		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023

 $Q(\beta^{-})=-4309\ 23;\ S(n)=7293\ 27;\ S(p)=5047\ 23;\ Q(\alpha)=3670\ 30$ 2021Wa16 Other study:

2021As08: 181 Ta(14 N,4n) 191m,g Hg, E=65-87 MeV, measured production cross sections, compared with statistical model calculations using PACE4 code.

¹⁹¹Hg Levels

Cross Reference (XREF) Flags

¹⁹¹Tl ε decay (5.22 min) ¹⁹⁴Pt(α ,7n γ) A

- В
- (HI, $xn\gamma$) (HI, $xn\gamma$):SD С
- D

E(level) [†]	J ^{π#}	T _{1/2}	XREF	Comments
0.0	3/2 ⁽⁻⁾	49 min <i>10</i>	A	$\begin{aligned} & \% \varepsilon + \% \beta^+ = 100 \\ & \mu = -0.616 \ 11; \ Q = -0.80 \ 13 \\ & \text{No } \alpha \ \text{decay:} \ < 5 \times 10^{-6} \% \ (1963 \text{Ka17}). \\ & \text{RMS charge radius:} \ 5.417 \ \text{fm} \ 4 \ (2004 \text{An14}). \\ & \text{Isotope shift:} \ \Delta < r^2 > = -0.3041 \ \text{fm}^2 \ 15 \ (1986 \text{Ul02}, \ \text{relative to} \ ^{198} \text{Hg}). \\ & J^{\pi}: \ J = 3/2, \ \text{from } \beta \text{-radiation detected optical pumping} \ (1976 \text{Bo09}). \ \text{Systematics of} \\ & \text{g.s.} \ J^{\pi} \ \text{in} \ ^{187} \text{Hg}, \ ^{189} \text{Hg}, \ \text{and} \ ^{193} \text{Hg}. \ \text{Parity from systematics and magnetic} \\ & \text{moment} \ (\text{Schmidt plot}). \\ & \text{T}_{1/2}: \ \text{From} \ 1974 \text{Va19} \ (196.2 \gamma(\text{t}), \ 224.7 \gamma(\text{t}) \ \text{in} \ ^{191} \text{Hg} \ \varepsilon \ \text{decay}). \\ & \mu: \ \text{From} \ 2019 \text{StZV}, 1986 \text{Ul02} - \ \text{Nuclear Magnetic Resonance/Optical pumping}. \\ & \text{Q: From} \ 2016 \text{St14}, 1986 \text{Ul02}/1979 \text{Da06} - \beta \ \text{radiative detection of optical} \\ & \text{pumping}. \end{aligned}$
51.59 20	(5/2 ⁻) [@]	0.42 ns 4	A	$T_{1/2}$: From 1985Ab03 in ¹⁹¹ Tl ε decay (conversion-electron (ce)- γ and ce-ce delayed coincidence measurements).
103.7 <i>4</i> 128 ^{<i>a</i>} 8	$(1/2^{-})$ 13/2 ⁽⁺⁾	50.8 min 15	A ABC	$J^{\pi}: 103\gamma \text{ M1+E2 to } 3/2^{(-)}.$ $\%\epsilon + \%\beta^{+} = 100$ $\mu = -1.064 5; \text{ Q} = +0.6 2$ Additional information 1. Isotope shift: $\Delta < r^{2} > = -0.3037 \text{ fm}^{2} 13$ (1986Ul02, relative to ¹⁹⁸ Hg). No IT decay. α decay limit: $<5 \times 10^{-6}\%$ (1963Ka17). E(level): From precision atomic mass measurements in 2001Sc41. Others: 128
				 keV 22 (2021Ko07 – NUBASE). x≈130 keV was expected from extrapolation of estimates for similar states in ¹⁹³Hg and ¹⁹⁵Hg. Labeled as 0.0+x in the previous evaluation (2007Va21). J^π: optical quantum-beat spectroscopy (1979Kr11). Systematics of 13/2⁺ state in neighboring odd-A mercury isotopes. T_{1/2}: From 241, 253, 371, 521, 536, 579, and 718γ(t) (1971Be61 – ¹⁹¹Hg ε decay (50.8 m)). Others: 57 m 5 (1954Gi04), 55 m 10 (1955Sm42). μ: From 2019StZV,1979Da06 – Collinear Laser Spectroscopy. Q: From 2016St14,1979Da06 – β-radiative detection of optical pumping.
336.32 <i>17</i> 343 96 [‡] <i>17</i>	$(5/2^{-})^{@}$ $(9/2)^{+}$		A A	I^{π} . 215 9 γ F2 to 13/2 ⁽⁺⁾
375.5 <i>4</i> 377 9 3	$(3/2^{-})$ $(7/2^{-})^{@}$		A A	J^{π} : 375.7 γ M1 to 3/2 ⁽⁻⁾ , γ to (1/2 ⁻) and (5/2 ⁻).
393.03 [‡] 17	$(1/2)^+$		A	J^{π} : 265.0 γ M1+E2 to 13/2 ⁽⁺⁾ and 49 γ to (9/2) ⁺ .

¹⁹¹Hg Levels (continued)

E(level) [†]	J ^{π#}	T _{1/2}	XREF	Comments
430.3 3	$(5/2^{-})$		A	J^{π} : 430.4 γ M1(+E2) to 3/2 ⁽⁻⁾ . 521.7 γ from (9/2 ⁻).
518.5 ^{‡a} 3	$17/2^{(+)}$		ABC	J^{π} : 390.4 γ (E2) to 13/2 ⁽⁺⁾ .
563.5 4	$(7/2^{-})^{@}$		A	J^{π} : 563.5 γ E2 to $3/2^{(-)}$.
632.3 4	$(9/2^{-})^{@}$		A	J^{π} : 563.5 γ E2 to (5/2 ⁻).
659.1 4	(9/2 ⁻)		Α	J^{π} : 281 γ M1+E2 to (7/2 ⁻), 607 γ (E2) to (5/2 ⁻).
662.7 [‡] 5			Α	
663.26 ^{‡b} 23	$(15/2^+)$		ABC	J ^π : 535.4γ (M1+E2), Δ J=1, to 13/2 ⁽⁺⁾ ; band assignment.
691.6 <i>3</i>			Α	
716.6 [‡] 4	$(7/2)^+$		Α	J^{π} : 372.6 γ M1+E2 to (9/2) ⁺ , 323.6 γ to (11/2) ⁺ .
870.7 [‡] <i>3</i>	$(13/2)^+$		Α	J^{π} : 742.8 γ M1+E2 to 13/2 ⁽⁺⁾ .
889.1 [‡] 4	$(11/2)^+$		Α	J ^{π} : 545.2 E2(+M1) γ to 9/2 ⁽⁺⁾ , γ to 7/2 ⁽⁺⁾ and 13/2 ⁽⁺⁾ .
911.4 5	0		A	-
952.1 4	$(9/2^{-})^{\textcircled{0}}$		A	J^{π} : 615.8 γ (E2) to (5/2 ⁻).
997.14	(5/2, 7/2, 9/2)		A	$J^{**}: 019.1\gamma \text{ M1}+\text{E2 to } (7/2).$
1016.2.5	$(11/2)^{\circ}$		A	$J^{*}: \gamma$ to (7/2) and (9/2).
1028.0* 4	(11/2, 13/2)		A A	J [*] : 900.5 γ E2(+M1) to 13/2 ⁽⁺⁾ , γ to (9/2) ⁺ .
1081.1 8			A	
1107.2 5	$(7/2^{-}, 9/2^{-})$		Α	J ^{π} : 474.8 γ M1+E2 to (9/2 ⁻), 1055.4 γ to (5/2 ⁻).
1146.5 5	(.)		Α	
1147.4 ^{<i>a</i>} 4	$21/2^{(+)}$		BC	J^{π} : 628.7 γ Q to 17/2 ⁽⁺⁾ .
11/8.3 9			A A	
1212.4 8	$(5/2^{-}, 7/2^{-}, 9/2^{-})$		A	J^{π} : 834.5 γ M1+E2 to (7/2 ⁻).
1215.7? [‡] 10			А	
1233.7 [‡] 7			А	
$1258.8^{\ddagger} 6$			A	
$1261.3^{\ddagger}.5$	$11/2^+.9/2^+$		A	J^{π} : 917.3 γ M1+E2 to 9/2 ⁽⁺⁾ , γ to 13/2 ⁽⁺⁾ .
1299.8^{b} 3	$(19/2^+)$		BC	J^{π} : 636.6 γ O to (15/2 ⁺).
1317.6 9	$(5/2^-, 7/2^-, 9/2^-)$		A	J^{π} : 754.1 γ M1+E2 to (7/2 ⁻).
1319.6 11	@		A	
1335.6 [‡] <i>11</i>			А	
1446.5 [‡] 8			Α	
1562.2 [‡] 10			Α	
1766.0 ^h 4	$(21/2^{-})$		BC	J^{π} : 466.3 γ D to (19/2 ⁺) in combination with 166.6 γ E2 from (25/2 ⁻).
1816.4 [‡] <i>11</i>			Α	
1843.9 11			Α	
1897.5 ^{<i>a</i>} 4	$25/2^{(+)}$		BC	J^{π} : 750.2 γ Q to 21/2 ⁽⁺⁾ .
1932.6 ^h 4	$(25/2^{-})$	0.72 ns 7	BC	J^{π} : 166.6 γ E2 to (21/2 ⁻).
				$T_{1/2}$: From ce(L2)(16/ γ), ce(K)(535 γ), and ce(K)(781 γ)(t) measurements (1978Me11 – (α ,7n γ)).
1989.9 <i>^f 4</i>	$(23/2^{-})$		С	J ^{π} : 224.0 γ D to (21/2 ⁻) and 842.5 γ D to 21/2 ⁽⁺⁾ .
2192.9 ^{<i>f</i>} 4	$(27/2^{-})$		С	J^{π} : 203.0 γ Q to (23/2 ⁻), 260.2 γ D to (25/2 ⁻), 295.4 γ D to 25/2 ⁽⁺⁾ .
2251.6 ^h 5	$(29/2^{-})$		BC	J^{π} : 319.0 γ Q to (25/2 ⁻).
2412.4 21			Α	
2414.4 [‡] 11			Α	
2423.3 11			A	
$2427.5^{+u} 20$			A	
2430.9+ 11			Α	

Continued on next page (footnotes at end of table)

¹⁹¹Hg Levels (continued)

