(HI,xnγ):SD 1995Ca15,1990Ca18,1989Mo08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023

Others: 1995So17, 1998ReZV, 1998SiZZ, 1999Lu04, 1999SiZZ, 2000SiZZ, 2004SiZZ, 2004SiZZ, 2004SiZZ, 1998SiZZ, 1998SiZZ, 2008SiZZ, 2004SiZZ).

Insignificant change compared to the previous evaluation (2007Va21).

1995Ca15: ¹⁶⁰Gd(³⁶S,5nγ), E=172 MeV; ¹⁷⁴Yb(²²Ne,5n), E=120 MeV. Measured Eγ, Iγ, γγ coin. Gammasphere array of 36 Compton-suppressed Ge detectors. Identify fourth SD band (SD-4), proposed as signature partner to SD-1.

1990Ca18: Same reaction and experimental setup as for 1989Mo08. Analyze γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, DSA data. Identify two further SD bands (SD-2 and SD-3) on the basis of $\gamma\gamma$ coincidences with known transitions between ND levels in ¹⁹¹Hg, and excitation functions.

1989Mo08: ¹⁶⁰Gd(³⁶S,5n γ), E(beam)=172 MeV. Detection using the Argonne-Notre Dame BGO γ -ray facility, consisting in 50 BGO elements surrounded by 12 Compton-suppressed Ge spectrometers. First detection of the yrast SD band (SD-1). Obtain E γ , I γ , fractional Doppler shift; deduce quadrupole moment, γ -ray multipolarity.

1995So17: 160 Gd(36 S,5n γ) E=169 MeV and 130 Te(64 Ni,3n γ) E=257 MeV, at mid-target. Measured γ , $\gamma\gamma$ coin. Array of 12 Compton-suppressed Ge detectors and 50 BGO detectors. Deduced population intensity of 3 SD bands.

1999SiZZ, 1998ReZV (also 1998SiZZ, 2000SiZZ): ¹⁷⁴Yb(²²Ne,5nγ) E=120 MeV, from the 88-inch cyclotron at LBNL. GAMMASPHERE array with 96 Compton-suppressed Ge detectors. Identify two linking transitions from SD band 1 to ND negative parity states: 2778 keV (1998ReZV), 3310 keV (1999SiZZ). Deduced transition quadrupole moments for the SD-1, SD-2 bands (1998ReZV). Obtained angular distribution coefficient for the 2778-keV decay out transition (1999SiZZ).

2004Si19: same reaction and setup as for 1998ReZV and 1999SiZZ. Study quasi-continuum γ spectrum connecting SD and ND states, compare with the previously known one-step decay-out γ rays connecting the second level in the SD yrast (SD-1) band to levels in the ND lower energy part of the level scheme. Observe coincidences with γ rays both from the SD and the ND parts of the level scheme.

Other: 1999Lu04 (¹⁸¹Ta(¹⁹F,X), E(¹⁹F)=120 MeV).

Theory: 2018Sh19, 2017Da18, 2005He21, 2004Gu14, 2003Sa27, 2001Sh11, 1999Zh12, 1999Ab21, 1997Vi07, 1997Hu13, 1995Ci05, 1994Ch33, 1994Xu03, 1993Ab08, 1992Wu06, 1992Wu01, 1991Wy01, 1990Be37.

¹⁹¹Hg Levels

E(level) [†]	J^{π}	Comments
5817 [#] 8	J≈(31/2) [‡]	 Additional information 1. E(level): from y=5689+x (2004Si19,1999SiZZ), where "x" is the energy of the isomeric 13/2⁽⁺⁾ level (see comments in the adopted dataset). Also see comments for 6128 level. J^π: 31/2 from linking transitions (2004Si19,1998ReZV,1999SiZZ) to ND states and supported by particle-number conserving (PNC) method calculations (2005He21).
6127.9 [#] 7	J+2	E(level): 6000+x from observation (2004Si19,1998ReZV,1999SiZZ) of two linking transitions to normal bands: 2778 γ to 3222+x (35/2 ⁻), 3350 in the adopted dataset, and 3310 γ to 2690.6+x (33/2 ⁻), 2818.5 in the adopted dataset. See also comments for the 2778 and 3310 keV γ rays.
6479.4 [#] 7	J+4	
6871.0 [#] 9	J+6	
7302.3 [#] 9	J+8	
7772.4 [#] 9	J+10	
8280.8 [#] 9	J+12	
8826.7 <mark>#</mark> 9	J+14	
9409.1 [#] 9	J+16	
10027.6 [#] 9	J+18	
10681.3 [#] 9	J+20	

