¹⁹¹Tl ε + β ⁺ decay (5.22 min) **1988WoZZ,1976GoZE**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023

Parent: ¹⁹¹Tl: E=297 7; $J^{\pi}=9/2^{(-)}$; $T_{1/2}=5.22 \text{ min } 16$; $Q(\varepsilon)=4309 23$; $\%\varepsilon+\%\beta^+$ decay=100 ¹⁹¹Tl-E: 297 keV 7 (2021Ko07 – NUBASE). Others: 1970FeZU, 1974Va19, 1976GoZP, 1987BoZT.

1976GoZP assigned the 5.22 min activity to the 9/2⁻ isomer on the basis of $\varepsilon + \beta^+$ population to levels with spin (assigned from ¹⁹⁴Pt(α ,7n γ) (1975Li16) and systematics) consistent with the decay. Activity produced by HI reactions also indicates it belongs to ¹⁹¹Tl(J^{π} =9/2⁻) (1975UnZZ).

1988WoZZ: Mass-separated sources. Measured E γ , I γ , $\gamma\gamma$ coin. Ge(Li) detectors.

1976GoZE: Mass-separated sources. Measured E γ , I γ , Ice, $\gamma\gamma(t)$, γ ce(t). Ge(Li), Si(Li) detectors.

¹⁹¹Hg Levels

E(level) [†]	J ^π @	T _{1/2}	Comments
0.0	3/2 ⁽⁻⁾	49 min 10	$T_{1/2}$: from Adopted Levels.
51.59 20	(5/2 ⁻)	0.42 ns 4	$T_{1/2}^{1/2}$: from conversion-electron (ce)- γ and ce-ce delayed coincidence measurements in 1985Ab03. Also in 1976BoYC.
103.7 4	$(1/2^{-})$		
128 8	13/2 ⁽⁺⁾	50.8 min 15	Additional information 1. E(level): from Adopted Levels. Labeled as 0.0+x in the previous evaluation (2007Va21).
336 32 17	$(5/2^{-})$		$1_{1/2}$, J [*] : from Adopted Levels.
$242.0(\pm 17)$	$(0/2)^+$		
343.90* 1/	$(9/2)^{-}$		
37703	(3/2) $(7/2^{-})$		
377.9 J	$(1/2)^{+}$		
393.03* 1/	$(11/2)^{+}$		
430.3 3	(5/2)		J [*] : 1988 WOZZ suggest (7/2). This would be inconsistent with the M1+E2 multipolarity for the 430 keV γ to the 3/2 ⁽⁻⁾ g.s.
518.3 [‡] 7	$(17/2^+)$		
563.5 4	$(7/2^{-})$		
632.3 4	$(9/2^{-})$		
659.1 <i>4</i>	$(9/2^{-})$		
662.2 [‡] 5			
663.2 [‡] 5 691.6 <i>3</i>	(15/2 ⁺)		
716.6 [‡] 4	$(7/2)^+$		
870.7 [‡] 3	$(13/2)^+$		
880.3? 9	(E(level): from weak coincidences of the deexciting 828.66 keV γ to the 51.58 keV level (1988WoZZ). Not adopted.
889.1 [‡] 4	$(11/2)^+$		
911.4.5	(,-)		
952.1 4	$(9/2^{-})$		
953.7?			from weak coincidences of the deexciting 575.7 keV γ to the 377.9 keV level (1988WoZZ). Not adopted.
997.1 <i>4</i>	$(5/2^{-}, 7/2^{-}, 9/2^{-})$		
1016.2 5	$(11/2^{-})$		
1023.7? 10			from weak coincidences of the deexciting 687.3 keV γ to the 336.32 keV level

Continued on next page (footnotes at end of table)

¹⁹¹Tl ε + β ⁺ decay (5.22 min) **1988WoZZ**, **1976GoZE** (continued)

¹⁹¹Hg Levels (continued)

E(level) [†]	J ^π @	Comments
4		(1988WoZZ). Not adopted.
1028.0+ 4 1075.6 8		from coincidences of the deexciting 739.3 keV γ to the 336.32 keV level (1988WoZZ).
1081.1 8		
1107.2 5 1146.5 5	(7/2,9/2)	
1178.3? 9		from coincidences of the deexciting 1126.7 keV γ to the 51.58 keV level (1988WoZZ).
1199.3? <i>10</i>		from weak coincidences of the deexciting 1147.7 keV γ to the 51.58 keV level (1988WoZZ). Not adopted.
1212.4 8	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	
1215.7? + 9		
1237.9?		from weak coincidences of the deexciting 859.9 keV γ to the 377.9 keV level (1988WoZZ). Not adopted.
1258.8 [‡] 6		
1261.3 [‡] 5 1317.6 9	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	
1319.6 <i>11</i>		
1321.7?+"10 $1335.6^{\ddagger}11$		
1363.6?		from weak coincidences of the deexciting 800.1 keV γ to the 563.5 keV level (1988WoZZ). Not adopted
1384.6? ^{‡#} 10		
1390.8?		from weak coincidences of the deexciting 1339.2 keV γ to the 51.58 keV level (1988WoZZ). Not adopted.
1446.5 ⁺ 8 1470.8? 9		from weak coincidences of the deexciting 1092.9 keV γ to the 377.9 keV level (1988WoZZ).
1538 52 10		Not adopted.
1558.51 10		Not adopted.
1562.2 [‡] 10		
1815.8?" 1816.4 [‡] 11		
1827.0? [#]		
1843.9 <i>11</i>		
2185.47 2412.4 21		
2414.4 [‡] 11		
2425.5 11 2427.5 [‡] 20		
2430.9 [‡] 11		
2435.5^{\ddagger} 12		
2438.4* <i>11</i> 2440.2 <i>9</i>		
2441.5 <i>11</i> 2443.0 <i>15</i>		
2443.1 [‡] 11		
2456.9 [‡] 8		
2439.7 10		