2435.5 ² I2 A 2438.4 ² II A 243.4 ² II A 244.5 II A 245.7 II A 245.7 II A 2463.4 ² II A 2475.5 II A 2477.6 II A 2476.3 II A 2477.9 II A 2480.6 ³ 8 A 2480.6 ³ 8 A 259.7 ³ C 5 292(¹⁰) 2673.1 ³ J 5 A 253.6 ³ I 5 A 254.6 ³ 5 332(¹⁰) 2717.0 ³ 4 6 310 ² 7 C I ³ 190.5 Q to 252(¹⁰).	E(level) [†]	J ^{π#}	T _{1/2}	XREF	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2435.5 [‡] 12			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2438.4 [‡] 11			A	
2443.0 <i>i</i> 5 A 2443.0 <i>i</i> 5 A 2443.0 <i>i</i> 5 A 2443.0 <i>i</i> 5 A 2443.0 <i>i</i> 5 A 2450.7 <i>i</i> 0 A 2450.7 <i>i</i> 0 A 2463.2 <i>i</i> 1 A 2463.2 <i>i</i> 1 A 2473.0 <i>i</i> 1 A 2483.1 <i>i</i> 1 A 2483.1 <i>i</i> 1 A 2483.1 <i>i</i> 1 A 2484.4 <i>i</i> 0 A 2480.6 <i>i</i> 8 A 2536.9 <i>i i</i> 5 A 2536.9 <i>i i</i> 5 A 2536.9 <i>i i</i> 5 A 2537.1 <i>i i f</i> 5 292 ^(c) BC I^{c} 662.1 <i>y</i> Q to 25/2 ^(c) . 2673.1 <i>i i f</i> 5 292 ^(c) BC I^{c} 662.1 <i>y</i> Q to 25/2 ^(c) . 2673.1 <i>i i f</i> 5 292 ^(c) BC I^{c} 1602.1 <i>y</i> Q to 25/2 ^(c) . 2673.1 <i>i i f</i> 5 292 ^(c) BC I^{c} 1602.1 <i>y</i> Q to 25/2 ^(c) . 2713.1 <i>i f</i> 5 292 ^(c) BC I^{c} 1609. <i>y</i> Q 292 ^(c) . 2722.6 <i>i s</i> 33/2 ^(c) 0.92 ns <i>6</i> BC I^{c} 1609. <i>y</i> 0 29/2 ^(c) . 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) BC I^{c} 160.9 <i>y</i> 0 29/2 ^(c) . 2713.1 <i>i f</i> 5 322 ^(c) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (25/2 ⁻). 2713.1 <i>i f</i> 6 (33/2 ⁻) C I^{c} 190.3 <i>y</i> to (29/2 ⁻). 2818.5 <i>i f f</i> 33/2 ^(c) C I^{c} 17.1 file level was proposed to be populated from 6128 keV level in (HI, xny):SD. <i>F</i> : 6712. <i>y</i> Q to (31/2 ⁻). 283.0 <i>s i f</i> 3 (37/2 ⁻) BC I^{c} 17.3 S0.0 <i>y</i> (203.32 ⁻). 283.0 <i>s i f</i> 3 (37/2 ⁻) BC I^{c} 17.5 S1.9 Q to (33/2 ⁻). 283.0 <i>s i f</i> 3 (37/2 ⁻) BC I^{c} 17.5 S1.9 Q to (33/2 ⁻). 283.0 <i>s i f</i> 3 (37/2 ⁻) C I^{c} 17.5 S1.9 Q to (33/2 ⁻). 283.0 <i>s i f</i> 3 (37/2 ⁻) C I^{c} 17.5 S1.9 Q to (33/2 ⁻). 283.0 <i>s i f</i> 3 (37/2 ⁻) C I^{c} 17.5 S1.9 Q to (33/2 ⁻). 283.0 <i>s i f</i> 3 (37/2 ⁻) C $I^{$	2440.2 9			Α	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2441.5 11			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2443.013			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2445.1° 11 2457.0^{\ddagger} 8			A A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2459.7 10			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2463.4 [‡] 11			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2468.2 [‡] 14			Α	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2475.2 21			Α	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2476.3 11			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2477.011			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2479.9* 11			A	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2484.4 [‡] 10			A	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2486.8 [‡] 8			Α	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2489.6 [‡] 8			Α	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2534.0 [‡] 20			Α	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2536.9 [‡] 15			Α	
$\begin{array}{rclcrcl} 2559.7^{\frac{1}{4}c} & 5 & 29/2^{(+)} & BC & J^{\pi}: 662.1\gamma \ Q \ to \ 25/2^{(+)}. \\ 2673.1^{\frac{1}{4}f} & 5 & (31/2^{-}) & C & J^{\pi}: 480.2\gamma \ Q \ to \ (27/2^{-}). \\ 2717.0^{\frac{1}{4}d} & 5 & 29/2^{(+)} & C & J^{\pi}: 819.5\gamma \ Q \ to \ 25/2^{(+)}. \\ 2722.9^{\frac{1}{5}} & 5 & (29/2^{-}) & C & J^{\pi}: 790.3\gamma \ to \ (25/2^{-}). \\ 2726.6^{\frac{1}{4}c} & 5 & 33/2^{(+)} & 0.92 \ ns \ 6 & BC & J^{\pi}: 166.9\gamma \ to \ 29/2^{(+)}. \\ 2771.3^{\frac{1}{4}k} & 6 & (33/2^{-}) & C & J^{\pi}: 519.7\gamma \ Q \ to \ (29/2^{-}). \\ 2818.5^{\frac{1}{4}h} & 5 & (33/2^{-}) & C & J^{\pi}: 519.7\gamma \ Q \ to \ (29/2^{-}). \\ 2818.5^{\frac{1}{4}h} & 5 & (33/2^{-}) & C & J^{\pi}: 519.7\gamma \ Q \ to \ (29/2^{-}). \\ 3063.5^{\frac{1}{4}d} & 5 & (29/2^{+}) & C & J^{\pi}: 510.7\gamma \ Q \ to \ (29/2^{-}). \\ 3063.5^{\frac{1}{4}d} & 5 & (33/2^{-}) & C & J^{\pi}: 1166.0\gamma \ to \ 25/2^{(+)}. \\ 3266.6^{\frac{1}{4}c} & 5 & 37/2^{(+)} & BC & J^{\pi}: 1166.0\gamma \ to \ 25/2^{(+)}. \\ 3245.6^{\frac{1}{4}} & 6 & 33/2^{(+)} & C & J^{\pi}: 578.2\gamma \ Q \ to \ 29/2^{(+)}. \\ 3295.1^{\frac{1}{4}d} & 5 & 33/2^{(+)} & C & J^{\pi}: 578.2\gamma \ Q \ to \ 29/2^{(+)}. \\ 3350.3^{\frac{1}{4}f} & 5 & (33/2^{-}) & B \ D & E(level): This level was proposed to be populated from 6128 \ keV \ level in (HI,xny):SD. \\ J^{\pi}: 677.2\gamma \ Q \ to \ 29/2^{(+)}. \\ 3350.3^{\frac{1}{4}f} & 5 & (33/2^{-}) & B \ D & E(level): This level was proposed to be populated from 6128 \ keV \ level in (HI,xny):SD. \\ J^{\pi}: 677.2\gamma \ Q \ to \ (31/2^{-}). \\ 3550.3^{\frac{1}{4}f} & 5 \ (37/2^{-}) & BC \ J^{\pi}: \gamma \ to \ (29/2^{-}). \\ 3557.0^{\frac{1}{4}f} & 5 \ (37/2^{-}) & BC \ J^{\pi}: 738.6\gamma \ Q \ to \ (33/2^{-}). \\ 3615.8^{\frac{1}{4}d} & 5 \ 37/2^{(+)} & C \ J^{\pi}: 820.7\gamma \ Q \ to \ 33/2^{(+)}. \\ 3646.4^{\frac{1}{4}k} 7 \ (37/2^{-}) & C \ J^{\pi}: 1037.7\gamma \ to \ (33/2^{-}). \\ 3856.2^{\frac{1}{4}} & 5 \ (35/2) & C \ J^{\pi}: 1037.7\gamma \ to \ (33/2^{-}). \end{array}$	2543.1 15			Α	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2559.7 ^{‡c} 5	$29/2^{(+)}$		BC	J^{π} : 662.1 γ Q to 25/2 ⁽⁺⁾ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2673.1 [‡] <i>f</i> 5	(31/2-)		С	J^{π} : 480.2 γ Q to (27/2 ⁻).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2717.0 ^{‡<i>a</i>} 5	$29/2^{(+)}$		С	J^{π} : 819.5 γ Q to 25/2 ⁽⁺⁾ .
2726.6 ^{‡C} 5 33/2 ⁽⁺⁾ 0.92 ns 6 BC J^{π} : 166.9 γ to 29/2 ⁽⁺⁾ . $T_{1/2}$: From ce(K)(662 γ)(t) measurements (1978Me11 – (α ,7n γ)). 2771.3 ^{‡k} 6 (33/2 ⁻) C J^{π} : 519.7 γ Q to (29/2 ⁻). 2818.5 ^{‡h} 5 (33/2 ⁻) BCD E(level): This level was proposed to be populated from 6128 keV level in (H1,xn γ):SD. J ^{π} : 566.8 γ Q to (29/2 ⁻). 3063.5 ^{‡d} 5 (29/2 ⁺) C J ^{π} : 1166.0 γ to 25/2 ⁽⁺⁾ . Band member or sequence. 3206.6 ^{‡c} 5 37/2 ⁽⁺⁾ BC J ^{π} : 479.9 γ Q to 33/2 ⁽⁺⁾ . 3245.6 [‡] 6 33/2 ⁽⁺⁾ C J ^{π} : 578.2 γ Q to 29/2 ⁽⁺⁾ . 3295.1 ^{‡d} 5 33/2 ⁽⁺⁾ C J ^{π} : 578.2 γ Q to 29/2 ⁽⁺⁾ . 3350.3 ^{‡f} 5 (35/2 ⁻) B D E(level): This level was proposed to be populated from 6128 keV level in (H1,xn γ):SD. J ^{π} : 677.2 γ Q to (31/2 ⁻). 3380.9 [‡] 5 (33/2 ⁻) C J ^{π} : γ to (29/2 ⁻). 3557.0 ^{‡h} 5 (37/2 ⁻) BC J ^{π} : γ to (29/2 ⁻). 3615.8 ^{‡d} 5 37/2 ⁽⁺⁾ C J ^{π} : 320.7 γ Q to 33/2 ⁽⁺⁾ . 364.4 ^{‡k} 7 (37/2 ⁻) C J ^{π} : 875.1 γ Q to (33/2 ⁻). 3856.2 [‡] 5 (35/2) C J ^{π} : 1037.7 γ to (33/2 ⁻).	2722.9 [‡] 5	(29/2 ⁻)		С	J^{π} : 790.3 γ to (25/2 ⁻).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2726.6 ^{‡C} 5	$33/2^{(+)}$	0.92 ns 6	BC	J^{π} : 166.9 γ to 29/2 ⁽⁺⁾ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$27712 \pm k$	$(22/2^{-})$		C	$I_{1/2}$: From ce(K)(662 γ)(t) measurements (19/8Me11 – (α ,/n γ)).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2/11.5^{++}0$	(33/2)			J^{-1} : 519.17 Q to (29/2).