¹⁹¹Hg Levels (continued)

E(level) [†]	\mathbf{J}^{π}	Comments
11369.6 [#] 10	J+22	
12091.8 [#] 10	J+24	
12847.4 [#] 11	J+26	
13636.2 [#] 12	J+28	
z [@]	J1≈(21/2) [‡]	Additional information 2. J^{π} : Band head spin assignment was supported by nuclear softness (NS) analysis in combination of the ratio-R method (2017Da18).
252.4+z [@] 7	J1+2	
545.1+z [@] 7	J1+4	
878.2+z [@] 8	J1+6	
1250.9+z [@] 8	J1+8	
1662.7+z [@] 8	J1+10	
2113.0+z [@] 8	J1+12	
2601.1+z [@] 8	J1+14	
3126.3+z [@] 8	J1+16	
3687.9+z [@] 9	J1+18	
4285.1+z [@] 9	J1+20	
4917.2+z [@] 9	J1+22	
5583.4+z [@] 10	J1+24	
6283.3+z [@] 10	J1+26	
7016.0+z [@] 11	J1+28	
7781.2+z [@] 11	J1+30	
8577.7+z [@] 13	J1+32	
u ^{&}	J2≈(23/2) [‡]	Additional information 3. J^{π} : Band head spin 23/2 was supported by nuclear softness (NS) analysis in combination of the ratio-R method (2017Da18), although it was termed and ambiguous in 2017Da18.
272.0+u ^{&} 10	J2+2	
585.1+u ^{&} 11	J2+4	
937.6+u ^{&} 11	J2+6	
1329.1+u ^{&} 11	J2+8	
1758.8+u ^{&} 11	J2+10	
2225.9+u ^{&} 12	J2+12	
2729.8+u ^{&} 12	J2+14	
3269.5+u ^{&} 12	J2+16	
3844.5+u ^{&} 12	J2+18	
4454.0+u ^{&} 12	J2+20	
5096.7+u ^{&} 12	J2+22	
5772.8+u ^{&} 13	J2+24	
6481.3+u ^{&} <i>13</i>	J2+26	
7221.3+u ^{&} 13	J2+28	
7992.6+u ^{&} 14	J2+30	
8793.2+u? ^{&} 17	J2+32	
$\frac{v^a}{280.9+v^a} 6$	J3≈(25/2) [‡] J3+2	Additional information 4.

¹⁹¹Hg Levels (continued)

E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	J^{π}
604.5+v ^a 7	J3+4	2328.6+v ^a 9	J3+12	4704.1+v ^a 13	J3+20
971.6+v ^a 7	J3+6	2864.0+v ^a 9	J3+14	5391.7+v ^a 15	J3+22
1381.9+v ^a 8	J3+8	3439.0+v ^a 10	J3+16	6114.9+v ^a 17	J3+24
1834.5+v ^a 9	J3+10	4053.3+v ^a 11	J3+18	6870.9+v ^a 21	J3+26
				7659.9+v ^a 25	J3+28

[†] From a least-squares fit to the γ -ray energies. The excited level energies of 5817 to 13636 keV are based on the isomeric state at 128 keV 8, that links with 6128 keV level (see comments for 6128 level). For total uncertainty, propagate 8 keV in quadrature.

[‡] From least-squares fit to rotational-model formula (1990Be37,1992Wu01).

[#] Band(A): SD-1 yrast band. (1995So17,1995Ca15,1989Mo08). Q(intrinsic)=18 *3* (1989Mo08); 17.5 +8-6 (1998ReZV). β_2 =0.55 (1990Ca18). Favored (π ,r)=(-,+), j_{15/2} orbital (1990Ca18,1995Ca15). Calculations assign a configuration π 3/2[761] (2005He21). Percent population=2.0 *3* (1995So17, ¹⁶⁰Gd(³⁶S,5n)), 1.2 *6* (1995So17, ¹³⁰Te(⁶⁴Ni,3n γ)), 2 (1989Mo08).