¹⁹¹Tl $\varepsilon + \beta^+$ decay (5.22 min) 1988WoZZ,1976GoZE (continued)

¹⁹¹Hg Levels (continued)

E(level) [†]	E(level) [†]	E(level) [†]
2463.4 [‡] 11	2477.0 11	2486.8 [‡] 8
2468.2 [‡] 14	2479.9 [‡] 11	2489.6 [‡] 8
2475.2 21	2483.1 11	2534.0 [‡] 20
2476.3 11	2484.4 [‡] 10	2536.9 [‡] 15
		2543.1 <i>15</i>

[†] Level energies from a least-squares fit to γ -ray energies.

^{\pm} Level energy based on the isomeric state at 128 keV 8 For total uncertainty, propagate 8 keV in quadrature. The isomeric state 13/2⁽⁺⁾ was labeled as 0.0+x in the previous evaluation (2007Va21).

[#] Uncertain γ placement from tentative level, not adopted.

^(a) From γ -ray multipolarity and level sequences established by coincidence data and energy fits.

				191	Γl ε + β^+ d	ecay (5.22	min) 1	988WoZZ,197	76GoZE (continued)
							$\gamma(^{19}$	¹ Hg)	
γ rays observ Coincidence	ved only by 19 information fi	976GoZE h rom 1988W	ave not bee oZZ.	en include	ed in this	dataset.			
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{@}$	α &	Comments
41.7 49.0 <i>4</i>	≈5 ≈15	377.9 393.03	$(7/2^{-})$ $(11/2)^{+}$	336.32 343.96	(5/2 ⁻) (9/2) ⁺	E2		150 6	from $\gamma\gamma$ coincidences (1988WoZZ). $\alpha(L)=113 5; \alpha(M)=29.3 13$ $\alpha(N)=7.25 31; \alpha(O)=1.19 5; \alpha(P)=0.00136 5$ E_{γ} : from $\gamma\gamma$ coincidences (1988WoZZ). Also 49.0 in 1987BoZT.
51.6 3		51.59	(5/2-)	0.0	3/2 ⁽⁻⁾	M1+E2	0.65	41.6 <i>13</i>	Mult.: from α (L)exp=109 and α (M)exp=33.3 (19/6GoZE – Table 4-4). Other: δ =0.04 from %E2=0.2 in 1987BoZT based on ce measurements data not listed. B(M1)(W.u.)=0.0067 7; B(E2)(W.u.)=3.9×10 ² 4 α (L)=31.3 9; α (M)=8.01 24 α (L)=1.00 6; α (O)=0.235 10; α (M)=0.00483 11
103.5 4	2.6 5	103.7	(1/2 ⁻)	0.0	3/2 ⁽⁻⁾	M1+E2	0.50 2	6.68 13	α (K)=4.81 <i>11</i> ; α (L)=1.43 <i>4</i> ; α (M)=0.350 <i>10</i> α (N)=0.0873 <i>26</i> ; α (O)=0.0156 <i>4</i> ; α (P)=0.000695 <i>16</i> δ : from α (L)exp=1.35 and α (M)exp=0.39 (1976GoZE – Table 4-4)
172.3 5 207.5 4 215.95 20	0.90 <i>45</i> 1.3 <i>5</i> 100	889.1 870.7 343.96	$(11/2)^+$ $(13/2)^+$ $(9/2)^+$	716.6 663.2 128	(7/2) ⁺ (15/2 ⁺) 13/2 ⁽⁺⁾	E2		0.301 4	$\alpha(K)=0.1407\ 20;\ \alpha(L)=0.1204\ 17;\ \alpha(M)=0.0310\ 5$ $\alpha(N)=0.00771\ 11;\ \alpha(O)=0.001307\ 19;\ \alpha(P)=1.763\times10^{-5}\ 25$ Mult.: from ce(K)/ce(L) exp=1.2 3 (1974Va19). Ie=18.8 19 (102C - 7Z) winds (V) are a particular to the set of
227.1 5 254.3 7 261 5 4	1.3 6 ≈ 3 1 2 3	563.5 632.3 691.6	(7/2 ⁻) (9/2 ⁻)	336.32 377.9 430 3	$(5/2^{-})$ $(7/2^{-})$ $(5/2^{-})$				$\alpha(K)=0.1407$ (theory).
265.0 2	58 3	393.03	$(11/2)^+$	128	$13/2^{(+)}$	M1+E2	1.8 <i>3</i>	0.238 25	$\alpha(K)=0.163\ 24;\ \alpha(L)=0.0567\ 15;\ \alpha(M)=0.01410\ 28$ $\alpha(N)=0.00351\ 7;\ \alpha(O)=0.000619\ 17;\ \alpha(P)=2.22\times10^{-5}\ 35$ $\delta:\ from\ \alpha(K)(exp)=0.16\ 4,\ average\ of\ 0.20\ 3\ (1976GoZE:\ I_e=15.6\ 20\ -\ overlapping\ electron\ line)\ and\ 0.12\ 3\ (1974Va19).$
271.4 <i>5</i> 281.2 <i>4</i>	0.72 <i>35</i> 5.7 6	375.5 659.1	(3/2 ⁻) (9/2 ⁻)	103.7 377.9	(1/2 ⁻) (7/2 ⁻)	M1+E2	0.7 4	0.33 7	$\alpha(K)=0.26\ 7;\ \alpha(L)=0.053\ 4;\ \alpha(M)=0.0127\ 8$ $\alpha(N)=0.00318\ 20;\ \alpha(O)=0.00059\ 5;\ \alpha(P)=3.67\times10^{-5}\ 99$ $\delta:\ from\ \alpha(K)exp=0.26\ 6.\ I_e=2.0\ 4\ (1976GoZE).$