$J^{\pi}: 566.8^{\gamma} Q \text{ to } (29/2^{-}).$ 3063.5 ^{‡d} 5 (29/2 ⁺) C $J^{\pi}: 1166.0^{\gamma} \text{ to } 25/2^{(+)}.$ Band member or sequence. 3206.6 ^{‡c} 5 37/2 ⁽⁺⁾ BC $J^{\pi}: 479.9^{\gamma} Q \text{ to } 33/2^{(+)}.$ 3245.6 [‡] 6 33/2 ⁽⁺⁾ C $J^{\pi}: 528.6^{\gamma} Q \text{ to } 29/2^{(+)}.$ 3295.1 ^{‡d} 5 33/2 ⁽⁺⁾ C $J^{\pi}: 578.2^{\gamma} Q \text{ to } 29/2^{(+)}.$ 3350.3 ^{‡f} 5 (35/2 ⁻) B D E(level): This level was proposed to be populated from 6128 keV level in (HI,xn\gamma):SD. $J^{\pi}: 677.2^{\gamma} Q \text{ to } (31/2^{-}).$ 3380.9 [‡] 5 (37/2 ⁻) BC $J^{\pi}: \gamma \text{ to } (29/2^{-}).$ 3557.0 ^{‡h} 5 (37/2 ⁻) BC $J^{\pi}: 738.6^{\gamma} Q \text{ to } (33/2^{-}).$ 3615.8 ^{‡d} 5 37/2 ⁽⁺⁾ C $J^{\pi}: 320.7^{\gamma} Q \text{ to } 33/2^{(+)}.$ 3646.4 ^{‡k} 7 (37/2 ⁻) C $J^{\pi}: 875.1^{\gamma} Q \text{ to } (33/2^{-}).$	2818.31 3	(55/2)		вср	$E(1eVer)$: This level was proposed to be populated from 0128 keV level in $(HI,xn\gamma)$:SD.
$\begin{array}{rcl} 3063.5^{\ddagger d} 5 & (29/2^{+}) & C & J^{\pi}: 1166.0 \text{y to } 25/2^{(+)}. \text{ Band member or sequence.} \\ 3206.6^{\ddagger c} 5 & 37/2^{(+)} & BC & J^{\pi}: 479.9 \text{y Q to } 33/2^{(+)}. \\ 3245.6^{\ddagger c} 6 & 33/2^{(+)} & C & J^{\pi}: 528.6 \text{y Q to } 29/2^{(+)}. \\ 3295.1^{\ddagger d} 5 & 33/2^{(+)} & C & J^{\pi}: 578.2 \text{y Q to } 29/2^{(+)}. \\ 3350.3^{\ddagger f} 5 & (35/2^{-}) & B \ D & E(\text{level}): \text{ This level was proposed to be populated from } 6128 \text{ keV level in} \\ & (HI, xn\gamma): \text{SD.} \\ & J^{\pi}: 677.2 \text{y Q to } (31/2^{-}). \\ 3380.9^{\ddagger 5} & (33/2^{-}) & C & J^{\pi}: \gamma \text{ to } (29/2^{-}). \\ 3557.0^{\ddagger h} 5 & (37/2^{-}) & BC & J^{\pi}: 738.6 \text{y Q to } (33/2^{-}). \\ 3615.8^{\ddagger d} 5 & 37/2^{(+)} & C & J^{\pi}: 320.7 \text{y Q to } 33/2^{(+)}. \\ 3646.4^{\ddagger k} 7 & (37/2^{-}) & C & J^{\pi}: 875.1 \text{y Q to } (33/2^{-}). \\ 3856.2^{\ddagger 5} & (35/2) & C & J^{\pi}: 1037.7 \text{y to } (33/2^{-}). \end{array}$					J^{π} : 566.8 γ Q to (29/2 ⁻).
$\begin{array}{rcl} 3206.6^{\pm C} & 5 & 37/2^{(+)} & \text{BC} & J^{\pi}: 479.9\gamma \text{ Q to } 33/2^{(+)} & \text{C} & J^{\pi}: 528.6\gamma \text{ Q to } 29/2^{(+)} & \\ 3295.1^{\pm d} & 5 & 33/2^{(+)} & \text{C} & J^{\pi}: 578.2\gamma \text{ Q to } 29/2^{(+)} & \\ 3350.3^{\pm f} & 5 & (35/2^{-}) & \text{B D} & \text{E}(\text{level}): \text{ This level was proposed to be populated from } 6128 \text{ keV level in} & \\ & & (\text{H,xn}\gamma):\text{SD.} & \\ & & J^{\pi}: 677.2\gamma \text{ Q to } (31/2^{-}) & \\ 3380.9^{\pm 5} & (33/2^{-}) & \text{C} & J^{\pi}: \gamma \text{ to } (29/2^{-}) & \\ 3557.0^{\pm h} & 5 & (37/2^{-}) & \text{BC} & J^{\pi}: \gamma \text{ to } (29/2^{-}) & \\ 3615.8^{\pm d} & 5 & 37/2^{(+)} & \text{C} & J^{\pi}: 320.7\gamma \text{ Q to } 33/2^{(+)} & \\ 3646.4^{\pm k} & 7 & (37/2^{-}) & \text{C} & J^{\pi}: 875.1\gamma \text{ Q to } (33/2^{-}) & \\ 3856.2^{\pm 5} & (35/2) & \text{C} & J^{\pi}: 1037.7\gamma \text{ to } (33/2^{-}) & \\ \end{array}$	3063.5 ^{‡d} 5	$(29/2^+)$		С	J^{π} : 1166.0 γ to 25/2 ⁽⁺⁾ . Band member or sequence.
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3206.6 ⁴ <i>C</i> 5	$37/2^{(+)}$		BC	J^{π} : 479.9 γ Q to 33/2 ⁽⁺⁾ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3245.6+ 6	$33/2^{(+)}$		С	J^{π} : 528.6 γ Q to 29/2 ⁽⁺⁾ .
3350.3*J 5 $(35/2^-)$ B D E(level): This level was proposed to be populated from 6128 keV level in (HI,xny):SD. J^{π} : 677.2 γ Q to (31/2 ⁻). J^{π} : 677.2 γ Q to (31/2 ⁻). J^{π} : γ to (29/2 ⁻). 3350.3 ^{‡J} 5 (33/2 ⁻) C J^{π} : γ to (29/2 ⁻). 3557.0 ^{‡h} 5 (37/2 ⁻) BC J^{π} : 738.6 γ Q to (33/2 ⁻). 3615.8 ^{‡d} 5 37/2 ⁽⁺⁾ C J^{π} : 320.7 γ Q to 33/2 ⁽⁺⁾ . 3646.4 ^{‡k} 7 (37/2 ⁻) C J^{π} : 875.1 γ Q to (33/2 ⁻). 3856.2 [‡] 5 (35/2) C J^{π} : 1037.7 γ to (33/2 ⁻).	$3295.1^{+a} 5$	33/2(+)		C	J^{π} : 578.2 γ Q to 29/2 ⁽⁺⁾ .
$3380.9^{\ddagger} 5$ $(33/2^-)$ C $J^{\pi_1} \gamma \text{ to } (29/2^-).$ $3557.0^{\ddagger}h 5$ $(37/2^-)$ BC $J^{\pi_1} \cdot 738.6\gamma \text{ Q to } (33/2^-).$ $3615.8^{\ddagger}d 5$ $37/2^{(+)}$ C $J^{\pi_1} \cdot 320.7\gamma \text{ Q to } 33/2^{(+)}.$ $3646.4^{\ddagger}k 7$ $(37/2^-)$ C $J^{\pi_1} \cdot 875.1\gamma \text{ Q to } (33/2^-).$ $3856.2^{\ddagger} 5$ $(35/2)$ C $J^{\pi_1} \cdot 1037.7\gamma \text{ to } (33/2^-).$	3350.3+5	(35/2 ⁻)		ΒD	E(level): This level was proposed to be populated from 6128 keV level in (HI,xn γ):SD.
$3380.9^{+}.5^{-}$ $(35/2^{-})$ C^{-} $3^{+}.780(29/2^{-}).$ $3557.0^{\ddagger h}.5^{-}$ $(37/2^{-})$ BC^{-} 37.79^{-} BC^{-} $3615.8^{\ddagger d}.5^{-}$ $37/2^{(+)}$ C^{-} $J^{\pi}: 320.79^{-}$ C^{-} $J^{\pi}: 320.79^{-}$ $S7.79^{-}$ $3646.4^{\ddagger k}.7^{-}$ $(37/2^{-})$ C^{-} $J^{\pi}: 875.19^{-}$ C^{-} $J^{\pi}: 875.19^{-}$ $S7.79^{-}$ $3856.2^{\ddagger}.5^{-}$ $(35/2)^{-}$ C^{-} $J^{\pi}: 1037.79^{-}$ C^{-} $J^{\pi}: 1037.79^{-}$ $S7.79^{-}$	2280 0 5	(22/2-)		c	$J^{-1}: 0/7.27 \cup 0(0.51/2).$
3537.0^{+} $37/2^{(+)}$ C J^{π} : 320.7γ Q to $33/2^{(+)}$. $3646.4^{\ddagger k}$ 7 $(37/2^{-})$ C J^{π} : 875.1γ Q to $(33/2^{-})$. 3856.2^{\ddagger} 5 $(35/2)$ C J^{π} : 1037.7γ to $(33/2^{-})$.	3580.975	(35/2)		RC RC	$J^{-}: \gamma \to (29/2^{-}).$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3557.0° 5	(37/2)		БС С	J = 758.07 (0) (55/2).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3615.8 k 7	$(37/2^{-})$		c	$J = 520.79 \ Q = 10 \ 55/2^{-7}$.
$3030.2^{\circ} 3^{\circ} (35/2)$ C J $1037.77 \text{ to } (35/2)$.	3040.4 7	(37/2)		c	$J = 875.17 \oplus 10(55/2^{-})$
$3920 8^{\ddagger c} 6 41/2^{(+)}$	3920 8 ^{‡C} 6	(33/2) $41/2^{(+)}$		c	3 . 1057.77 (0 (55/2).
$4074.9^{\ddagger} 5$ (37/2 ⁻) C $I^{\pi} \cdot 1256.4\gamma$ (O) to (33/2 ⁻)	4074 9 [‡] 5	$(37/2^{-})$		c	J^{π} : 1256.4 γ (O) to (33/2 ⁻).
4085 $3^{\ddagger 8}$ 5 (39/2 ⁻) C I^{π} : 735 0v O to (35/2 ⁺)	4085 3 ^{‡8} 5	$(39/2^{-})$		c	I^{π} : 735.0v O to (35/2 ⁺).
$4097.1^{\ddagger f} 6 (39/2^{-})$ C $J^{\pi}: 746.8\gamma$ (O) to $(35/2^{-})$.	$4097.1 \ddagger f 6$	$(39/2^{-})$		c	J^{π} : 746.8 γ (O) to (35/2 ⁻).
4116.7 ^{‡d} 6 41/2 ⁽⁺⁾ C J ^{π} : 500.9 γ Q to 37/2 ⁽⁺⁾ .	4116.7 ^{‡d} 6	$41/2^{(+)}$		c	J^{π} : 500.9 γ Q to 37/2 ⁽⁺⁾ .

