142 Nd(52 Cr,p2n γ) 2004Ni06

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	M. S. Basunia	NDS 195,368 (2024)	1-Dec-2023					

Slightly edited the updated dataset by B. Singh (McMaster) for ENSDF, dated 29-Feb-2016.

- See also ${}^{109}\text{Ag}({}^{86}\text{Kr},4n\gamma)$ (2015Ny02) from the same group where level scheme and band structures have been revised, improved and extended by $\gamma\gamma$ -coin data.
- 2004Ni06 (also 2003NiZZ, 2001Ni04): Reaction ¹⁴²Nd(⁵²Cr,p2n), E(lab)=235 MeV. Separated fusion evaporation residues using the RITU gas-filled mass separator. Used 27 Compton-suppressed Ge detectors, of various types, to observe prompt γ rays at the target position. The mass-separated recoils were implanted into a position-sensitive Si strip detector at the focal plane of the separator. An upstream multiwire proportional gas counter was used to discriminate between recoil fragments and α -decay signals. Delayed, isomeric, γ rays were observed with five Ge detectors surrounding the Si detector. Used recoil-decay tagging techniques to process the events. Measured E(γ), I(γ), $\gamma\gamma$ and γ -recoil coincidences. Improved high-spin data are reported by the same group in 2015Ny02 using ¹⁰⁹Ag(⁸⁶Kr,4n γ) reaction; see a separate dataset for this reaction.
- 1999NiZY: Production by 159 Tb(36 Ar,4n), E=175 MeV. Measured prompt γ -ray energy at the target position using the SARI detector array, Fusion-evaporation residues implanted in Si detector at the focal-plane of the RITU gas-filled recoil separator. Decay of isomeric states studied with four TESSA array detectors for delayed γ rays. Analysis of events using the recoil-decay tagging technique.

¹⁹¹Bi Levels

- Level scheme, γ -ray energies and intensities, J^{π} assignments are from 2004Ni06, unless noted otherwise. However, several revisions have been made in the placement of transitions with improved $\gamma\gamma$ -coin data in 2015Ny02, thus revising some level energies.
- From recoil-decay tagging (RDT) analysis a collective band, on the $(1/2^+)$ isomeric state at 240 keV, is observed (2001Ni04). It was found that the on top of the expected $(13/2^+)$ state decays to the $(9/2^-)$ ground state via an (M2) 429-keV γ ray, with a half-life of 533 ns 7 (2001Ni04). A sequence of γ rays can be arranged into a band-like structure above the $(13/2^+)$ state. These comprise a cascade of (M1) γ rays, with several (E2) crossover transitions (2001Ni04,2003NiZZ). Another band identified for this nucleus is a negative parity band linked to the $(9/2^-)$ ground state.

E(level) ^{†‡}	J^{π}	T _{1/2}	Comments
0.0 [@] 149.0 5	9/2 ⁻ 7/2 ⁻	12.4 s <i>3</i> <10 ns	$T_{1/2}$: from Adopted Levels. J ^π : from the multipolarity of the γ-ray to the (9/2 ⁻) g.s., possible values are (7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻). The absence of any γ transition connecting to the 429.7-keV 13/2 ⁺ level, indicates 7/2 ⁻ as the most probable value for this level. Supporting evidence is provided by the low hindrance factor of the 7075-keV α decay from the 7/2 ⁻ level in ¹⁹⁵ At to this level (2003Ke04).
242 ^{&} 4	1/2+	125 ms 8	T _{1/2} : From Adopted Levels. Additional information 1. E(level),T _{1/2} : from Adopted Levels. J ^{π} : from systematics for 1/2 ⁺ intruder states in all Bi isotopes from the N=104 neutron mid shell to N=126 (1985Co06,2001Ni04). Confirming evidence is provided by the hindrance factors of both the α decay feeding this level (E(α)=6953 keV, HF=0.92) from the 1/2 ⁺ ¹⁹⁵ At g.s., and deexciting it (E(α)=6870 keV, HF=1.5) to the 1/2 ⁺ ¹⁸⁷ Tl ground state (2003Ke04).
343.7? 9 422.9& 7 429.7 [#] 5 486.0 [@] 5	(5/2 ⁺) 13/2 ⁺ (11/2 ⁻)	562 ns <i>10</i>	J^{π} : from systematics of $(13/2^+)$ levels in neighboring Bi nuclei and (M2) multipolarity of the γ ray to the $(9/2^-)$ g.s. T _{1/2} : from recoil- γ (t) (2004Ni06). Earlier value from the same group was 533 ns 7 (2001Ni04).