L

				¹⁹¹ Tl <i>ɛ</i> -	+ β^+ decay	y (5.22 min)	1988W o	ZZ,1976GoZ	E (continued)
						γ ⁽¹⁹¹ H	Hg) (continu	ued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [#]	$\delta^{\mathbf{@}}$	α &	Comments
284.7 3	5.2 5	336.32	(5/2 ⁻)	51.59	(5/2 ⁻)	M1		0.416 6	$\alpha(K)=0.342 5; \alpha(L)=0.0571 8; \alpha(M)=0.01328 19$ $\alpha(N)=0.00333 5; \alpha(O)=0.000630 9; \alpha(P)=4.83\times10^{-5} 7$ Mult.: from $\alpha(K)\exp=0.43 22$. I _e =3.0 15 (1976GoZE – overlapping electron line).
318.7 4	2.6 5	662.2		343.96	$(9/2)^+$				overlapping election me).
322.8 ^b 10	≈2 ^b	659.1	(9/2 ⁻)	336.32	(5/2 ⁻)				Triplet. I γ (triplet) \approx 6.5. Coincidences with the 336.3-keV γ (1988WoZZ).
323.6 ^b 10	≈2.5 ^b	716.6	$(7/2)^+$	393.03	(11/2)+				Triplet. I γ (triplet) \approx 6.5. Coincidences with the 265.0 and 215.9-keV γ rays (1988WoZZ).
324.1 ^b 10	$\approx 2^{\boldsymbol{b}}$	375.5	(3/2 ⁻)	51.59	(5/2 ⁻)				Triplet. I γ (triplet) \approx 6.5. Coincidences with the 536-keV γ (1988WoZZ).
326.3 <i>3</i>	77 4	377.9	(7/2 ⁻)	51.59	(5/2 ⁻)	M1+E2	0.93 22	0.193 26	$\alpha(\mathbf{K})=0.150\ 24;\ \alpha(\mathbf{L})=0.0321\ 20;\ \alpha(\mathbf{M})=0.0077\ 4$ $\alpha(\mathbf{N})=0.00192\ 11;\ \alpha(\mathbf{O})=0.000353\ 23;\ \alpha(\mathbf{P})=2.09\times10^{-5}\ 34$ $\delta:\ \text{from }\alpha(\mathbf{K})=0.15\ 2.\ I_{\rm e}=15.1\ 15\ (1976\text{GoZE}).$
336.3 2	52 3	336.32	(5/2 ⁻)	0.0	3/2 ⁽⁻⁾	M1+E2	1.50 26	0.134 16	$\alpha(K)=0.100\ 15;\ \alpha(L)=0.0259\ 13;\ \alpha(M)=0.00632\ 28$ $\alpha(N)=0.00158\ 7;\ \alpha(O)=0.000284\ 15;\ \alpha(P)=1.37\times10^{-5}\ 21$ δ : from $\alpha(K)$ exp=0.10 2. I _e =6.6 13 (1976GoZE – overlapping electron line).
354.8 5 372.6 4	0.85 <i>35</i> 19.0 <i>19</i>	691.6 716.6	(7/2)+	336.32 343.96	$(5/2^{-})$ $(9/2)^{+}$	M1+E2	1.4 <i>3</i>	0.106 <i>16</i>	α (K)=0.081 <i>15</i> ; α (L)=0.0191 <i>15</i> ; α (M)=0.00461 <i>31</i> α (N)=0.00115 <i>8</i> ; α (O)=0.000209 <i>16</i> ; α (P)=1.11×10 ⁻⁵ <i>21</i> δ : from α (K)exp=0.08 2. I _e =2.0 5 (1976GoZE – overlapping electron line)
375.7 4	16.5 29	375.5	(3/2 ⁻)	0.0	3/2 ⁽⁻⁾	M1		0.1962 28	$\alpha(K)=0.1613 \ 23; \ \alpha(L)=0.0268 \ 4; \ \alpha(M)=0.00622 \ 9 \ \alpha(N)=0.001560 \ 22; \ \alpha(O)=0.000295 \ 4; \ \alpha(P)=2.268\times10^{-5} \ 32 \ M \ k = 0.00160 \ M \ M \ M \ M \ M \ M \ M \ M \ M \ $
378.0 10	≈10	377.9	(7/2 ⁻)	0.0	3/2 ⁽⁻⁾				Mult.: from α (K)exp=0.16 4. I _e =3.6 5 (19/6GoZE). Doublet. I γ (doublet)=27.6 23. See comment for second
378.8 10	≈20	430.3	(5/2 ⁻)	51.59	(5/2 ⁻)				Doublet. I γ (doublet)=27.6 23. Coincidences with the 261.5, 521.7 and 566.8-keV γ rays (1988WoZZ)
383.9 <i>5</i> 390.3 <i>7</i>	1.9 6 2.3 7	1016.2 518.3	$(11/2^{-})$ $(17/2^{+})$	632.3 128	(9/2 ⁻) 13/2 ⁽⁺⁾	(E2)		0.0506 7	$\alpha(K)=0.0339 5; \alpha(L)=0.01266 19; \alpha(M)=0.00316 5$ $\alpha(K)=0.000788 42; \alpha(C)=0.0001281 24; \alpha(M)=0.00316 5$
430.4 4	5.7 8	430.3	(5/2-)	0.0	3/2 ⁽⁻⁾	M1(+E2)	0.8 10	0.10 4	$\alpha(N)=0.000788\ 12;\ \alpha(O)=0.0001381\ 21;\ \alpha(P)=4.45\times10^{-6}\ 6$ Mult.: from adopted gammas. $\alpha(K)=0.079\ 33;\ \alpha(L)=0.015\ 4;\ \alpha(M)=0.0035\ 8$ $\alpha(N)=0.00088\ 20;\ \alpha(O)=1.6\times10^{-4}\ 4;\ \alpha(P)=1.1\times10^{-5}\ 5$ δ : from $\alpha(K)$ exp=0.08 4. I _e =0.63\ 25\ (1976GoZE -
474.8 6	1.4 7	1107.2	(7/2 ⁻ ,9/2 ⁻)	632.3	(9/2-)	M1+E2	1.1 9	0.06 4	overlapping electron line). $\alpha(K)=0.051 \ 33; \ \alpha(L)=0.010 \ 4; \ \alpha(M)=0.0024 \ 9$ $\alpha(N)=6.0\times10^{-4} \ 21; \ \alpha(O)=1.1\times10^{-4} \ 4; \ \alpha(P)=7.E-6 \ 5$