Continued on next page (footnotes at end of table)

¹⁹¹Hg Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
4269.0 [‡] <i>j</i> 6	$(41/2^{-})$	С	J^{π} : 712.0 γ Q to (37/2 ⁻).
4345.8 [‡] <i>i</i> 6	$(41/2^{-})$	с	J^{π} : 788.8 γ Q to (37/2 ⁻).
4403.6 ^{‡k} 8	$(41/2^{-})$	с	J^{π} : 757.2 γ O to (37/2 ⁻).
4485.5 [‡] 8 6	$(43/2^{-})$	C	J^{π} : 400.2 γ O to (39/2 ⁻).
4510.7 [‡] 6	$(41/2^{-})$	C	J^{π} : 953.7 γ O to (37/2 ⁻).
4620.1 ^{‡e} 6	$(41/2^+)$	C	J^{π} : 1413.5 ν O to 37/2 ⁽⁺⁾ .
4657.9 [‡] 6	(39/2)	C	J^{π} : 1100.9 γ D to (37/2 ⁻).
4715.2 [‡] 5	$(41/2^{-})$	c	J^{π} : O γ rays to $(37/2^{-})$.
$4760.4^{\ddagger c}$ 6	$45/2^{(+)}$	c	J^{π} : 839.6v O to 41/2 ⁽⁺⁾ .
4781.8 [‡] 6	$(43/2^{-})$	c	J^{π} : 271.1 γ D to (41/2 ⁻).
$4795.5^{\ddagger d}$ 6	$45/2^{(+)}$	C	J^{π} : 678.8 γ O to 41/2 ⁽⁺⁾ .
4979.0 [‡] <i>e</i> 6	$(45/2^+)$	c	J^{π} : O γ -ray transitions to (41/2 ⁺) and 41/2 ⁽⁺⁾ .
4984.0 [‡] 6	$(43/2^{-})$	c	J^{π} : 268.7 γ M1 to (41/2 ⁻).
$5023.0^{\ddagger} 6$	$(45/2^{-})$	c	J^{π} : 512.3 γ Q to (41/2 ⁻). 241.2 γ D to (43/2 ⁻).
5031.6 [‡] 6	(45/2)	c	J^{π} : 520.9v to (41/2 ⁻), 249.8v D to (43/2 ⁻).
$5085.8^{\ddagger i}$ 12	(c	
5134.6 ^{‡g} 7	$(47/2^{-})$	C	J^{π} : 649.1 γ Q to (43/2 ⁻).
5155.9 [‡] <i>j</i> 7	$(45/2^{-})$	с	J^{π} : 886.9 γ Q to (41/2 ⁻).
5199.6 ^{‡k} 8	$(45/2^{-})$	с	J^{π} : 796.0 γ Q to (41/2 ⁻).
5256.3 [‡] 7	(47/2)	C	J^{π} : 233.3 γ D to (45/2 ⁻).
5270.6 [‡] 6	$(45/2^{-})$	с	J^{π} : 555.4 γ Q to (41/2 ⁻), 286.6 γ D to (43/2 ⁻).
5424.2 [‡] 6	$(47/2^{-})$	с	J^{π} : 440.2 γ Q to (43/2 ⁻).
5555.4 ^{‡d} 7	$(49/2^+)$	с	J^{π} : 759.9 γ Q to 45/2 ⁽⁺⁾ .
5634.7 [‡] 6	$(47/2^{-})$	с	J^{π} : 650.7 γ Q to (43/2 ⁻).
5662.1 ^{‡e} 6	$(49/2^+)$	с	J^{π} : 683.1 γ Q to (45/2 ⁺).
5681.5 ^{‡c} 7	$49/2^{(+)}$	с	J^{π} : 921.1 γ Q to 45/2 ⁽⁺⁾ .
5781.9 [‡] 6	$(49/2^{-})$	с	J^{π} : 147.2 γ (M1) to (47/2 ⁻).
5817 [‡] <i>l</i> 8	J≈(31/2) ^{&}	D	Additional information 2. J^{π} : 31/2 from linking transitions reported in 2004Si19,1998ReZV,1999SiZZ.
5923.8 ^{‡g} 8	(51/2 ⁻)	С	J^{π} : 789.2 γ Q to (47/2 ⁻).
5930.9 ^{‡i} 12		С	
6127.9 [‡] <i>l</i> 7	J+2	D	
6153.5 [‡] <i>j</i> 7		С	
6213.4 [‡] 6	(51/2-)	С	J^{π} : 578.7 γ Q to (47/2 ⁻), 431.5 γ D to (49/2 ⁻).
6358.9 ^{‡d} 8	$(53/2^+)$	С	J^{π} : 803.5 γ Q to (49/2 ⁺).
6461.8 ^{‡e} 7	$(53/2^+)$	С	J^{π} : 799.7 γ Q to (49/2 ⁺).
6479.4 [‡] <i>l</i> 7	J+4	D	
6587.7 [‡] 7	(53/2)	С	J^{π} : 512.3 γ Q to (49/2 ⁻).
6648.8 ^{‡c} 8	$53/2^{(+)}$	С	J^{π} : 967.3 γ Q to 49/2 ⁽⁺⁾ .
6806.3 ^{‡8} 8	(55/2-)	С	J^{π} : 882.5 γ Q to (51/2 ⁻).
6871.0 [‡] <i>l</i> 9	J+6	D	
7064.6 [‡] 7	$(55/2^{-})$	С	J^{π} : 851.2 γ Q to (51/2 ⁻).
7205.5 ^{‡d} 8	$(57/2^+)$	С	J^{π} : 846.6 γ Q to (53/2 ⁺).
7302.3 [‡] 9	J+8	D	
7355.1 [‡] 7	$(57/2^{-})$	С	J^{π} : 290.5 γ (M1) to (55/2 ⁻).
7655.9 [‡] 8	(59/2)	С	J^{π} : 300.8 γ D to (57/2 ⁻).
7772.4 [‡] 9	J+10	D	

Continued on next page (footnotes at end of table)

¹⁹¹Hg Levels (continued)

E(level) [†]	J π #	XREF	Comments
7798.8 ^{‡g} 9		с	
7818.0 [‡] 8	(59/2)	с	J^{π} : 462.9 γ D to (57/2 ⁻).
7825.1 [‡] 9	(C	
8115 5 8	(61/2)	C	I^{π} . 459 6% D to (59/2)
$8280.8^{\ddagger l}$ a	(01/2) I+12	D D	<i>s</i> . 157.67 <i>D</i> to (57 <i>2</i>).
8470 0 8	J + 12 (62/2)	C C	I^{π}_{1} , 824 h_{2} O to (50/2)
8707.0^{\pm} 8	(03/2)	C	J : 824.07 Q to (39/2).
$8/9/.0^{+} 8$	T. 14	C	
8826./** 9	J+14	D	
9409.140	J+16	D	
10027.6^{+1} 9	J+18	D	
10681.3 ⁺¹ 9	J+20	D	
11369.6 ⁴¹ 10	J+22	D	
12091.8 ^{#1} 10	J+24	D	
12847.4 [‡] <i>l</i> 11	J+26	D	
13636.2 [‡] <i>l</i> 12	J+28	D	
z ^m	J1≈(21/2) ^{&}	D	Additional information 3.
252 (^m 7		_	$Q(intrinsic) \approx 18 \ (1990Ca18).$
$252.4 + z^m 7$	J1+2	D	
$343.1+2^{m}$ / 878 2+3 ^m 8	J1+4 I1⊥6	ע	
$1250.9+z^{m}.8$	J1+0 I1+8	D D	
$1662.7 + z^m 8$	J1+10	D	
2113.0+z ^m 8	J1+12	D	
2601.1+z ^m 8	J1+14	D	
3126.3+z ^m 8	J1+16	D	
3687.9+z ^m 9	J1+18	D	
$4285.1+z^m$ 9	J1+20	D	
$4917.2 + 2^{m}9$ 5583 $4 + 2^{m}10$	J1+22 I1+24	ע	
$6283 3+z^{m} 10$	J1+24 J1+26	D D	
$7016.0+z^m$ 11	J1+28	D	
7781.2+z ^m 11	J1+30	D	
8577.7+z ^m 13	J1+32	D	
u ⁿ	J2≈(23/2) ^{&}	D	Additional information 4.
272.0+u ⁿ 10	J2+2	D	
$585.1 + u^{n} II$	J2+4	D	
$93/.6+u^{n}$ 11	J2+6 J2+8	D	
$1329.1 + u^{n} 11$ 1758 8+u ⁿ 11	J_{2+0} I_{2+10}	ם ח	
$2225.9 + u^n 12$	J_{2+12}	D	
$2729.8 + u^n$ 12	J2+12	D	
3269.5+u ⁿ 12	J2+16	D	
3844.5+u ⁿ 12	J2+18	D	
4454.0+u ⁿ 12	J2+20	D	
5096.7 + u'' 12	J2+22	D	
$5/1/2.8 + u^{n} 13$ 6481 3 $u^{n} 12$	J2+24 I2±26	ע	
$7221 3 \pm n^{n} 13$	J2+20 I2+28	ע ת	
7221.5 FU 15	32120	U	

¹⁹¹Hg Levels (continued)

E(level) [†]	J ^{π#}	XREF	Comments
7992.6+u ⁿ 14	J2+30	D	
8793.2+u ⁿ 17	J2+32	D	
v ⁰	J3≈(25/2) ^{&}	D	Additional information 5.
280.9+v ⁰ 6	J3+2	D	
604.5+v ^o 7	J3+4	D	
971.6+v ⁰ 7	J3+6	D	
1381.9+v ⁰ 8	J3+8	D	
1834.5+v ⁰ 9	J3+10	D	
2328.6+v ^o 9	J3+12	D	
2864.0+v ^o 9	J3+14	D	
3439.0+v ^o 10	J3+16	D	
4053.3+v ^o 11	J3+18	D	
4704.1+v ^o 13	J3+20	D	
5391.7+v ^o 15	J3+22	D	
6114.9+v ⁰ 17	J3+24	D	
6870.9+v ^o 21	J3+26	D	
7659.9+v ^o 25	J3+28	D	

- [†] From least-squares fit to adopted γ -ray energies. Doubtful levels from ¹⁹¹Tl ε decay (e.g., levels based only on doubtful coincidences of γ rays with uncertain placement in the level scheme (1988WoZZ)) are not included in this list.
- [‡] Level energy based on the isomeric state at 128 keV 8 For total uncertainty, propagate 8 keV in quadrature.
- [#] Spin and parity assignments are based on band structure, γ -ray multipolarities, and decay pattern. Most of the bands from (HI,xn γ) have been interpreted in terms of the cranking shell model assuming oblate nuclear deformation (1992Ye01). Bands are labeled by parity and signature (π , α). Specific arguments are given with some of the individual levels.
- ^(a) J^{π} assignment is based on depopulating γ -ray multipolarity, and the energy systematics of levels with known J^{π} in odd-A Hg isotopes (1979WoZU, 1976GoZP).
- & From least-squares fit to rotational-model formula (1990Be37,1992Wu01).
- ^{*a*} Band(A): Band 1 (π , α)=(+,+1/2) Conf: $i_{13/2}$.
- ^{*b*} Band(B): Band 2 $(\pi, \alpha) = (+, -1/2)$.
- ^{*c*} Band(C): Band 3 (π , α)=(+,+1/2) Aligned band.
- ^{*d*} Band(D): Band 4 (π , α)=(+,+1/2).
- ^{*e*} Band(E): Band 5 $(\pi, \alpha) = (+, +1/2)$.
- ^{*f*} Band(F): Band 6 $(\pi, \alpha) = (-, -1/2)$.
- ^{*g*} Band(G): Band 7 $(\pi, \alpha) = (-, -1/2)$.
- ^{*h*} Band(H): Band 8 $(\pi, \alpha) = (-, +1/2)$.
- ^{*i*} Band(I): Band 9 $(\pi, \alpha) = (-, +1/2)$.
- ^{*j*} Band(J): Band 10 (π , α)=(-,+1/2).
- ^{*k*} Band(K): Terminating band.
- ¹ Band(L): SD-1 band (1995So17,1995Ca15,1989Mo08). Q(intrinsic)=18 3; β_2 =0.55 (1990Ca18), 17.5 8 (1998ReZV). Favored j15/2 intruder orbitals (α =-1/2). Percent population=2.0 3 (1995So17), 1.2 6 (1995So17 in (⁶⁴Ni,3n γ)), 2 (1989Mo08). 2004Si19, 1999SiZZ (also 1998SiZZ,1998ReZV) propose the lowest SD member at 5689 from the observation of two linking transitions of 2778 and 3310 keV, from the second member of this band to ND levels at 3222+x (3350) and 2690.6+x (2819), respectively.
- ^{*m*} Band(M): SD-2 band Q(intrinsic) \approx 18 (1990Ca18), 17.5 8 (1998ReZV). Unfavored signature of 3/2[642] or favored signature of 1/2[640] (1995Ca15). Percent population=0.8 4 (⁶⁴Ni,3ny) (1995So17), 0.8 1 (³⁶S,5ny) (1995So17), 1 (1990Ca18).
- ^{*n*} Band(N): SD-3 band (1995So17,1995Ca15,1990Ca18). Favored signature of 3/2[642] Percent population=0.8 4 (⁶⁴Ni,3nγ) (1995So17), 0.8 3 (³⁶S,5nγ) (1995So17), 1 (1990Ca18).
- ^o Band(O): SD-4 band Unfavored j15/2 intruder orbitals. Percent population=0.2 (1995Ca15).