^(a) Band(B): SD-2 band. (1995So17,1995Ca15,1990Ca18). Q(intrinsic) ≈ 18 (1990Ca18), 17.5 +8-6 (1998ReZV). Assumed signature partner of SD-3 (1990Ca18). Suggested configuration: 3/2[642] orbital, with (π ,r)=(+,+) (1990Ca18). Percent population=0.8 *3* (1995So17), 1 (1990Ca18).

[&] Band(C): SD-3 band. (1995So17,1995Ca15,1990Ca18). Favored signature partner of SD-2, $(\pi, r)=(+, -)$, 3/2[642] configuration. Percent population=0.8 *3* (1995So17), 1 (1990Ca18).

^{*a*} Band(D): SD-4 band. (1995Ca15). Unfavored signature partner of SD-1, $(\pi, r) = (-, +)$, $j_{15/2}$ orbital (1990Ca18,1995Ca15), Percent population=0.2 (1995Ca15).

 $\gamma(^{191}{\rm Hg})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult.	Comments
252.4 7		252.4+z	J1+2	Z	J1≈(21/2)		
272.0 10		272.0+u	J2+2	u	J2≈(23/2)		
280.9 6	0.22 5	280.9+v	J3+2	v	J3≈(25/2)		Additional information 42.
292.7 1	0.43 7	545.1+z	J1+4	252.4+z	J1+2		Additional information 19.
							$E\gamma = 292.0 \text{ keV} (1990\text{Ca18}).$
310.9 7	0.14 2	6127.9	J+2	5817	J≈(31/2)		Additional information 5.
313.1 2	0.95 16	585.1+u	J2+4	272.0+u	J2+2		Additional information 31.
							$E\gamma = 311.8 \text{ keV } 12 \text{ (1990Ca18)}.$
323.6 2	0.58 9	604.5+v	J3+4	280.9+v	J3+2		Additional information 43.
333.1 <i>1</i>	0.76 10	878.2+z	J1+6	545.1+z	J1+4		Additional information 20.
							$E\gamma = 332.9 \text{ keV} (1990Ca18).$
351.5 <i>1</i>	0.83 5	6479.4	J+4	6127.9	J+2	0 [#]	Additional information 6.
							$E\gamma = 350.6$ keV, $I\gamma = 0.70 \ 3 \ (1989 Mo08)$.
352.5 1	0.96 16	937.6+u	J2+6	585.1+u	J2+4		Additional information 32.
							$E\gamma = 351.6 \text{ keV} (1990Ca18).$
367.1 2	0.80 12	971.6+v	J3+6	604.5+v	J3+4		Additional information 44.
372.7 1	1.07 14	1250.9+z	J1+8	878.2+z	J1+6		Additional information 21.
							$E\gamma = 372.5 \text{ keV} (1990Ca18).$
391.5 4	1.44 <i>19</i>	1329.1+u	J2+8	937.6+u	J2+6		Additional information 33.
							$E\gamma = 390.2 \text{ keV} (1990\text{Ca18}).$
391.64	1.00.9	6871.0	J+6	6479.4	J+4	0 [#]	Additional information 7
0,110 .	1100 2	007110	0.0	0.771	0.1.1	×	$E_{\nu}=390.5 \text{ keV}$. $I_{\nu}=1.00.4$ (1989Mo08).
410.3 4	0.96 17	1381.9+v	J3+8	971.6+v	J3+6		Additional information 45.
411.8 2	0.87 19	1662.7 + z	J1+10	1250.9+z	J1+8		Additional information 22.
							$E_{\gamma} = 411.5 \text{ keV} (1990Ca18).$
429.7 1		1758.8+u	J2+10	1329.1+u	J2+8		
431 3 1	0 98 4	7302.3	I+8	6871.0	I+6	O [#]	Additional information 8
	0.201		• • •	00,110		×	$E_{\nu}=430.3 \text{ keV}$. $I_{\nu}=0.80.4$ (1989Mo08).

