¹⁹⁰Os(3 He,d),(α ,t) **1971Pr13** | | | History | Literature Cutoff Date | |-----------------|---------------|--------------------|------------------------| | Type | Author | Citation | | | Full Evaluation | M. S. Basunia | NDS 195,368 (2024) | 1-Dec-2023 | Target: 95.5% enriched ¹⁹⁰Os. Spectrometer: magnetic. ## ¹⁹¹Ir Levels | E(level) [†] | $J^{\pi \#}$ | L^{\ddagger} | $C_{jl}^2 U^2$ | Comments | |------------------------|--|----------------|----------------|--| | 0.0 | 3/2+ | 2 | 0.70 | $C_{ii}^2 U^2$ in (α,t) for all transitions were normalized to give 0.70 for this transition. | | 83 ^a | 1/2+ | 0 | 0.40 | $C_{ij}^{\alpha}U^2$: 0.31 in (α,t) . | | 129 <mark>&</mark> | 5/2+ | 2 | 0.04 | $C_{3}^{11}U^{2}$: 0.04 in (α,t) . | | 174 | , | 5+2 | | Unresolved doublet. Dividing the intensity in the same proportion of the similar states in 193 Ir, 197 IPr13 obtained: L=5 and C_{jl}^2 U ² =0.87 (0.71 in (α,t)) for 171 level; L=2 and C_{jl}^2 U ² =0.06 (0.06 in (α,t)) for 178 level. C_{jl}^2 U ² : for L=2; 0.79 for L=4. C_{jl}^2 U ² =0.13 for L=2 and 0.21 for L=4 in (α,t) . Doublet. $^{7/2}$, $^{3/2}$ [402] + $^{5/2}$, $^{1/2}$ [400]. | | 353 | | (4+2) | 0.19 | $C_{jl}^2U^2$: for L=2; 0.79 for L=4. $C_{jl}^2U^2$ =0.13 for L=2 and 0.21 for L=4 in (α,t) . Doublet. 7/2, 3/2[402] + 5/2, 1/2[400]. | | 392 | | 3 | 0.04 | $C_{ij}^2 U^2$: 0.03 in (α,t) . | | 591 ^b | 5/2+ | 2 | 0.25 | $C_{jl}^{5}U^{2}$: 0.26 in (α,t) .
J^{π} : Adopted: $3/2^{+}$, $5/2^{+}$, see Adopted Levels. | | 690 ^c | 7/2+ | 4 | 0.03 | $C_{ij}^2 U^2$: 0.03 in (α ,t). | | 882 | | 5,6 | 1.46 | C_{jl}^{2} U ² : for L=5; 1.66 for L=6. Spectroscopic factors in (α ,t) are 2.08 for L=5, 1.65 for L=6. | | 070 | 2/2+ 5/2+ | 2 | | Probable doublet, 9/2, 1/2[541] + 13/2, 1/2[660]. | | 978 | 3/2+,5/2+ | 2 | 0.10 | J^{π} : Adopted: $(7/2^{-})$, see comments in Adopted Levels. | | 1034 | 1/2 ⁺
3/2 ⁺ ,5/2 ⁺ | 0
2 | 0.18 | $C_{il}^2 U^2$: 0.17 in (α,t) .
J^{al} : Adopted: $3/2^+$, see Adopted Levels. | | 1070
1138 | 3/2",3/2" | 1,2 | | J': Adopted: 3/2', see Adopted Levels. | | 1254 | | 1,2 | | | | 1359 | | 4,5 | | | | 1433 | | 3,4 | | | | 1449 ^d | 3/2- | 1 | 0.06 | $C_{jl}^2U^2$: 0.09 in (α,t) .
J^{π} : Adopted: $1/2^-, 3/2^-$, see Adopted Levels. | | 1520 ^d | 7/2- | 3 | 1.13 | $C_{jl}^2U^2$: 0.85 in (α,t) .
J^{r_j} : Adopted: $5/2^-$, $7/2^-$, see Adopted Levels. | | 1613 | | | | | | 1642 | | | | | | 1660 | | | | | | 1711 | | | | | [†] Adopted values from (3 He,d) and (α ,t). Uncertainties are ≈ 3 keV for strongly populated states. $^{^{190}}$ Os(3 He,d), E=28 MeV, FWHM=16-17 keV, θ =35°, 60°. $^{^{190}}$ Os(α,t), E=28 MeV, FWHM=12 keV, θ=45°, 60°. [‡] From comparison of experimental (3 He,d) and (α ,t) cross-section ratios with calculated(DWBA) values. [#] From Nilsson-model interpretation of L values and spectroscopic factors; fingerprint evaluated taking into account Coriolis interaction (1971Pr13). [@] From DWBA analysis, $C_{jl}^2 U^2 = (d\sigma/d\Omega)(\exp)/2N$ $(d\sigma/d\Omega)(DWBA)$ where N=4.42 for (³He,d); values for (α,t) are given under comments, normalized to (³He,d) observed value for g.s., which required N=118, much greater than the expected value N=48. [&]amp; Band(A): 3/2[402] band member. ^a Band(B): $1/2[400]+(3/2[402],2^+)$ band member. ^b Band(C): 5/2[402]? band member. $^{^{}c}$ Band(D): 7/2[404]+(3/2[402],2+) band member. ^d Band(E): 1/2[530] band member. ## ¹⁹⁰Os(3 He,d),(α ,t) 1971Pr13 Band(E): 1/2[530] band member 7/2 1520 3/2 1449 Band(D): 7/2[404]+(3/2[402],2⁺) band member 7/2⁺ 690 Band(C): 5/2[402]? band member 5/2⁺ 591 Band(A): 3/2[402] band member 5/2⁺ 129 Band(B): 1/2[400]+(3/2[402],2⁺) band member 1/2+ 83 3/2⁺ 0.0 $^{191}_{\,77}\mathrm{Ir}_{114}$