						Adopted Le	evels, Gamı	mas (continued)	
							γ(¹⁹¹ Hg	<u>;)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	δ^{a}	α^d	Comments
51.59	(5/2 ⁻)	51.6 [‡] 3	100 [‡]	0.0	3/2 ⁽⁻⁾	M1+E2	0.65	41.6 <i>13</i>	B(M1)(W.u.)=0.0063 +11-9; B(E2)(W.u.)= 3.9×10^2 12 α (L)= 31.3 9; α (M)= 8.01 24 α (N)= 1.99 6; α (O)= 0.335 10; α (P)= 0.00483 11
103.7	(1/2 ⁻)	103.5 [‡] 4	100 [‡]	0.0	3/2 ⁽⁻⁾	M1+E2	0.50 2	6.68 13	α (K)=4.81 <i>11</i> ; α (L)=1.43 <i>4</i> ; α (M)=0.350 <i>10</i> α (N)=0.0873 <i>26</i> ; α (O)=0.0156 <i>4</i> ; α (P)=0.000695 <i>16</i>
336.32	(5/2 ⁻)	284.7 [‡] 3	10.0 [‡] 10	51.59	(5/2 ⁻)	M1		0.416 6	α (K)=0.342 5; α (L)=0.0571 8; α (M)=0.01328 19 α (N)=0.00333 5; α (O)=0.000630 9; α (P)=4.83×10 ⁻⁵ 7
		336.3 [‡] 2	100 [‡] 6	0.0	3/2(-)	M1+E2	1.50 26	0.134 16	α (K)=0.100 15; α (L)=0.0259 13; α (M)=0.00632 28 α (N)=0.00158 7; α (O)=0.000284 15; α (P)=1.37×10 ⁻⁵ 21
343.96	(9/2)+	215.95 [‡] 20	100 [‡]	128	13/2 ⁽⁺⁾	E2		0.301 4	α (K)=0.1407 20; α (L)=0.1204 17; α (M)=0.0310 5 α (N)=0.00771 11; α (O)=0.001307 19; α (P)=1.763×10 ⁻⁵ 25
375.5	$(3/2^{-})$	271.4 [‡] 5	4.4 [‡] 21	103.7	$(1/2^{-})$				
		324.1 [‡] 10	≈12 [‡]	51.59	$(5/2^{-})$				
		375.7 [‡] 4	100 [‡] 18	0.0	3/2 ⁽⁻⁾	M1		0.1962 28	α (K)=0.1613 23; α (L)=0.0268 4; α (M)=0.00622 9 α (N)=0.001560 22; α (O)=0.000295 4; α (P)=2.268×10 ⁻⁵ 32
377.9	$(7/2^{-})$	41.7 [‡]	≈6.5 [‡]	336.32	(5/2-)				
		326.3 [‡] 3	100 [‡] 5	51.59	(5/2-)	M1+E2	0.93 22	0.193 26	α (K)=0.150 24; α (L)=0.0321 20; α (M)=0.0077 4 α (N)=0.00192 11; α (O)=0.000353 23; α (P)=2.09×10 ⁻⁵ 34
		378.0 [‡] 10	≈13 [‡]	0.0	$3/2^{(-)}$				
393.03	(11/2)+	49.0 [‡] <i>4</i>	≈26 [‡]	343.96	(9/2)+	(E2)		150 6	$\begin{array}{l} \alpha(\text{L})=113 \ 5; \ \alpha(\text{M})=29.3 \ 13 \\ \alpha(\text{N})=7.25 \ 31; \ \alpha(\text{O})=1.19 \ 5; \ \alpha(\text{P})=0.00136 \ 5 \\ \text{Mult.: Conflicting assignments: Dominant E2 from} \\ \alpha(\text{L})\text{exp}=109 \ \text{and} \ \alpha(\text{M})\text{exp}=33.3 \ (^{191}\text{Tl} \ \varepsilon \ \text{decay} \ (5.22 \\ \text{min}) \ 1976\text{GoZE} - \text{Table 4-4}), \ \text{while dominant M1 from} \\ \delta=0.04 \ \text{from} \ \%\text{E2}=0.2 \ \text{in} \ 1987\text{BoZT} \ \text{based on ce} \\ \text{measurements, data were not listed.} \end{array}$
		265.0 [‡] 2	100 [‡] 5	128	13/2 ⁽⁺⁾	M1+E2	1.8 3	0.238 25	$\alpha(K)=0.163\ 24;\ \alpha(L)=0.0567\ 15;\ \alpha(M)=0.01410\ 28$ $\alpha(N)=0.00351\ 7;\ \alpha(Q)=0.000619\ 17;\ \alpha(P)=2.22\times10^{-5}\ 35$
430.3	$(5/2^{-})$	378.8 [‡] 10	100 [‡]	51.59	$(5/2^{-})$				
		430.4 [‡] 4	29 [‡] 4	0.0	3/2 ⁽⁻⁾	M1(+E2)	0.8 10	0.10 4	$\alpha(K)=0.079 \ 33; \ \alpha(L)=0.015 \ 4; \ \alpha(M)=0.0035 \ 8 \ \alpha(N)=0.00088 \ 20; \ \alpha(O)=1.6\times10^{-4} \ 4; \ \alpha(P)=1.1\times10^{-5} \ 5$
518.5	17/2 ⁽⁺⁾	390.4 <i>3</i>	100	128	13/2 ⁽⁺⁾	(E2)		0.0506 7	$\alpha(K)=0.0339 5; \alpha(L)=0.01264 18; \alpha(M)=0.00316 5$ $\alpha(N)=0.000787 11; \alpha(O)=0.0001380 20; \alpha(P)=4.45\times10^{-6} 6$ E_{γ} : Weighted average of 390.5 3 (HI,xn γ), 390.3 3 (α ,7n γ), and 390.3 7 ¹⁹¹ Tl ec decay (5.22 m).
563.5	$(7/2^{-})$	227.1 [‡] 5	5.1 [‡] 24	336.32	$(5/2^{-})$				

From ENSDF

 $^{191}_{80} {
m Hg}_{111}$ -7

						Adopted Le	vels, Gamn	nas (continued)	
						$\gamma(19)$	⁹¹ Hg) (cont	inued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	δ^{a}	α^d	Comments
563.5	(7/2 ⁻)	563.5 [‡] 5	100 [‡] 4	0.0	3/2 ⁽⁻⁾	E2		0.02030 29	$\alpha(K)=0.01509\ 21;\ \alpha(L)=0.00395\ 6;\ \alpha(M)=0.000964\ 14$ $\alpha(N)=0.0002406\ 34;\ \alpha(O)=4.32\times10^{-5}\ 6;\ \alpha(P)=2.003\times10^{-6}$ 28
632.3	(9/2 ⁻)	254.3 [‡] 7	≈7 [‡]	377.9	$(7/2^{-})$				
		580.7 [‡] 4	100 [‡] 4	51.59	(5/2 ⁻)	E2		0.01894 27	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.01417 \ 20; \ \alpha(\mathrm{L}) = 0.00363 \ 5; \ \alpha(\mathrm{M}) = 0.000882 \ 12 \\ \alpha(\mathrm{N}) = 0.0002201 \ 31; \ \alpha(\mathrm{O}) = 3.96 \times 10^{-5} \ 6; \ \alpha(\mathrm{P}) = 1.881 \times 10^{-6} \\ 26 \end{array} $
659.1	(9/2 ⁻)	281.2 [‡] 4	77 [‡] 8	377.9	(7/2 ⁻)	M1+E2	0.7 4	0.33 7	α (K)=0.26 7; α (L)=0.053 4; α (M)=0.0127 8 α (N)=0.00318 20; α (O)=0.00059 5; α (P)=3.67×10 ⁻⁵ 99
		322.8 [‡] 10	≈27 4	336.32	$(5/2^{-})$				
		607.4 ⁺ 5	100+ 10	51.59	(5/2 ⁻)	(E2)		0.01710 24	$ \begin{array}{l} \alpha(\text{K}) = 0.01291 \ 18; \ \alpha(\text{L}) = 0.00319 \ 5; \ \alpha(\text{M}) = 0.000774 \ 11 \\ \alpha(\text{N}) = 0.0001932 \ 27; \ \alpha(\text{O}) = 3.49 \times 10^{-5} \ 5; \ \alpha(\text{P}) = 1.713 \times 10^{-6} \\ 24 \end{array} $
662.7		318.7 [‡] 4	100 [‡]	343.96	$(9/2)^+$				
663.26	(15/2+)	535.4 3	100	128	13/2 ⁽⁺⁾	(M1+E2) ^b	0.14 4	0.0756 12	α(K)=0.0622 10; α(L)=0.01025 16; α(M)=0.00238 4 α(N)=0.000597 9; α(O)=0.0001130 18; α(P)=8.68×10-6 15 Eγ: Weighted average of 535.5 3 (HI,xnγ), 535.3 3 (α,7nγ), and 535.2 10-191Tl ec decay (5.22 m). δ: from γ(θ) (1975Li16) in 194Pt(α,nγ) dataset.
691.6		$261.5^{\ddagger} 4$ $354.8^{\ddagger} 5$ $640.2^{\ddagger} 5$ $692.3^{\ddagger} f 7$	$10.1^{\ddagger} 25 \\ 7^{\ddagger} 3 \\ 100^{\ddagger} 10 \\ 31^{\ddagger} 8$	430.3 336.32 51.59 0.0	(5/2 ⁻) (5/2 ⁻) (5/2 ⁻) 3/2 ⁽⁻⁾				
716.6	$(7/2)^+$	323.6 [‡] 10	≈13 [‡]	393.03	$(11/2)^+$				
		372.6 [‡] 4	100 [‡] <i>10</i>	343.96	(9/2)+	M1+E2	1.4 3	0.106 16	α (K)=0.081 <i>15</i> ; α (L)=0.0191 <i>15</i> ; α (M)=0.00461 <i>31</i> α (N)=0.00115 <i>8</i> ; α (O)=0.000209 <i>16</i> ; α (P)=1.11×10 ⁻⁵ <i>21</i>
870.7	(13/2)+	207.5 [‡] 4 477.6 [‡] 4 526.6 [‡] 8	$10^{\ddagger} 4$ $90^{\ddagger} 10$ $11^{\ddagger} 3$	663.26 393.03 343.96	(15/2 ⁺) (11/2) ⁺ (9/2) ⁺				
		742.8 [‡] 6	100 [‡] 10	128	13/2 ⁽⁺⁾	M1+E2	3.5 8	0.0127 10	α (K)=0.0100 8; α (L)=0.00205 12; α (M)=0.000488 27 α (N)=0.000122 7; α (O)=2.24×10 ⁻⁵ 13; α (P)=1.33×10 ⁻⁶ 12
889.1	$(11/2)^+$	172.3 [‡] 5	12 [‡] 6	716.6	$(7/2)^+$				
		496.1 [‡] 5	100 [‡] 11	393.03	$(11/2)^+$	M1(+E2)	0.9 10	0.064 <i>30</i>	α (K)=0.051 26; α (L)=0.0096 31; α (M)=0.0023 7 α (N)=5.7×10 ⁻⁴ 17; α (O)=1.06×10 ⁻⁴ 34; α (P)=7.E-6 4
		545.2 [‡] 9	$\approx 40^{\ddagger}$	343.96	(9/2)+	E2(+M1)	≈3.2	≈0.0265	α (K) \approx 0.02010; α (L) \approx 0.00485; α (M) \approx 0.001173 α (N) \approx 0.000293; α (O) \approx 5.31 \times 10 ⁻⁵ ; α (P) \approx 2.70 \times 10 ⁻⁶