S

From ENSDF

			1	¹⁹¹ Tl ε + β ⁺	decay (5	.22 min)	1988WoZZ	,1976GoZE (co	ntinued)		
γ ⁽¹⁹¹ Hg) (continued)											
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	${\rm J}_i^\pi$	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α ^{&}	Comments		
477.6.4	11.4.72		(12/0)+	202.02	(11/2)+				δ: from α(K)exp=0.05 3 (data Iγ and Ie=1.0 3 data yield α(K)exp=0.5 3, indicates inconsistency either in Iγ or Ie). α(K)exp=0.0673 with overlapping electron line (1976GoZE – Table 4-4).		
4//.64	11.4 12	8/0./	$(13/2)^{+}$	393.03	$(11/2)^{+}$						
480.5 0	2.010	911.4 889 1	$(11/2)^+$	393.03	$(3/2)^+$	M1(+F2)	0910	0.064.30	$\alpha(K) = 0.051.26; \alpha(L) = 0.0096.31; \alpha(M) = 0.0023.7$		
470.1 5	1.5 0	007.1	(11/2)	575.05	(11/2)	WII(† E2)	0.9 10	0.004 50	$\alpha(\text{N})=5.7\times10^{-4}\ 17;\ \alpha(\text{O})=1.06\times10^{-4}\ 34;\ \alpha(\text{P})=7.\text{E}-6\ 4$ Mult., δ : from $\alpha(\text{K})$ exp=0.05 3. I _e =0.50 25 (1976GoZE – overlapping electron line)		
501.3 6	2.2 4	1193.1		691.6		M1(+E2)	0.3 6	0.086 23	$\alpha(K)=0.070\ 20;\ \alpha(L)=0.0118\ 25;\ \alpha(M)=0.0027\ 5$ $\alpha(N)=0.00069\ 14;\ \alpha(O)=0.000130\ 27;\ \alpha(P)=9.8\times10^{-6}$		
									Mult.: from $\alpha(K) \exp[0.07 2, I_e]=0.20.5$ (1976GoZE).		
514.2 6	3.9 7	1146.5		632.3	$(9/2^{-})$						
517.1 6	2.9 6	1233.7		716.6	$(7/2)^+$						
521.7 10	≈4	952.1	(9/2-)	430.3	$(5/2^{-})$						
526.6 8	1.4 4	870.7	$(13/2)^+$	343.96	$(9/2)^+$						
533.5 6	2.5 6	911.4		377.9	$(7/2^{-})$						
535.2 ^b 10	5 ^b	663.2	(15/2 ⁺)	128	13/2 ⁽⁺⁾	(M1+E2)		0.050 27	α (K)=0.040 23; α (L)=0.0075 29; α (M)=0.0018 6 α (N)=4.4×10 ⁻⁴ 16; α (O)=8.2×10 ⁻⁵ 32; α (P)=5.5×10 ⁻⁶		
									Doublet. I γ (doublet)=10.7 <i>11</i> . Coincidences with the 207.5-keV γ ray (1988WoZZ).		
525 5h 10	-h	011.4		275 5	(2/2-)				De la calcala de		
555.5 10	≈3*	911.4		375.5	(3/2)				Doublet. $I\gamma(doublet)=10.7 II$. Coincidences with the 324 1 and 375 7 keV γ rays (1988WoZZ)		
x539.9 6	2.5.5					(M1)		0.0749 11	$\alpha(K) = 0.0617.9; \alpha(L) = 0.01013.15; \alpha(M) = 0.002352.34$		
00000	210 0					(1111)		01071911	$\alpha(N) = 0.000590 \ 8; \ \alpha(O) = 0.0001117 \ 16;$		
									$\alpha(P) = 8.61 \times 10^{-6} 12$		
									Mult.: from α (K)exp=0.09 8. I _e =0.30 25 (1976GoZE –		
									overlapping electron line).		
545.2 9	≈3	889.1	$(11/2)^+$	343.96	$(9/2)^+$	E2(+M1)	≈3.2	≈0.0265	$\alpha(K) \approx 0.02010; \ \alpha(L) \approx 0.00485; \ \alpha(M) \approx 0.001173$		
									$\alpha(N) \approx 0.000293; \ \alpha(O) \approx 5.31 \times 10^{-5}; \ \alpha(P) \approx 2.70 \times 10^{-6}$		
	25510	560.5		0.0	2/2(-)	53		0.00000.00	δ: from α(K)exp ≈ 0.02. Ie=0.069 40 (19/6GoZE).		
563.5 5	25.5 10	563.5	$(1/2^{-})$	0.0	$3/2^{(-)}$	E2		0.02030 29	$\alpha(K) = 0.01509 \ 21; \ \alpha(L) = 0.00395 \ 6; \ \alpha(M) = 0.000964 \ 14$		
									α (N)=0.0002406 34; α (O)=4.32×10 5 6;		
									$\alpha(\mathbf{r}) = 2.005 \times 10^{\circ} 28$ Mult : from $\alpha(\mathbf{K}) \approx 0.016$ 7 J = 0.55 25 (1074C - 7E		
									Mult.: If $\alpha(\mathbf{K}) \exp[=0.010 / . I_e = 0.55 25 (19/0G0ZE - overlapping electron line)]$		
566.8 6	4.9 9	997.1	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	430.3	(5/2 ⁻)				overlapping election fille).		