Continued on next page (footnotes at end of table)

$\gamma(^{191}\text{Hg})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
450.3 1	0.97 13	2113.0+z	J1+12	1662.7+z	J1+10		Additional information 23. Ev=449.9 keV (1990Ca18)
452.6.3	1.04 15	1834.5+v	J3+10	1381.9+v	J3+8		Additional information 46.
467.1 2	1.07 19	2225.9+u	J2+12	1758.8+u	J2+10		Additional information 34. $E\gamma=466.5 \text{ keV} (1990\text{Ca18}).$
470.1 <i>1</i>	1.02 4	7772.4	J+10	7302.3	J+8	Q [#]	Additional information 9. E γ =469.6 keV, I γ =0.80 3 (1989Mo08). E γ =470.7 keV (2004Si19 1999SiZ7)
488.1 2	0.83 13	2601.1+z	J1+14	2113.0+z	J1+12		Additional information 24. $E\gamma=488.1 \text{ keV} (1990\text{Ca18}).$
494.1 2	0.79 12	2328.6+v	J3+12	1834.5+v	J3+10		Additional information 47.
503.9 1	0.78 14	2729.8+u	J2+14	2225.9+u	J2+12		Additional information 35. $E\gamma$ =503.3 keV (1990Ca18).
508.4 1	0.97 6	8280.8	J+12	7772.4	J+10	Q [#]	Additional information 10. $E\gamma=508.1 \text{ keV}, I\gamma=0.63 4 (1989\text{Mo08}).$
525.2 2	0.57 16	3126.3+z	J1+16	2601.1+z	J1+14		Additional information 25. $E\gamma$ =525.1 keV (1990Ca18).
535.4 <i>3</i>	0.71 15	2864.0+v	J3+14	2328.6+v	J3+12		Additional information 48.
539.7 3	0.70 10	3269.5+u	J2+16	2729.8+u	J2+14		Additional information 36. $E\gamma$ =539.5 keV (1990Ca18).
545.9 2	0.88 5	8826.7	J+14	8280.8	J+12	Q [#]	Additional information 11. $E\gamma=545.3$ keV, $I\gamma=0.67$ 4 (1989Mo08).
561.6 3	0.65 10	3687.9+z	J1+18	3126.3+z	J1+16		Additional information 26. $E\gamma$ =561.8 keV (1990Ca18).
575.0 1	0.71 12	3844.5+u	J2+18	3269.5+u	J2+16		Additional information 37. $E\gamma$ =574.3 keV (1990Ca18).
575.0 4	0.73 15	3439.0+v	J3+16	2864.0+v	J3+14	щ	Additional information 49.
582.4 1	0.77 4	9409.1	J+16	8826.7	J+14	Q#	Additional information 12. $E\gamma$ =582.1 keV, $I\gamma$ =0.56 <i>3</i> (1989Mo08).
597.2 2	0.97 14	4285.1+z	J1+20	3687.9+z	J1+18		Additional information 27. $E\gamma=596.9 \text{ keV} (1990\text{Ca18}).$
609.5 1	0.64 8	4454.0+u	J2+20	3844.5+u	J2+18		Additional information 38. $E\gamma$ =609.2 keV (1990Ca18).
614.3 5	0.58 11	4053.3+v	J3+18	3439.0+v	J3+16	~ #	Additional information 50.
618.5 2	0.73 10	10027.6	J+18	9409.1	J+16	Q"	Additional information 13. $E\gamma=617.8 \text{ keV}, I\gamma=0.53 4 (1989\text{Mo08}).$
632.1 2	0.55 10	4917.2+z	J1+22	4285.1+z	J1+20		Additional information 28. $E\gamma$ =631.9 keV (1990Ca18).
642.7 2	0.50 5	5096.7+u	J2+22	4454.0+u	J2+20		Additional information 39. $E\gamma$ =642.6 keV (1990Ca18).
650.8 6	0.50 12	4704.1+v	J3+20	4053.3+v	J3+18	~ #	Additional information 51.
653.7 2	0.61 5	10681.3	J+20	10027.6	J+18	Q"	Additional information 14. E γ =653.0 keV, I γ =0.49 <i>3</i> (1989Mo08).
666.2 2	0.53 6	5583.4+z	J1+24	4917.2+z	J1+22		Additional information 29. $E\gamma$ =666.0 keV (1990Ca18).
676.1 3	0.40 5	5772.8+u	J2+24	5096.7+u	J2+22		Additional information 40. $E\gamma$ =675.2 keV (1990Ca18).
687.6 7	0.46 11	5391.7+v	J3+22	4704.1+v	J3+20	. #	Additional information 52.
688.3 2	0.53 5	11369.6	J+22	10681.3	J+20	Q "	Additional information 15. $E\gamma$ =687.4 keV, $I\gamma$ =0.37 4 (1989Mo08).
699.9 2	0.40 8	6283.3+z	J1+26	5583.4+z	J1+24		Additional information 30. $E\gamma$ =699.2 keV (1990Ca18).
708.5 3	0.33 6	6481.3+u	J2+26	5772.8+u	J2+24		Additional information 41. $E\gamma$ =707.5 keV (1990Ca18).