 ∞

н

					Adopte	d Levels, Gai	nmas (cor	ntinued)	
						$\gamma(^{191}\text{Hg})$ (co	ontinued)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^{&}	δ^{a}	α ^{<i>d</i>}	Comments
889.1	$(11/2)^+$	761.1 [‡] 7	52 [‡] 11	128	$13/2^{(+)}$				
911.4		480.5 [‡] <i>f</i> 6	52 [‡] 20	430.3	(5/2 ⁻)				
		533.5 [‡] 6	50 [‡] 12	377.9	$(7/2^{-})$				
		535.5 [‡] 10	≈100 [‡]	375.5	$(3/2^{-})$				
		575.7 [‡] 10	40 [‡] 12	336.32	$(5/2^{-})$				
952.1	(9/2 ⁻)	521.7 [‡] 10	≈29 [‡]	430.3	$(5/2^{-})$				
		615.8 [‡] 4	100 [‡] 12	336.32	(5/2 ⁻)	(E2)		0.01659 23	$\alpha(K)=0.01255$ 18; $\alpha(L)=0.00307$ 4; $\alpha(M)=0.000744$ 11
									α (N)=0.0001858 26; α (O)=3.36×10 ⁻⁵ 5; α (P)=1.665×10 ⁻⁶ 23
997.1	$(5/2^-, 7/2^-, 9/2^-)$	566.8 [‡] 6	82 15	430.3	$(5/2^{-})$				
		619.1 [‡] 5	100 [‡] 12	377.9	(7/2 ⁻)	M1(+E2)	0.8 8	0.038 14	α (K)=0.031 <i>12</i> ; α (L)=0.0055 <i>16</i> ; α (M)=0.00128 <i>35</i> α (N)=3.2×10 ⁻⁴ <i>9</i> ; α (O)=6.0×10 ⁻⁵ <i>17</i> ; α (P)=4.3×10 ⁻⁶ <i>17</i>
		660.9 [‡] 5	92 [‡] 10	336.32	$(5/2^{-})$				
1016.2	$(11/2^{-})$	383.9 [‡] 5	14 [‡] 4	632.3	$(9/2^{-})$				
		638.4 [‡] 5	100 [‡] 20	377.9	$(7/2^{-})$				
1028.0	$(11/2, 13/2)^+$	634.8 [‡] 5	37 [‡] 12	393.03	$(11/2)^+$				
		684.3 [‡] 7	100 [‡] 10	343.96	$(9/2)^+$				
		900.5 [‡] 11	71 [‡] 10	128	13/2(+)	E2(+M1)	3.0 16	0.0087 30	α (K)=0.0070 25; α (L)=0.0013 4; α (M)=3.1×10 ⁻⁴ 8 α (N)=7.7×10 ⁻⁵ 20; α (O)=1.4×10 ⁻⁵ 4; α (P)=9.E-7 4
1075.6		739.3 [‡] 7	100 [‡]	336.32	$(5/2^{-})$				
1081.1		744.8 [‡] 7	100 [‡] 17	336.32	$(5/2^{-})$				
		1080.9 ^{‡f} 8	70 [‡] 13	0.0	$3/2^{(-)}$				
1107.2	(7/2 ⁻ ,9/2 ⁻)	474.8 [‡] 6	19 [‡] 10	632.3	(9/2 ⁻)	M1+E2	1.1 9	0.06 4	α (K)=0.051 33; α (L)=0.010 4; α (M)=0.0024 9 α (N)=6.0×10 ⁻⁴ 21; α (O)=1.1×10 ⁻⁴ 4; α (P)=7.E-6 5
		729.5 [‡] 6	100 [‡] 11	377.9	$(7/2^{-})$				
		1055.4 [‡] 8	61 [‡] 7	51.59	$(5/2^{-})$				
1146.5		514.2 [‡] 6	100 [‡] 18	632.3	$(9/2^{-})$				
		583.0 [‡] 6	≈77 [‡]	563.5	$(7/2^{-})$				
1147.4	$21/2^{(+)}$	628.7 <i>3</i>	100	518.5	$17/2^{(+)}$	Q ^b			
1178.3		1126.7 [‡] 8	100 [‡]	51.59	(5/2 ⁻)				

					Adopte	d Levels, Gan	nmas (con	tinued)	
						$\gamma(^{191}\text{Hg})$ (co	ntinued)		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ^{a}	α^{d}	Comments
1193.1		501.3 [‡] 6	56 [‡] 10	691.6		M1(+E2)	0.3 6	0.086 23	$\alpha(K)=0.070 \ 20; \ \alpha(L)=0.0118 \ 25; \ \alpha(M)=0.0027 \ 5 \\ \alpha(N)=0.00069 \ 14; \ \alpha(O)=0.000130 \ 27; \\ \alpha(P)=9.8\times10^{-6} \ 29$
		815.4 [‡] 6	100 [‡] 21	377.9	$(7/2^{-})$				
1212.4	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	834.5 [‡] 7	100 [‡]	377.9	(7/2 ⁻)	M1+E2	2.3 10	0.0111 <i>33</i>	α (K)=0.0089 28; α (L)=0.0017 4; α (M)=0.00040 9 α (N)=9.9×10 ⁻⁵ 22; α (O)=1.8×10 ⁻⁵ 4; α (P)=1.2×10 ⁻⁶ 4
1215.7?		871.8 ^{‡f} 9	100 [‡]	343.96	$(9/2)^+$				
1233.7		517.1 [‡] 6	100 [‡]	716.6	$(7/2)^+$				
1258.8		865.6 [‡] 9	37 [‡] 17	393.03	$(11/2)^+$				
		914.9 [‡] 7	100 [‡] <i>17</i>	343.96	$(9/2)^+$				
1261.3	11/2+,9/2+	868.1 [‡] 9	32 [‡] 16	393.03	$(11/2)^+$				
		917.3 [‡] 7	100 [‡] 16	343.96	(9/2)+	M1+E2	1.8 12	0.010 6	α (K)=0.008 5; α (L)=0.0014 7; α (M)=3.4×10 ⁻⁴ 16 α (N)=8.E-5 4; α (O)=1.6×10 ⁻⁵ 8; α (P)=1.1×10 ⁻⁶ 7
		1133.4 [‡] <i>10</i>	35‡ 12	128	$13/2^{(+)}$,			
1299.8	$(19/2^+)$	636.6 <i>3</i>	82 18	663.26	$(15/2^+)$	Q ^D			I_{γ} : Other: 57 29 (α ,7n γ).
		781.3 3	100 15	518.5	17/2 ⁽⁺⁾	(M1+E2) ^D	0.14 4	0.0283 5	$\alpha(K)=0.0234 4; \alpha(L)=0.00380 6; \alpha(M)=0.000881 14$ $\alpha(N)=0.0002208 35; \alpha(O)=4.18\times10^{-5} 7;$ $\alpha(P)=3.24\times10^{-6} 5$ $\delta: \text{ from } \gamma(\theta) (1975\text{Li16}) \text{ in } {}^{194}\text{Pt}(\alpha \text{ ny})$
1317.6	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	754.1 [‡] 8	100 [‡]	563.5	(7/2-)	M1+E2	2.4 8	0.0138 28	$\alpha(K)=0.0109\ 23;\ \alpha(L)=0.00215\ 32;\ \alpha(M)=0.00051\ 7$ $\alpha(N)=0.000127\ 18;\ \alpha(O)=2.4\times10^{-5}\ 4;$ $\alpha(P)=1.47\times10^{-6}\ 33$
1319.6		687.3 [‡] 10	100 [‡]	632.3	(9/2-)				
1335.6		991.6 10	100	343.96	$(9/2)^+$				
1446.5		1102.5 [‡] 10	100 [‡] 29	343.96	$(9/2)^+$				
		1318.6 [‡] 11	75 [‡] 25	128	$13/2^{(+)}$				
1562.2		1218.2 [‡] 9	100	343.96	$(9/2)^+$	h			
1766.0	(21/2 ⁻)	466.3# 2	100 6	1299.8	(19/2 ⁺)	D ^D		0.01032	$\alpha(K)=0.00856 \ 12; \ \alpha(L)=0.001355 \ 19; \alpha(M)=0.000313 \ 5; \ \alpha(N+)=9.34\times10^{-5} \ 14 \alpha(N)=7.79\times10^{-5} \ 11; \ \alpha(O)=1.449\times10^{-5} \ 21; \alpha(P)=1.001\times10^{-6} \ 14$
		618.5 <i>3</i>	33 4	1147.4	$21/2^{(+)}$				
1816.4		1472.4 [‡] 10	100‡	343.96	$(9/2)^+$				
1843.9		1507.6 [‡] 10	100 [‡]	336.32	$(5/2^{-})$				

						<u>/(</u>	116) (com	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	α^{d}	Comments
1897.5	25/2(+)	750.2 3	100	1147.4	$21/2^{(+)}$	Q ^b		
1932.6	(25/2 ⁻)	166.6 <i>3</i>	100	1766.0	(21/2 ⁻)	E2 ^b	0.747 12	B(E2)(W.u.)=54 +6-5 α (K)=0.261 4; α (L)=0.364 6; α (M)=0.0945 15 α (N)=0.0235 4; α (O)=0.00394 6; α (P)=3.29×10 ⁻⁵ 5 Authors in 1978Me11 from their measured half-life derived B(E2)=(3.50 34)×10 ³ e ² fm ⁴ .
1989.9	$(23/2^{-})$	224.0 3	12.1 17	1766.0	$(21/2^{-})$	D		
		842.5 3	100 16	1147.4	$21/2^{(+)}$	D		
2192.9	$(27/2^{-})$	203.0 3	100 7	1989.9	$(23/2^{-})$	Q ^v		
		200.2 5	23 4 49 9	1932.0	(25/2) 25/2 ⁽⁺⁾	D		
2251.6	$(29/2^{-})$	$319.0^{\#}$ 2	100	1932.6	$(25/2^{-})$	O^{b}		
2412.4	(=>(=)	$2034.5^{e\ddagger} 20$	$100^{e^{\ddagger}}$	377.9	$(7/2^{-})$	×		
2414.4		$2070.4^{e\ddagger}$ 10	100 ^e ‡	343.96	$(9/2)^+$			
2423.3		2045.4 ^{e‡} 10	100 ^e ‡	377.9	$(7/2^{-})$			
2427.5		2034.5 ^{e‡} 20	100 ^{e‡}	393.03	$(11/2)^+$			
2430.9		2086.9 ^{e‡} 10	100 ^e ‡	343.96	$(9/2)^+$			
2435.5		2091.5 [‡] <i>11</i>	100 [‡]	343.96	$(9/2)^+$			
2438.4		2045.4 ^{e‡} 10	100 e ‡	393.03	$(11/2)^+$			
2440.2		1488.1 [‡] 8	100‡	952.1	(9/2-)			
2441.5		2105.2 [‡] 10	100‡	336.32	$(5/2^{-})$			
2443.0		2065.1 [‡] <i>14</i>	100‡	377.9	$(7/2^{-})$			
2443.1		2099.1 ^{e‡} 10	100 ^e ‡	343.96	$(9/2)^+$			
2457.0		1586.4 [‡] <i>11</i>	43 [‡] 9	870.7	$(13/2)^+$			
		2112.8 [‡] <i>15</i>	45 [‡] 9	343.96	$(9/2)^+$			
		2328.9 [‡] 12	100 [‡] 10	128	$13/2^{(+)}$			
2459.7		1443.5 [‡] 9	100 [‡]	1016.2	$(11/2^{-})$			
2463.4		2070.4 ^{e‡} 10	100 ^e ‡	393.03	$(11/2)^+$			
2468.2		2075.2 [‡] 14	100‡	393.03	$(11/2)^+$			
2475.2		1459.0 [‡] 20	100‡	1016.2	$(11/2^{-})$			
2476.3		1844.0 [‡] 10	100 [‡]	632.3	$(9/2^{-})$			
2477.0		2099.1 ^{e‡} 10	100 ^{e‡}	377.9	$(7/2^{-})$			
2479.9		2086.9 ^{e‡} 10	100 ^{e‡}	393.03	$(11/2)^+$			
2483.1		2105.2 [‡] 10	100 [‡]	377.9	$(7/2^{-})$			