¹⁴²Nd(⁵²Cr,p2nγ) **2004Ni06** (continued)

¹⁹¹Bi Levels (continued)

E(level) ^{†‡}	J^{π}	T _{1/2}	Comments
693.1 [@] 6	$(13/2^{-})$		
747.1 ^{&} 10	(9/2+)		This state $(9/2^+)$ is discarded in the adopted dataset since the 324.2γ from this level is reassigned in 2015Ny02 from a $933,(9/2^+)$ level. A comparable level energy 747 keV of $J^{\pi} = (15/2^+)$ is present in the adopted dataset.
748.0 [#] 7	$15/2^{+}$		
1017.8 [@] 8	$(15/2^{-})$		
1026.7 [#] 7	$17/2^{+}$		
1144.7 ^{&} <i>13</i>	$(13/2^+)$		This level is discarded in the Adopted dataset since the 397.6 γ from this level is reassigned by 2015Ny02 from a 1332, (13/2 ⁺) level.
1257.0 12			
1271.1 [@] 9	(17/2 ⁻)		This level is discarded in the Adopted dataset since the 578.0 γ from this level is reassigned in 2015Ny02 from an 1825, (21/2 ⁻) level.
(1271.1+x)		400 ns 40	Additional information 2.
			E(level): the existence of this unknown level is inferred from the half-life observed for the 578-keV γ ray deexciting the 1271-keV level (2004Ni06,2003NiZZ). Due to the reassignment of 578.0 γ from an 1825, (21/2 ⁻) level, this level is listed in the Adopted dataset with energy 1825+x.
1351.5 [#] 8	19/2+		
1599.6 [#] 9	$21/2^+$		
1616.9? [@] 10	$(19/2^{-})$		
1626.7 ^{&} 16	$(17/2^+)$		This level is discarded in the Adopted dataset since the 482γ from this level is reassigned in 2015Ny02 from an 1815 (1813 in adopted), $(17/2^+)$ level.
1736.6 10	(21/2+)		This level is discarded in the Adopted dataset since the 385γ from this level is reassigned in 2015Ny02 from a 1982, (23/2 ⁺) level; and 710 γ from this level is not reported in 2015Ny02.

 † From least-squares fit to $E\gamma$ values.

[‡] As of Fig. 12 in 2004Ni06.

[#] Band(A): Band based on $13/2^+$ isomeric state. This band is built based on intensity arguments and recoil-gated $\gamma\gamma$ coincidences (2004Ni06).

^(a) Band(B): Negative-parity band based on $9/2^-$ g.s.

& Band(C): Positive parity band based on $1/2^+$ intruder state. This band is proposed to consist of a cascade of stretched E2 transitions (2004Ni06), built on the basis of intensity arguments and weak $\gamma\gamma$ coincidences.

$\gamma(^{191}{ m Bi})$

Angular distribution coefficients in 2004Ni06 are defined as the ratio $R(exp)=I(134^\circ, 158^\circ)/I(79^\circ, 101^\circ)$, where the angles are those of four of the detectors in the Jurosphere array at the target position.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α@	Comments
149.0 5	22 3	149.0	7/2-	0.0	9/2-	(M1)	3.27 6	α (K)=2.66 5; α (L)=0.465 8; α (M)=0.1094 19 α (N)=0.0280 5; α (O)=0.00572 10; α (P)=0.000681 12 Mult.: From Adopted Gammas.
180.9 7	17 3	422.9	(5/2+)	242	1/2+	(E2)	0.642 13	$\alpha(K)=0.2093 \ 34; \ \alpha(L)=0.322 \ 7; \ \alpha(M)=0.0847 \ 19 \ \alpha(N)=0.0216 \ 5; \ \alpha(O)=0.00401 \ 9; \ \alpha(P)=0.000324 \ 7 \ R(exp)=0.9 \ 2.$ Mult.: suggested in 2004Ni06 as having stretched E2 character.