Continued on next page (footnotes at end of table)

 $^{191}_{80} Hg_{111} \text{--} 5$

			$(\mathbf{HI},\mathbf{xn}\gamma)$	SD 19950	Ca15,199	0Ca18,1	989Mo08 (continued)
				<u> </u>	(¹⁹¹ Hg) (continued	d)	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	α [@]	Comments
722.2 3	0.34 5	12091.8	J+24	11369.6	J+22	Q [#]		Additional information 16.
723.2 8 732.7 <i>4</i> 740.0 <i>3</i>	0.41 9	6114.9+v 7016.0+z 7221.3+u	J3+24 J1+28 J2+28	5391.7+v 6283.3+z 6481.3+u	J3+22 J1+26 J2+26			$E\gamma$ =721.8 keV, $I\gamma$ =0.25 4 (1989Mo08). Additional information 53.
755.6 3	0.17 4	12847.4	J+26	12091.8	J+24	Q [#]		Additional information 17.
756.0 <i>12</i> 765.2 <i>4</i> 771.3 <i>3</i> 788.8 <i>6</i> 789.0 <i>13</i> 796 5 <i>6</i>	0.32 8 0.09 2 0.19 5	6870.9+v 7781.2+z 7992.6+u 13636.2 7659.9+v 8577 7+z	J3+26 J1+30 J2+30 J+28 J3+28 J1+32	6114.9+v 7016.0+z 7221.3+u 12847.4 6870.9+v 7781.2+z	J3+24 J1+28 J2+28 J+26 J3+26 I1+30			$E\gamma$ =754.3 keV, $I\gamma$ =0.14 <i>3</i> (1989Mo08). Additional information 54. Additional information 18. Additional information 55.
800.5 ^{&} 10		8793.2+u?	J2+32	7992.6+u	J2+30			
*2778						(M1)	0.00210	A ₂ =0.57 48 (1999SiZZ) $\alpha(K)=0.000970 \ 14$; $\alpha(L)=0.0001518 \ 22$; $\alpha(M)=3.50\times10^{-5} \ 5$; $\alpha(N+)=0.000947 \ 14$ $\alpha(N)=8.78\times10^{-6} \ 13$; $\alpha(O)=1.667\times10^{-6} \ 24$; $\alpha(P)=1.318\times10^{-7} \ 19$; $\alpha(IPF)=0.000936 \ 14$ E _y : from 2004Si19,1998ReZV. This was the first one-step decay-out γ ray in ¹⁹¹ Hg identified as connecting a level in a SD band to the lower energy ND level scheme (2004Si19,1998ReZV). The assignment is based on coincidence data for high-energy primary γ rays connecting ND and SD states. The initial level is the $310.9+y \text{ keV} (35/2^{-})$ state in SD-1, and the final level is the $3222+x \text{ keV} (35/2^{-})$ state in the low-energy part of the level scheme (2004Si19,1999SiZZ), 3350 in the adopted dataset. Mult.: from angular distribution and parity assignment for the initial state, for which a $\nu_{15/2}$ assignment has been proposed.
^x 3310								E_{γ} : Second identified decay-out transition in ¹⁹¹ Hg connecting the SD-1 band level at 310.9+y keV with a level in the low energy (ND) part of the level scheme. Assignment from coincidence data. The final level is the (33/2 ⁻) 2690.6+x keV state (1999SiZZ, see also comments for the 2778 keV γ ray), 2818.5 in the adopted dataset.

[†] From 1995Ca15. Other values noted in comments.

[#] Proposed by 1989Mo08, based on their DCO ratios (not listed by the authors).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation

Continued on next page (footnotes at end of table)

[‡] Intensities are relative to the strongest transition within each band. The γ intensities and their uncertainties were estimated by the evaluators (2007Va21) from intensity plots: for SD-1, SD-4, from 1995Ca15; for SD-2, SD-3, from 1990Ca18. Values for SD-1 from 1989Mo08 are listed in comments. The quoted errors do not contain the contribution of the reference γ -ray intensity uncertainty.