From ENSDF

 $^{191}_{80} {
m Hg}_{111}$ -11

	Adopted Levels, Gammas (continued)								
	γ ⁽¹⁹¹ Hg) (continued)								
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.&	α^d	Comments	
2484.4		1613.6 [‡] <i>10</i>	100 [‡] 20	870.7	$(13/2)^+$				
		2141.0 [‡] 20	27 [‡] 7	343.96	$(9/2)^+$				
2486.8		1616.1 [‡] 8	100 [‡] 10	870.7	$(13/2)^+$				
		2358.7 [‡] 14	81 [‡] 14	128	$13/2^{(+)}$				
2489.6		1619.0 [‡] <i>10</i>	46 [‡] 5	870.7	$(13/2)^+$				
		2361.5 [‡] 10	100 [‡] 10	128	$13/2^{(+)}$				
2534.0		2141.0 ^{<i>e</i>+} 20	100 ^e ‡	393.03	$(11/2)^+$				
2536.9		2192.9 ⁺ 15	100+	343.96	$(9/2)^+$				
2543.1		1979.6+ 14	100+	563.5	$(7/2^{-})$	h			
2559.7	$29/2^{(+)}$	662.1 [#] 2	100	1897.5	$25/2^{(+)}$	Q^{ν}			
2673.1	$(31/2^{-})$	480.2 3	100	2192.9	$(27/2^{-})$	Q^{ν}			
2717.0	$(29/2^{(+)})$	819.5 3	100	1897.5	$(25/2^{(+)})$	Q			
2722.9	(29/2) 33/2 ⁽⁺⁾	166.9.3	100	2559.7	(23/2) 29/2 ⁽⁺⁾	E2	0 742 11	$B(F2)(W_{11})=41.7+30-27$	
2720.0	55/2	100.9 5	100	2007.1	27/2	22	0.7 12 11	$\alpha(K)=0.260$ 4; $\alpha(L)=0.361$ 6; $\alpha(M)=0.0938$ 15	
								α (N)=0.0233 4; α (O)=0.00391 6; α (P)=3.27×10 ⁻⁵ 5	
								Authors in 1978Me11 from their measured half-life derived B(E2)= (2.72)	
2771.3	$(33/2^{-})$	519.7.3	100	2251.6	$(29/2^{-})$	0		$18) \times 10^{6} e^{-1} m^{2}$.	
2818.5	$(33/2^{-})$	$566.8^{\#}$ 2	100	2251.6	$(29/2^{-})$	$\tilde{0}^{b}$			
3063.5	$(29/2^+)$	1166.0 3	100	1897.5	$25/2^{(+)}$	Č.			
3206.6	$37/2^{(+)}$	479.9 [#] 2	100	2726.6	33/2(+)	Q ^b			
3245.6	$33/2^{(+)}$	528.6 <i>3</i>	100	2717.0	$29/2^{(+)}$	Q			
3295.1	$33/2^{(+)}$	231.6 3	16 5	3063.5	$(29/2^+)$	(Q)			
		568.4 3	100 26	2726.6	$33/2^{(+)}$	(Q)			
3350.3	$(35/2^{-})$	578.2 5	30 9 100	2/17.0	$(31/2^{-})$	Q			
3380.9	$(33/2^{-})$	658.0 3	100 39	2073.1	(31/2) $(29/2^{-})$	Q			
		1129.3 3	22 17	2251.6	$(29/2^{-})$				
3557.0	$(37/2^{-})$	738.6 [#] 2	100	2818.5	$(33/2^{-})$	Q ^b			
3615.8	$37/2^{(+)}$	320.7 3	100 14	3295.1	33/2(+)	Q ^b			
2646 4	(27/2-)	409.2 3	60 8	3206.6	$37/2^{(+)}$	(Q)			
3046.4 3856.2	(37/2)	8/5.1 4 1037 7 3	100	2771.3	$(33/2^{-})$	Q			
3920.8	$41/2^{(+)}$	714.2.3	100	3206.6	(35/2) $37/2^{(+)}$	O^{b}			
4074.9	$(37/2^{-})$	694.0 <i>3</i>	100 21	3380.9	$(33/2^{-})$	×			

						Adopt	ted Levels,	Gammas (continued)
							γ(¹⁹¹ Hg) (continued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.&	α^{d}	Comments
4074.9	$(37/2^{-})$	1256.4 <i>3</i>	42 33	2818.5	(33/2-)	(Q)		
4085.3	$(39/2^{-})$	735.0 <i>3</i>	100	3350.3	$(35/2^{-})$	Q ^b		
4097.1	$(39/2^{-})$	746.8 <i>3</i>	100	3350.3	$(35/2^{-})$	(Q)		
4116.7	$41/2^{(+)}$	500.9 <i>3</i>	100	3615.8	$37/2^{(+)}$	Q ^b		
4269.0	$(41/2^{-})$	712.0 3	100	3557.0	(37/2 ⁻)	Q		
4345.8	$(41/2^{-})$	788.8 3	100	3557.0	$(37/2^{-})$	Q		
4403.6	$(41/2^{-})$	757.2 3	100	3646.4	$(3^{\prime}/2^{-})$	Q		
4485.5	$(43/2^{-})$	400.2 3	100	4085.3	$(39/2^{-})$	Q ⁰		
4510.7	$(41/2^{-})$	953.7 <i>3</i>	100	3557.0	$(37/2^{-})$	Q		
4620.1	$(41/2^+)$	1004.3 3	62 15	3615.8	$37/2^{(+)}$	_		
4657.0	(20)	1413.5 3	100 23	3206.6	$37/2^{(+)}$	Q		
4657.9	(39/2)	801.7 3	53 IS 100 27	3850.2	(35/2)	D		
4715.2	$(41/2^{-})$	620.0.3	00 20	4085.3	(31/2) $(30/2^{-})$	D D⊥O		
4/13.2	(+1/2)	640 3 3	90 20 80 17	4074.9	$(37/2^{-})$	D+Q 0		
		1158.2.3	100 7	3557.0	$(37/2^{-})$	õ		
4760 4	$45/2^{(+)}$	839.6.3	100	3920.8	$41/2^{(+)}$	0 ^b		
4781.8	$(43/2^{-})$	271.1 3	100	4510.7	$(41/2^{-})$	D		
4795.5	$45/2^{(+)}$	678.8.3	100	4116.7	$41/2^{(+)}$	0		
4979.0	$(45/2^+)$	358.9 3	100 21	4620.1	$(41/2^+)$	ò		
		862.3 <i>3</i>	25 4	4116.7	$41/2^{(+)}$	Q		
4984.0	(43/2 ⁻)	268.7 3	100	4715.2	$(41/2^{-})$	M1	0.488 7	$\alpha(K)=0.400\ 6;\ \alpha(L)=0.0670\ 10;\ \alpha(M)=0.01558\ 22$ $\alpha(N)=0.00391\ 6;\ \alpha(O)=0.000739\ 11;\ \alpha(P)=5.67\times10^{-5}\ 8$
5023.0	$(45/2^{-})$	241.2.3	40 20	4781.8	$(43/2^{-})$	D		
	(-1)	512.3 3	100 20	4510.7	$(41/2^{-})$	Q		
5031.6	(45/2)	249.8 <i>3</i>	38 <i>13</i>	4781.8	$(43/2^{-})$	D		
		520.9 <i>3</i>	100 25	4510.7	$(41/2^{-})$			
5085.8		740.0 10	100	4345.8	$(41/2^{-})$			
5134.6	$(47/2^{-})$	649.1 <i>3</i>	100	4485.5	$(43/2^{-})$	Q		
5155.9	$(45/2^{-})$	886.9 3	100	4269.0	$(41/2^{-})$	Q		
5199.6	(45/2)	/96.0 3	100	4403.6	(41/2)	Q		
5250.5 5270.6	(47/2) $(45/2^{-})$	233.3 3	100 1	3023.0 (4084.0 /	(43/2)	D D		
5210.0	(+3/2)	200.0 3	86.5	4715.2	(-3/2) $(41/2^{-})$	0		
5424.2	$(47/2^{-})$	440.2.3	100	4984.0	$(43/2^{-})$	ŏ		
5555.4	$(49/2^+)$	759.9.3	100	4795.5	$45/2^{(+)}$	õ		
5634.7	$(47/2^{-})$	210.5 3	41 10	5424.2	$(47/2^{-})$	Ď		
	× 1 /	364.1 3	100 15	5270.6	(45/2-)			
		650.7 <i>3</i>	78 7	4984.0	$(43/2^{-})$	Q		
5662.1	$(49/2^+)$	683.1 <i>3</i>	100 24	4979.0	$(45/2^+)$	Q		

¹⁹¹₈₀Hg₁₁₁-13

					Adopted Levels, Gammas (continued)				
						$\gamma(^{191}\text{Hg})$	(continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{d}	Comments		
5662.1	(49/2+)	866.6 <i>3</i> 901.7 <i>3</i>	21 <i>4</i> 19 <i>3</i>	$\begin{array}{c} \hline 4795.5 \\ 4760.4 \\ 45/2^{(+)} \\ 45/2^{(+)} \end{array}$	(Q)				
5681.5	$49/2^{(+)}$	921.1 <i>3</i>	100	4760.4 45/2(+)	Q				
5781.9	(49/2 ⁻)	147.2 <i>3</i>	100	5634.7 (47/2 ⁻)	(M1)	2.62 4	α (K)=2.147 33; α (L)=0.363 6; α (M)=0.0845 13 α (N)=0.02120 32; α (O)=0.00401 6; α (P)=0.000307 5		
5923.8 5930.9	(51/2 ⁻)	789.2 <i>3</i> 845.1 <i>3</i>	100 100	5134.6 (47/2 ⁻) 5085.8	Q				
6127.9	J+2	310.9 [@] 7	100	5817 J≈(31/2	2)				
6153.5 6213.4	(51/2-)	997.6 <i>3</i> 431.5 <i>3</i>	100 81 <i>13</i> 100 <i>3</i> 2	$5155.9 (45/2^{-})$ $5781.9 (49/2^{-})$ $5624.7 (47/2^{-})$	(Q) D				
6358.9	$(53/2^+)$	5/8./ 5 803 5 3	100 52	5034.7 (47/2) $5555.4 (49/2^+)$	Q				
6461.8	$(53/2^+)$ $(53/2^+)$	799.7 3	100	$5662.1 (49/2^+)$	õ				
6479.4	J+4	351.5 [@] 1	100	6127.9 J+2	0°				
6587.7	(53/2)	374.3 <i>3</i>	67 20	6213.4 (51/2-)					
		805.8 <i>3</i>	100 47	5781.9 (49/2 ⁻)	Q				
6648.8	$53/2^{(+)}$	967.3 3	100	$5681.5 \ 49/2^{(+)}$	Q				
6806.3	(55/2)	882.53	100	5923.8 (51/2)	Q				
68/1.0 7064.6	J+6 (55/2 ⁻)	391.6 4	20.8	64/9.4 J+4 6587.7 (53/2)	Q ^c				
7004.0	(33/2)	851.2 3	100 6	$6213.4 (51/2^{-})$	0				
7205.5	$(57/2^+)$	846.6 <i>3</i>	100	6358.9 (53/2+)	Q				
7302.3	J+8	431.3 [@] 1	100	6871.0 J+6	Q ^{<i>C</i>}				
7355.1	(57/2 ⁻)	290.5 <i>3</i>	100	7064.6 (55/2 ⁻)	(M1)	0.394 6	$\alpha(K)=0.323 5; \alpha(L)=0.0540 8; \alpha(M)=0.01256 18$ $\alpha(N)=0.00315 5; \alpha(O)=0.000596 9; \alpha(P)=4.57 \times 10^{-5} 7$		
7655.9	(59/2)	300.8 3	100	7355.1 (57/2 ⁻)	D				
7772.4	J+10	470.1 [@] 1	100	7302.3 J+8	Q^{C}				
7798.8	(50/2)	992.5 3	100	$6806.3 (55/2^{-})$	D				
7818.0	(59/2)	462.9 3	100	(51/2)	D				
8115.5	(61/2)	459.6 3	100 64	7655.9 (59/2)	D				
		760.4 3	50 27	7355.1 (57/2-)					
8280.8	J+12	508.4 [@] 1	100	7772.4 J+10	Q ^C				
8479.9	(63/2)	364.5 3	100 79	8115.5 (61/2)	(Q)				
		661.9 <i>3</i>	75 17	7818.0 (59/2)	0				
8797.0		624.0 5 317.1 3	100	8479.9 (63/2)	Q				
8826.7	J+14	545.9 [@] 2	100	8280.8 J+12	O^{c}				
9409.1	J+16	$582.4^{@}$ 1	100	8826.7 J+14	\tilde{O}^{c}				
	2.10	202.1 1	100		×				