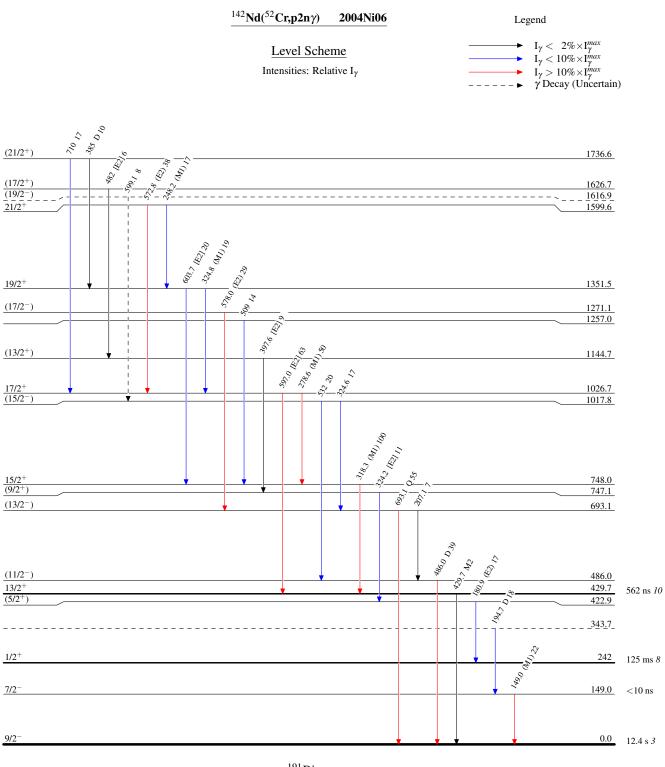
¹⁴²Nd(⁵²Cr,p2nγ) **2004Ni06** (continued)

$\gamma(^{191}\text{Bi})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	$E_f J_f^{\pi}$	f Mult. [‡]	α [@]	Comments
x187.0 [#] 7	62						Placement: from 609, (5/2 ⁺) level (2015Ny02).
194.7 7 207.1 7	18 5 7 4	343.7? 693.1	(13/2 ⁻)	149.0 7/2 ⁻ 486.0 (11/2			R(exp)=0.8 2.
248.2 7	17 5	1599.6	21/2+	1351.5 19/2		0.782 13	$\begin{array}{l} \alpha({\rm K}){=}0.637 \ 10; \ \alpha({\rm L}){=}0.1105 \ 18; \\ \alpha({\rm M}){=}0.0260 \ 4 \\ \alpha({\rm N}){=}0.00664 \ 11; \ \alpha({\rm O}){=}0.001357 \ 22; \\ \alpha({\rm P}){=}0.0001616 \ 26 \end{array}$
278.6 5	50 5	1026.7	17/2+	748.0 15/2	2 ⁺ (M1)	0.568 8	R(exp)=0.8 2. Mult.: Suggested as most probable multipolarity in 2004Ni06. $\alpha(K)=0.463$ 7; $\alpha(L)=0.0802$ 12; $\alpha(M)=0.01884$ 28 $\alpha(N)=0.00482$ 7; $\alpha(O)=0.000985$ 15; $\alpha(P)=0.0001173$ 17 R(exp)=0.76 8. Mult.: Suggested as most probable multipolarity in 2004Ni06.
^x 297.2 [#] 7	3 1						Placement: from 719, (7/2 ⁺) level (2015Ny02).
318.3 5	100 10	748.0	15/2+	429.7 13/2	2 ⁺ (M1)	0.395 6	$\alpha(K)=0.322 \ 5; \ \alpha(L)=0.0556 \ 8; \alpha(M)=0.01305 \ 19 \alpha(N)=0.00334 \ 5; \ \alpha(O)=0.0006820 \ 99; \alpha(P)=8.12\times10^{-5} \ 12 R(exp)=0.78 \ 7. This \ \gamma ray placed to feed directly the 430-keV \ 13/2+ band head, based on intensity arguments, and from systematics of similar transitions in heavier Bi isotopes.$
324.2 7	11 3	747.1	(9/2+)	422.9 (5/2		0.0960 15	Mult.: Suggested as most probable multipolarity in 2004Ni06. $\alpha(K)=0.0553 \ 8; \ \alpha(L)=0.0305 \ 5; \ \alpha(M)=0.00784 \ 13 \ \alpha(N)=0.001998 \ 32; \ \alpha(O)=0.000380 \ 6; \ \alpha(P)=3.40\times10^{-5} \ 5$ Placement not adopted: this γ is placed from a 933, (9/2 ⁺) level in 2015Ny02. Mult.: Suggested in 2004Ni06 as having stretched E2 character.
324.6 7 324.8 5	179 197	1017.8 1351.5	(15/2 ⁻) 19/2 ⁺	693.1 (13/ 1026.7 17/2		0.374 5	$\begin{aligned} &\alpha(K) = 0.305 \ 4; \ \alpha(L) = 0.0526 \ 8; \\ &\alpha(M) = 0.01234 \ 18 \\ &\alpha(N) = 0.00316 \ 5; \ \alpha(O) = 0.000645 \ 9; \\ &\alpha(P) = 7.68 \times 10^{-5} \ 11 \\ &R(exp) = 0.81 \ 8. \\ &Mult.: Suggested as most probable \\ &multipolarity in 2004Ni06. \end{aligned}$
^x 344.0 [#] 7	3 1						Placement: from 824, $(7/2^+)$ level
^x 368.6 [#] 7	52						(2015Ny02). Placement: from 609, (5/2 ⁺) level
385 1	10 5	1736.6	(21/2+)	1351.5 19/2	2 ⁺ D		(2015Ny02). The 385y is placed from a 1982, (23/2 ⁺) level in 2015Ny02. R(exp)=0.92 9.

