Levels, gammas. In ¹⁹¹Os β⁻ decay, the following measurements gave precise results: δ =0.396 4 from ce(L1):ce(L2):ce(L3) exp= 100:30.0 8:16.6 3 (given as 100:0.300 8:0.166 3 by the authors, probably a misquote) (1972Br02); δ =0.404 12 from Ce(L1)+Ce(L2):Ce(L3) exp=7.55 35 (1964De06). Other: δ =0.386 22 from ce(L1):ce(L2):ce(L3) exp=36 4:9 1:5.5 6 (1969Ma07). Other subshell ratios: ce(K):ce(L1):ce(L2):ce(L3) exp=1000:139:42:24 (1967PI01); ce(K):ce(L) exp=4.4 2, ce(L1):ce(L2):ce(L3) exp= 640:167:¹⁰⁰.CeL)/ce(M) exp=4.7 4, ce(M1):ce(M2):ce(M3):ce(M4):ce(M5) exp=46:12:10: <1: <1 (1966Ma50); ce(K):ce(L1)+ce(L2):ce(L3):ce(M):ce(N)+ce(O) exp=100:25:3.5:6.1:2.4 (1963PI01).

E_{γ}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult.	δ	$\alpha^{\#}$	Comments
41.846 22	0.005885 8	171.278	11/2-	129.432	5/2+	E3		1.699×10 ⁴	$ \begin{array}{c} \alpha(\text{L}) = 1.220 \times 10^4 \ 18; \ \alpha(\text{M}) = 3.73 \times 10^3 \\ 6; \ \alpha(\text{N}+) = 1062 \ 16 \\ \alpha(\text{N}) = 925 \ 14; \ \alpha(\text{O}) = 136.5 \ 20; \\ \alpha(\text{P}) = 0.1454 \ 21 \\ \text{I}_{\gamma}: \text{ from Ti}(41.8) = 100 \text{ and adopted } \alpha. \\ \text{E}_{\gamma}: \text{ weighted average of } 41.85 \text{ keV } 1 \\ (1966\text{Ma50}), \text{ s; } 41.85 \text{ keV } 3 \\ (1971\text{Pl05}), \text{ s; } 41.83 \text{ keV } 3 \\ (1967\text{Pl01}), \text{ s; } 41.83 \text{ keV } 2 \\ (1963\text{Pl01}), \text{ s; } 41.92 \text{ keV } 2 \\ (1969\text{Ma07}), \text{ s.} \\ \text{Mult.: from subshell ratios, see values under the heading.} \end{array} $
47.05 3	0.0025 3	129.432	5/2+	82.423	1/2+	E2		143.5	$\begin{aligned} &\alpha(L)=108.1 \ 16; \ \alpha(M)=27.7 \ 4; \\ &\alpha(N+)=7.69 \ 11 \\ &\alpha(N)=6.67 \ 10; \ \alpha(O)=1.010 \ 15; \\ &\alpha(P)=0.000955 \ 14 \\ &I_{\gamma}: \ from \ ce(L)(47.0):ce(K)(129.4)exp= \\ &0.96 \ 7:206 \ 15 \ (1969Ma07) \ and \\ &corresponding \ theoretical \ values \ for \\ &adopted \ multipolarities. \ Other: \\ &I_{\gamma}(47.0)/I_{\gamma}(129.4)<0.0015 \\ &(1969Ma07)Ge(Li). \\ &Mult.: \ from \ ce(L1):ce(L2):ce(L3) \ exp=3 \\ &2:48 \ 5:45 \ 5 \ (1969Ma07). \\ &E_{\gamma}: \ from \ 1969Ma07, \ Ge(Li), \ s. \ Other \\ &value: \ 46.90 \ keV \ 6 \ (1967Pl01), \ s. \end{aligned}$

 $^{191}_{77}$ Ir₁₁₄-3

			¹⁹¹ Os β^{-} decay (15.4 d)		15.4 d)	1969Ma07,20	05Ni12	(continued)
					$\gamma(^{191}$ Ir) (continued)		
Eγ	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	$\alpha^{\#}$	Comments
82.427 10	0.031 3	82.423	1/2+	0.0 3/2+	M1+E2	-0.873 20	10.53	α(K)=5.32 12; α(L)=3.94 9; α(M)=0.993 23; α(N+)=0.279 7 α(N)=0.241 6; α(O)=0.0377 8; α(P)=0.000687 15 Γγ: using Ti(82.4)=Ti(47.0) from decay scheme, adopted α, and Γγ(47.0). Other: Γγ(92.4)/Γγ(129.0)=0.0010 5 (1969Ma07),Ge(Li). Εγ: from 1970Ra37, cryst. Other values: 82.46 keV 4 (1969Ma07), s; 82.52 keV 3 (1966Ma50), s; 82.5 keV 3 (1963Pl01), s, scin Xγ. Mult.,δ: adopted value, from 191Pt ε decay
129.431 5	26.50 4	129.432	5/2+	0.0 3/2+	M1+E2	-0.398 3	2.75	a(K)=2.15 3; α(L)=0.463 7; α(M)=0.1098 16; α(N+)=0.0317 5 α(N)=0.0269 4; α(O)=0.00458 7; α(P)=0.000265 4 Iγ: from Ti(129.4)+Ti(47.0)=100, adopted Iγ(47.0), and adopted α. δ,Mult.: adopted value; see comment under the heading for explanation and data from 191Os β- decay. Other value: δ=-0.28 6 (1964Ca11) γγ(θ,H,t). Other: 1981Gi11. Eγ: from 1970Ra37, cryst. α: α(K)exp=2.134(14) (2005Ni12) from α(K)ω(K) = 2.044 11, ratio between K x ray and γ with a specially calibrated HPGe detector, and using ω(K) = 0.958 4 (1996Sc06). Other: α(K)exp=2.32 6 (1965La05). See 1979Gi01, 1981Gi11, 1984E103, and 1984Sa13 for measurements of linear and circular polarizations, respectively, of this γ in an external magnetic field. a(K)exp=1000000000000000000000000000000000000

[†] From selected Ice of 1969Ma07 and adopted α , assuming no β^- feeding to g.s. and radioactive equilibrium with ¹⁹¹Ir(4.9 s). Comparison of Ice for E(ce) differing more than 20 keV have an additional 20% of relative uncertainty due to differences in absorption (1969Ma07), and were avoided; other details given under comments for each transition. The very precise I γ values result from decay scheme characteristics.

[‡] Absolute intensity per 100 decays.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹¹Os β^{-} decay (15.4 d) 1969Ma07,2005Ni12

Decay Scheme

¹⁹¹₇₇Ir₁₁₄

 $\frac{^{191}\text{Os}\ \beta^-\ \text{decay}\ (15.4\ \text{d})}{1969\text{Ma07,2005Ni12}}$

Band(C): 11/2[505]

11/2- 171.278

¹⁹¹₇₇Ir₁₁₄