From ENSDF

 $^{191}_{80} \rm Hg_{111} \text{--} 14$

$\gamma(^{191}\text{Hg})$	(continued)
/ 115/	(continueu)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. <mark>&</mark>	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
10027.6	J+18	618.5 [@] 2	100	9409.1	J+16	Q ^c	1758.8+u	J2+10	429.7 [@] 1	100	1329.1+u	J2+8
10681.3	J+20	653.7 [@] 2	100	10027.6	J+18	Q ^C	2225.9+u	J2+12	467.1 [@] 2	100	1758.8+u	J2+10
11369.6	J+22	688.3 [@] 2	100	10681.3	J+20	Q ^C	2729.8+u	J2+14	503.9 [@] 1	100	2225.9+u	J2+12
12091.8	J+24	722.2 [@] 3	100	11369.6	J+22	Q ^C	3269.5+u	J2+16	539.7 [@] 3	100	2729.8+u	J2+14
12847.4	J+26	755.6 [@] 3	100	12091.8	J+24	Q ^C	3844.5+u	J2+18	575.0 [@] 1	100	3269.5+u	J2+16
13636.2	J+28	788.8 [@] 6	100	12847.4	J+26		4454.0+u	J2+20	609.5 [@] 1	100	3844.5+u	J2+18
252.4+z	J1+2	252.4 [@] 7	100	Z	J1~(21/2)		5096.7+u	J2+22	642.7 [@] 2	100	4454.0+u	J2+20
545.1+z	J1+4	292.7 [@] 1	100	252.4+z	J1+2		5772.8+u	J2+24	676.1 [@] 3	100	5096.7+u	J2+22
878.2+z	J1+6	333.1 [@] 1	100	545.1+z	J1+4		6481.3+u	J2+26	708.5 [@] 3	100	5772.8+u	J2+24
1250.9+z	J1+8	372.7 [@] 1	100	878.2+z	J1+6		7221.3+u	J2+28	740.0 [@] 3	100	6481.3+u	J2+26
1662.7+z	J1+10	411.8 [@] 2	100	1250.9+z	J1+8		7992.6+u	J2+30	771.3 [@] 3	100	7221.3+u	J2+28
2113.0+z	J1+12	450.3 [@] 1	100	1662.7+z	J1+10		8793.2+u	J2+32	800.5 ^{@f} 10	100	7992.6+u	J2+30
2601.1+z	J1+14	488.1 [@] 2	100	2113.0+z	J1+12		280.9+v	J3+2	280.9 [@] 6	100	v	J3≈(25/2)
3126.3+z	J1+16	525.2 [@] 2	100	2601.1+z	J1+14		604.5+v	J3+4	323.6 [@] 2	100	280.9+v	J3+2
3687.9+z	J1+18	561.6 [@] 3	100	3126.3+z	J1+16		971.6+v	J3+6	367.1 [@] 2	100	604.5+v	J3+4
4285.1+z	J1+20	597.2 [@] 2	100	3687.9+z	J1+18		1381.9+v	J3+8	410.3 [@] 4	100	971.6+v	J3+6
4917.2+z	J1+22	632.1 [@] 2	100	4285.1+z	J1+20		1834.5+v	J3+10	452.6 [@] 3	100	1381.9+v	J3+8
5583.4+z	J1+24	666.2 [@] 2	100	4917.2+z	J1+22		2328.6+v	J3+12	494.1 [@] 2	100	1834.5+v	J3+10
6283.3+z	J1+26	699.9 [@] 2	100	5583.4+z	J1+24		2864.0+v	J3+14	535.4 [@] 3	100	2328.6+v	J3+12
7016.0+z	J1+28	732.7 [@] 4	100	6283.3+z	J1+26		3439.0+v	J3+16	575.0 [@] 4	100	2864.0+v	J3+14
7781.2+z	J1+30	765.2 [@] 4	100	7016.0+z	J1+28		4053.3+v	J3+18	614.3 [@] 5	100	3439.0+v	J3+16
8577.7+z	J1+32	796.5 [@] 6	100	7781.2+z	J1+30		4704.1+v	J3+20	650.8 [@] 6	100	4053.3+v	J3+18
272.0+u	J2+2	272.0 [@] 10	100	u	J2≈(23/2)		5391.7+v	J3+22	687.6 [@] 7	100	4704.1+v	J3+20
585.1+u	J2+4	313.1 [@] 2	100	272.0+u	J2+2		6114.9+v	J3+24	723.2 [@] 8	100	5391.7+v	J3+22
937.6+u	J2+6	352.5 [@] 1	100	585.1+u	J2+4		6870.9+v	J3+26	756.0 [@] 12	100	6114.9+v	J3+24
1329.1+u	J2+8	391.5 [@] 4	100	937.6+u	J2+6		7659.9+v	J3+28	789.0 [@] 13	100	6870.9+v	J3+26

[†] Energies and relative photon branching from (HI,xn γ), except as noted. [‡] From ¹⁹¹Tl ε decay (5.22 min). [#] Weighted average of data from (HI,xn γ) and (α ,7n γ).

^(a) E γ from (HI,xn γ):SD dataset. ^(b) From ¹⁹¹Tl ε decay (5.22 min), unless noted otherwise.

γ (¹⁹¹Hg) (continued)

- ^{*a*} From ce data in ¹⁹¹Tl ε decay (5.22 min), unless otherwise specified.
- ^b Also from $\gamma(\theta)$ in $(\alpha, xn\gamma)$ and (HI, $xn\gamma$) reactions, Q for stretched E2, and D or D+Q for M1, E1 or M1+E2.
- ^c From DCO ratios (1989Mo08) in (HI,xny):SD.

16

- ^d Additional information 6.
 ^e Multiply placed with undivided intensity.
- ^f Placement of transition in the level scheme is uncertain.

49 min 10

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

	ŝ.	
13+28		7659 9±v
JJ720		1057.714
J3+26	<u>↓ ☆ _ &</u>	6870.9+v
<u>J</u> 3+24		6114.9+v
J3+22		5391.7+v
<u>J</u> 3+20		4704.1+v
J3+18		4053.3+v
J3+16		3439.0+v
J3+14		2864.0+v
J3+12	4 3 S S	2328.6+v
J3+10		1834.5+v
J3+8		1381.9+v
J3+6	▼ * <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u> <u>*</u>	971.6+v
<u>J3+4</u>	<u> </u>	604.5+v
<u>J3+2</u>		280.9+v
$\frac{J_{3} \approx (25/2)}{J_{2} \times 22}$		<u>V</u>
<u>J2+32</u> /		<u>8/93.2+u</u>
J2+30	××	7992.0+u
J2+28		7221.3+u
J2+26	↓ [®] &	6481.3+u
12+24	l é s	5772 8+11
52121		<u>5772.01u</u>
J2+22		5096.7+u
J2+20		4454.0+u
J2+18		3844.5+u
J2+16		3269.5+u
J2+14		2729.8+u
J2+12		2225.9+u
J2+10	★ ³ 2 8 5	1758.8+u
J2+8		1329.1+u
J2+6		937.6+u
J2+4	<u> </u>	585.1+u
J2+2		272.0+u
J2≈(23/2)		u
J1+32		8577.7+z
J1+30		7781.2+z
J1+28		7016.0+z
<u>J1+26</u>		6283.3+z
<u>J1+24</u>		5583.4+z
3/2(-)		0.0

 $^{191}_{80}\text{Hg}_{111}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{191}_{80} Hg_{111}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{191}_{80} Hg_{111}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁹¹₈₀Hg₁₁₁

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{191}_{80}\text{Hg}_{111}$

 $^{191}_{80}\text{Hg}_{111}$

 $^{191}_{80}\text{Hg}_{111}$

		Band	(O): SD	-4 band
		Unfavor	ed j15/2	2 intruder
			orbital	s
		J3+28		7659.9+v
		J3+26	789	6870.9+v
		J3+24	756	6114.9+v
		J3+22	723	5391.7+v
		J3+20	688	4704.1+v
		J3+18	651	4053.3+v
		J3+16	614	3439.0+v
		J3+14	575	2864.0+v
		J3+12		-2328.6+v
		J3+10	535	_1834.5+v
Band(N): SD-3	band	J3+8	494	
(1995So17,19950	Ca15,	J3+6	453	
1990Ca18)		J3+4	410	
		J3+2	367	-/280.9+v
J2+32 87	793.2+u	J3≈(2 5/2	$\frac{324}{281}$	v
		-	_ 201	
J2+30 * 79	992.6+u			
J2+28 771 72	221.3+u			
<u>J2+26</u> 740 64	481.3+u			
J2+24 708 55	772.8+u			
J2+22 676 50)96.7+u			
J2+20 643 44	454.0+u			
J2+18 610 38	344.5+u			
J2+16 575 32	269.5+u			
J2+142	729.8+u			
J2+12 540 22	225.9+u			
J2+10 504 17	758.8+u			
J2+8 467 13	329.1+u			
J2+6 430 /	937.6+u			
J2+4 392 /	585.1+u			
J2+2 352	272.0+11			
J2≈(23/2) 313	<u>u</u>			
<u> </u>	<u> </u>			

Band(M): SD-2 band
Q(intrinsic)~18
(1990Ca18), 17.5 8
(1998ReZV)

J1+32	-	8577.7+z
J1+30	796	7781.2+z
J1+28	765	7016.0+z
J1+26	733	6283.3+z
J1+24	700	5583.4+z
J1+22	666	4917.2+z
J1+20	632	4285.1+z
J1+18	597	3687.9+z
$\frac{J1+16}{J1+14}$	562	-3126.3+z
J1+12	525	2113.0+z
J1+10	488	1662.7+z
J1+8	450	1250.9+z
J1+6	412	/878.2+z
J1+4	373	
J1+2	333	
J1≈(2 1/2)	293 252	z

 $^{191}_{80}\text{Hg}_{111}$