From ENSDF

 $^{191}_{80} \rm Hg_{111}\text{-}6$

 $^{191}_{80} Hg_{111}$ -6

L

¹⁹¹ Tl ε + β ⁺ decay (5.22 min) 1988WoZZ,1976GoZE (continued)										
$\gamma(^{191}\text{Hg})$ (continued)										
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	$E_f = J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α &	Comments		
575.7 ^{<i>a</i>} 10 575.7 ^{<i>ac</i>} 10 580.7 4	$2.0^{a} 6$ $2.0^{a} 6$ 45 2	911.4 953.7? 632.3	(9/2 ⁻)	336.32 (5/2 ⁻¹) 377.9 (7/2 ⁻¹) 51.59 (5/2 ⁻¹)))) E2		0.01894 27	$\alpha(K)=0.01417 \ 20; \ \alpha(L)=0.00363 \ 5; \ \alpha(M)=0.000882 \ 12$ $\alpha(N)=0.0002201 \ 31; \ \alpha(O)=3.96\times10^{-5} \ 6; \ \alpha(P)=1.881\times10^{-6} \ 26$ Mult.: from $\alpha(K)$ exp=0.014 6. I _e =0.83 35 (1976GoZE –		
583.0 <i>6</i> 607.4 <i>5</i>	≈3 7.4 7	1146.5 659.1	(9/2 ⁻)	563.5 (7/2 ⁻ 51.59 (5/2 ⁻)) (E2)		0.01710 24	overlapping electron line). $\alpha(K)=0.01291 \ 18; \ \alpha(L)=0.00319 \ 5; \ \alpha(M)=0.000774 \ 11 \ \alpha(N)=0.0001932 \ 27; \ \alpha(O)=3.49\times10^{-5} \ 5; \ \alpha(P)=1.713\times10^{-6} \ 24 \ Mult.: from \ \alpha(K)exp=0.017 \ 9. \ I_e=0.17 \ 9 \ (1976GoZE \ -$		
615.8 4	14.0 <i>17</i>	952.1	(9/2 ⁻)	336.32 (5/2-) (E2)		0.01659 23	overlapping electron line). $\alpha(K)=0.01255 \ 18; \ \alpha(L)=0.00307 \ 4; \ \alpha(M)=0.000744 \ 11$ $\alpha(N)=0.0001858 \ 26; \ \alpha(O)=3.36\times10^{-5} \ 5;$ $\alpha(P)=1.665\times10^{-6} \ 23$ $\delta: \text{ from } \alpha(K)\exp=0.019 \ 9. \ I_e=0.35 \ 17 \ (1976GoZE - overlapping electron line)}$		
619.1 5	6.0 7	997.1	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻) 377.9 (7/2-) M1+E2	0.8 8	0.038 14	$\alpha(K)=0.031 \ 12; \ \alpha(L)=0.0055 \ 16; \ \alpha(M)=0.00128 \ 35$ $\alpha(N)=3.2\times10^{-4} \ 9; \ \alpha(O)=6.0\times10^{-5} \ 17; \ \alpha(P)=4.3\times10^{-6} \ 17$ $\delta: \text{ from } \alpha(K)\exp=0.031 \ 12. \ I_e=0.25 \ 9 \ (1976GoZE - overlapping electron line).}$		
x632.1 5	2.4 8									
634.8 5	2.5 8	1028.0	(11/2-)	393.03 (11/2)+					
638.4 5	13.5 27	1016.2	$(11/2^{-})$	377.9 (7/2-)					
660.9.5	556	091.0	(5/2 - 7/2 - 0/2 -	31.39 (3/2) 336.32 (5/2))					
x677.0.7	2.2.5	<i>))</i> /.1	(3/2 ,7/2 ,7/2) 550.52 (5/2)					
684.3 7	6.8 7	1028.0		343.96 (9/2)	ŀ			$\alpha(K)=0.03335; \alpha(L)=0.005438; \alpha(M)=0.00125918$ $\alpha(N)=0.0003164; \alpha(O)=5.98\times10^{-5}9; \alpha(P)=4.63\times10^{-6}7$ Mult.: from $\alpha(K)\exp=0.094$. I _e =0.08855 (1976GoZE – overlapping electron line). Theory: $\alpha(K)(M1)=0.033$, $\alpha(K)(E2)=0.010$.		
687.3 ^{ac} 10	2.3 ^a 5	1023.7?		336.32 (5/2-)					
687.3 ^a 10	2.3 ^{<i>a</i>} 5	1319.6		632.3 (9/2-)					
692.3 ^c 7 ^x 696.7 7 ^x 706.1 9	3.7 9 2.3 6 1.8 7	691.6		0.0 3/2(-)					
729.5 6	7.2 8	1107.2	$(7/2^{-}, 9/2^{-})$	377.9 (7/2-)					
739.3 7	<6	1075.6		336.32 (5/2-)					