$\gamma(^{191}$ Hg) (continued)

based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

(HI,xnγ):SD 1995Ca15,1990Ca18,1989Mo08 Legend $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ Level Scheme Intensities: Relative I_{γ} $\dot{\gamma}$ Decay (Uncertain) _ _ _ - > 61'0 0'68~ H + ²⁵60 0,32 J3+28 7659.9+v 0.41 J3+26 6870.9+v + 232 1 4 687.6 | 1.46 6114.9+v J3+24 + ^{650,8} ! <u>J3+22</u> 5391.7+v + 614.31 .0.38 J3+20 4704.1+v + 55.01 J3+18 4053.3+v + 2354 | J3+16 3439.0+v 1 % ; 1 % ; 1 % ; <u>J3+14</u> 2864.0+v 1.0 J3+12 ×55 2328.6+v -0. 1834.5+v J3+10 \$103 2 J3+8 1381.9+v 5 J3+6 971.6+v J3+4 604.5+v <u>J3+2</u> J3≈(25/2) 280.9+v <u>_</u>8 • v - -J2+32_ 1.3 ___8<u>793.2+u</u>_ 7992.6+u <u>J2+30</u> 1 240.0 1 -9--33 J2+28 7221.3+u 208.5 - 0, J2+26 6481.3+u 1 1.00, + ^{642,2}1 9.50 5772.8+u J2+24 0.04 J2+22 5096.7+u · 609. + 25501 4454.0+u J2+20 1 02 0 1 02 + J2+18 3844.5+u ا ^یونی ا ا می ا 3269.5+u J2+16 -^; J2+14 2729.8+u ⁴6), J2+12 2225.9+u \$° J2+10 1758.8+u ć 1329.1+u J2+8 J2+6 937.6+u J2+4 585.1+u Ś J2+2 J2≈(23/2) 272.0+u ¥ u 8577.7+z J1+32 7781.2+z J1+30

¹⁹¹₈₀Hg₁₁₁

7

(HI,xnγ):SD 1995Ca15,1990Ca18,1989Mo08

 $^{191}_{80} Hg_{111}$

(HI,xnγ):SD 1995Ca15,1990Ca18,1989Mo08

Band(C)	: SD	-3 band
<u>J2+32</u>			<u>8793.2+u</u>
J2+30	8	00	7992.6+u
J2+28	7	71	7221.3+u
J2+26	7	40	6481.3+u
J2+24	7	08	5772.8+u
J2+22	6	76	5096.7+u
J2+20	6	43	4454.0+u
J2+18	6	10	3844.5+u
J2+16	5	75	3269.5+u
$\frac{J^{2+14}}{J^{2+13}}$	5	40	-2729.8+u
$\frac{J^{2+12}}{J^{2+10}}$	5	04	<u>1758.8+u</u>
J2+8	4	67	1329.1+u
J2+6	4	30	
J2+4	3	92	_/585.1+u
J2+2	3	52 13	272.0+u
J2≈(2 3/2)	. 2	72	<u>u</u>

Band(B): SD-2 band

J1+32		8577.7+z
J1+30	796	7781.2+z
J1+28	765	7016.0+z
J1+26	733	6283.3+z
J1+24	700	5583.4+z
J1+22	666	4917.2+z
J1+20	632	4285.1+z
J1+18	597	3687.9+z
$\frac{J1+16}{J1+10}$	562	-3126.3+z
$\frac{J1+14}{11+12}$	525	2601.1+z 2113.0+z
J1+10	488	1662.7+z
J1+8	450	1250.9+z
J1+6	412	/878.2+z
J1+4	373	<u></u>
J1+2	333	<u>_/252.4+z</u>
J1≈(2 1/2)	252	z

Band(A): SD-1 yrast band

J+28	_		13636.2
J+26	78	89 /	12847.4
J+24	75	56	12091.8
J+22	72	22	11369.6
J+20	68	38	10681.3
J+18	6	54	10027.6
J+16	61	18	9409.1
J+14	58	32	8826.7
J+12	54	46	8280.8
J+10	-	10	7772.4
J+8	50	18	- 7302.3
J+6	47	70	6871.0
	- 42	21	
_J+4 ∖	4	,1	-/ 6479.4
$\frac{J+4}{J+2}$	4.	92	-6479.4 -6127.9

 $^{191}_{80}\text{Hg}_{111}$

¹⁹¹₈₀Hg₁₁₁