From ENSDF

 $^{191}_{80} \mathrm{Hg}_{111}$ -7

L

			19	1 Tl ε + β^{+}	decay (5.	22 min)	1988WoZ	Z,1976GoZE	C (continued)
						$\gamma(^{191}\text{Hg})$	(continue	<u>d)</u>	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [#]	$\delta^{@}$	α &	Comments
^x 739.7 7	5.9 6					(E1)		0.00404 6	$\alpha(K)=0.00337\ 5;\ \alpha(L)=0.000515\ 7;\ \alpha(M)=0.0001183\ 17$ $\alpha(N)=2.95\times10^{-5}\ 4;\ \alpha(O)=5.53\times10^{-6}\ 8;\ \alpha(P)=4.05\times10^{-7}\ 6$ Mult.: $\alpha(K)\exp=0.005\ 3;\ L=0.043\ 21\ (1976GoZE).$
742.8 6	12.6 <i>13</i>	870.7	(13/2)+	128	13/2 ⁽⁺⁾	M1+E2	3.5 8	0.0127 10	$\alpha(K)=0.0100 \ 8; \ \alpha(L)=0.00205 \ 12; \ \alpha(M)=0.000488 \ 27 \ \alpha(N)=0.000122 \ 7; \ \alpha(O)=2.24\times10^{-5} \ 13; \ \alpha(P)=1.33\times10^{-6} \ 12 \ \delta: \ from \ \alpha(K)exp=0.010 \ 4. \ I_e=0.16 \ 6 \ (1976GoZE \ - \ overlapping \ electron \ line).$
744.8 7 754.1 8	4.6 8 4.2 <i>13</i>	1081.1 1317.6	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	336.32 563.5	$(5/2^{-})$ $(7/2^{-})$	M1+E2	2.4 8	0.0138 28	$\alpha(K)=0.0109\ 23;\ \alpha(L)=0.00215\ 32;\ \alpha(M)=0.00051\ 7$
761 1 7	308	880 1	$(11/2)^+$	128	12/2(+)				α (N)=0.000127 18; α (O)=2.4×10 ° 4; α (P)=1.4/×10 ° 33 δ : from α (K)exp=0.011 5. I _e =0.060 20 (1976GoZE).
x798.1 7	2.0 6	009.1	(11/2)	120	15/2				
^x 810.9 8	3.2 8 1.8 7	1363.6?		563.5	(7/2-)				
815.4 6 ^x 823.0 8	3.9 8 2.7 8	1193.1		377.9	(7/2 ⁻)				
828.7 ^C 9	1.8 13	880.3?		51.59	$(5/2^{-})$				
834.5 7	4.3 4	1212.4	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	377.9	(7/2-)	M1+E2	2.3 10	0.0111 33	$\begin{array}{l} \alpha(\mathrm{K}){=}0.0089\ 28;\ \alpha(\mathrm{L}){=}0.0017\ 4;\ \alpha(\mathrm{M}){=}0.00040\ 9\\ \alpha(\mathrm{N}){=}9.9{\times}10^{-5}\ 22;\ \alpha(\mathrm{O}){=}1.8{\times}10^{-5}\ 4;\ \alpha(\mathrm{P}){=}1.2{\times}10^{-6}\ 4\\ \mathrm{Mult.:\ from}\ \alpha(\mathrm{K}){\mathrm{exp}}{=}0.009\ 5.\ \mathrm{I_e}{=}0.051\ 30\ (1976\mathrm{GoZE}-\mathrm{overlapping\ electron\ line}). \end{array}$
*859.9° 8	2.1.5	1227 02		277.0	$(7/2^{-})$				
865 6 9	199	1257.91		393.03	$(1/2)^+$				
868.1 9	1.8 9	1261.3		393.03	$(11/2)^+$				
871.8 ^C 9	1.6 7	1215.7?		343.96	$(9/2)^+$				
900.5 11	4.8 7	1028.0		128	13/2(+)	M1+E2	3.0 16	0.0087 <i>30</i>	$\alpha(K)=0.0070\ 25;\ \alpha(L)=0.0013\ 4;\ \alpha(M)=3.1\times10^{-4}\ 8$ $\alpha(N)=7.7\times10^{-5}\ 20;\ \alpha(O)=1.4\times10^{-5}\ 4;\ \alpha(P)=9.E-7\ 4$ Mult.: from $\alpha(K)$ exp=0.007 5. I _e =0.048 30 (1976GoZE – overlapping electron line).
914.9 7	5.2 9	1258.8		343.96	(9/2)+				$\alpha(K)\exp=0.002 \ 2. \ I_e=0.063 \ 40 \ (1976GoZE - overlapping electron line). Theory: \alpha(K)(M1)=0.016, \ \alpha(K)(E2)=0.0057.$
917.3 7	5.7 9	1261.3		343.96	(9/2)+	M1+E2	1.8 12	0.010 6	$\alpha(K)=0.008 5; \alpha(L)=0.0014 7; \alpha(M)=3.4\times10^{-4} 16$ $\alpha(N)=8.E-5 4; \alpha(O)=1.6\times10^{-5} 8; \alpha(P)=1.1\times10^{-6} 7$ Mult., δ : from $\alpha(K)exp=0.008 5$. I _e =0.063 40 (1976GoZE – overlapping electron line) yields δ =1.8 12.
^x 925.8 10	2.2 7								TT 8
977.7 ^{‡c} 12	2.0 7	1321.7?		343.96	(9/2)+				

 ∞

From ENSDF

			-			γ (¹⁹¹ Hg) (cor	tinued)				
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E _f	J_f^π
991.6 ^a 10	3.6 ^{<i>a</i>} 7	1335.6		343.96	$(9/2)^+$	1586.4 11	2.9 6	2456.9		870.7	$(13/2)^+$
991.6 ^{a‡c} 10	3.6 ^a 7	1384.6?		393.03	$(11/2)^+$	^x 1606.9 10	2.2.7				
x1008.4 8	2.1 5				(,-)	1613.6 10	7.0 14	2484.4		870.7	$(13/2)^+$
^x 1022.6 10	2.7 9					1616.1 8	4.2 4	2486.8		870.7	$(13/2)^+$
^x 1028.9 10	1.9					1619.0 <i>10</i>	4.9 5	2489.6		870.7	$(13/2)^+$
1055.4 8	4.4 5	1107.2	$(7/2^-, 9/2^-)$	51.59	$(5/2^{-})$	^x 1630.3 10	2.1 6				
^x 1063.0 8	3.0 9					^x 1644.2 10	2.0 6				
1080.9 [°] 8	3.2 6	1081.1		0.0	$3/2^{(-)}$	^x 1701.0 <i>10</i>	2.1 6				
1092.9 [°] 9	1.5 5	1470.8?		377.9	$(7/2^{-})$	^x 1748.5 10	2.0 6				
^x 1095.3 10	2.0 7					^x 1764.1 ^c 16	2.2 9				
1102.5 10	2.4 7	1446.5		343.96	$(9/2)^+$	1764.1 ^{‡C} 15	2.1	1815.8?		51.59	$(5/2^{-})$
^x 1120.6 <i>10</i>	1.9 7					^x 1831.4 <i>10</i>	1.7 6				
1126.7 8	5.7 8	1178.3?		51.59	$(5/2^{-})$	1844.0 <i>10</i>	5.1 5	2476.3		632.3	$(9/2^{-})$
1133.4 10	2.0 7	1261.3		128	$13/2^{(+)}$	^x 1851.8 <i>10</i>	1.7 6				
1147.7° 10	1.7 6	1199.3?		51.59	$(5/2^{-})$	^x 1878.5 10	1.9 6	0540.1		560 5	(7/0-)
*1153.7 10	2.0 /	1520 50		277.0		19/9.6 14	2.4 /	2543.1		563.5	(1/2)
1160.6° 10 ×1172.0.10	1.8 / 2.2 7	1538.57		377.9	(7/2)	2034.5° 20	2.2^{a} 11 2.2^{a} 11	2412.4		3/7.9	$(1/2)^+$
$x_{11/3.0} I_0$	2.3 /					$2034.5^{\circ\circ} 20$	2.2^{-11}	2427.5		393.03	$(11/2)^{-}$
1194.0 12	1.0 9	1007.00		(22.2	(0/2-)	2045.4 10	1.42	2423.3		202.02	$(1/2)^+$
1194.6 ⁺⁰ 11	1.8	1827.0?		632.3	$(9/2)^+$	2045.4° 10	1.4" 2	2438.4		393.03	$(11/2)^{+}$
1210.2 9 X1264 0 10	2.4 5	1302.2		545.90	(9/2)	2003.1 14 2070 4^{a} 10	2.14	2445.0		242.06	$(1/2)^+$
x1204.0 10	2.41 227					2070.4 10 2070 4^{a} 10	7.4 4 $7 \Lambda^{a} \Lambda$	2414.4		343.90	(9/2) $(11/2)^+$
x1310 5 11	165					2075 2 14	357	2468.2		393.03	$(11/2)^+$
1318.6.11	1.8 6	1446 5		128	$13/2^{(+)}$	x2081 5 15	287	2100.2		575.05	(11/2)
^x 1336.5.9	1.7.3	1110.5		120	10/2	2086.9^{a} 10	6.3^{a} 7	2430.9		343.96	$(9/2)^+$
^x 1339.2 ^c 10	2.6 5					2086.9^{a} 10	6.3^{a} 7	2479.9		393.03	$(11/2)^+$
1339.2 ^c 13	2.6	1390.8?		51.59	$(5/2^{-})$	2091.5 11	4.4 5	2435.5		343.96	$(9/2)^+$
^x 1345.6 ^c 10	2.9 7					2099.1 ^a 10	3.4 ^{<i>a</i>} 4	2443.1		343.96	$(9/2)^+$
^x 1368.7 10	2.3 7					2099.1 ^a 10	3.4 ^{<i>a</i>} 4	2477.0		377.9	$(7/2^{-})$
^x 1416.1 10	1.7 6					2105.2 ^a 10	4.2 ^a 10	2441.5		336.32	$(5/2^{-})$
1443.5 9	3.2 6	2459.7		1016.2	$(11/2^{-})$	2105.2 ^a 10	4.2 ^a 10	2483.1		377.9	$(7/2^{-})$
1459.0 20	≈3	2475.2		1016.2	$(11/2^{-})$	2112.8 15	3.0 6	2456.9		343.96	$(9/2)^+$
1472.4 10	1.5 5	1816.4		343.96	$(9/2)^+$	2141.0 ^{<i>a</i>} 20	1.9 ^a 5	2484.4		343.96	$(9/2)^+$
1488.1 8	3.4 6	2440.2		952.1	(9/2-)	2141.0 ^{<i>a</i>} 20	1.9 ^{<i>a</i>} 5	2534.0		393.03	$(11/2)^+$
1507.6 <i>10</i>	3.8 7	1843.9		336.32	$(5/2^{-})$	2192.9 <i>15</i>	2.2 5	2536.9		343.96	$(9/2)^+$
^1546.5 <i>10</i>	1./ 0					~2272.6 20	1./4				
1555.8 ^{+<i>c</i>} 15	1.7 2	2185.4?		632.3	(9/2-)	2328.9 12	6.7 7	2456.9		128	$13/2^{(+)}$
x1574.5 10	2.4 6					2358.7 14	3.4 6	2486.8		128	$13/2^{(+)}$

¹⁹¹Tl ε + β ⁺ decay (5.22 min) 1988WoZZ,1976GoZE (continued)

$$\frac{{\rm E}_{\gamma}^{\dagger}}{2361.5 \ 10} \quad \frac{{\rm I}_{\gamma}^{\dagger}}{10.6 \ 11} \quad \frac{{\rm E}_{i}({\rm level})}{2489.6} \quad \frac{{\rm J}_{i}^{\pi}}{128} \quad \frac{{\rm E}_{f}}{13/2^{(+)}}$$

x2391.2 *14* 2.7 5

[†] From 1988WoZZ, in combination with 1976GoZE.

[‡] Uncertain placement from a tentative level, not adopted.

[#] From ce data (1976GoZE), except where otherwise noted. α (K)exp values were calculated using I γ from 1988WoZZ, Ice from 1976GoZE, and normalized to α (K)(215.95 γ)=0.1407 (E2, theory).

[@] Deduced from subshell $\alpha(exp)$ values using the BriccMixing code.

[&] Additional information 2.

^{*a*} Multiply placed with undivided intensity.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