Continued on next page (footnotes at end of table)

$\frac{142}{\mathrm{Nd}}(^{52}\mathrm{Cr,p2n}\gamma) \qquad 2004\mathrm{Ni06} \text{ (continued)}$										
γ ⁽¹⁹¹ Bi) (continued)										
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments		
397.6 7	93	1144.7	(13/2+)	747.1	(9/2+)	[E2]	0.0546 8	$\alpha(K)=0.0350 5; \alpha(L)=0.01472 22; \alpha(M)=0.00374 6 \alpha(N)=0.000953 15; \alpha(O)=0.0001830 28; \alpha(P)=1.714\times10^{-5} 26$ The 397.6y is placed from a 1332, (13/2 ⁺) level in 2015Ny02. Mult.: Suggested in 2004Ni06 as having		
429.7 <i>5</i>		429.7	13/2+	0.0	9/2-	M2	0.542 8	stretched E2 character. B(M2)(W.u.)=0.0757 22 $\alpha(K)=0.418 6; \alpha(L)=0.0938 14; \alpha(M)=0.02288 33$ $\alpha(N)=0.00589 9; \alpha(O)=0.001197 17; \alpha(P)=0.0001391 20$ Observed in spectra tagged with the 9/2 ⁻¹⁹¹ Bi g.s. α decay. Additional information 3. Mult.: proposed on the basis of the K X ray intensity and in analogy with heavier Bi isotopes (1999NiZY). The relative intensities of K X rays and γ rays yield an estimate of $\alpha_{K}=0.61 10$, in reasonable agreement with an M2 assignment (2004Ni06).		
	3 1							Placement: from 880, (9/2 ⁺) level (2015Ny02).		
482 1	62	1626.7	(17/2 ⁺)	1144.7	(13/2 ⁺)	[E2]	0.0335 5	$\alpha(K)=0.02316\ 34;\ \alpha(L)=0.00781\ 12;\ \alpha(M)=0.001958\ 30$ $\alpha(N)=0.000499\ 8;\ \alpha(O)=9.68\times10^{-5}\ 15;\ \alpha(P)=9.47\times10^{-6}\ 14$ The 482 γ is placed from an 1815 (1813 in adopted), (17/2 ⁺) level in 2015Ny02. Mult.: Suggested in 2004Ni06 as having stretched E2 character.		
486.0 5 509 1	39 6 14 7	486.0 1257.0	(11/2 ⁻)		9/2 ⁻ 15/2 ⁺	D		R(exp)=0.7 2.		
^x 527 [#] 1 532 1	3 <i>1</i> 20 6	1017.8	(15/2-)	486.0	(11/2 ⁻)			Placement: from 2341 level (2015Ny02).		
^x 544 [#] 1	31	101710	(10/2)		(11)=)			An unplaced 542.5 5 γ ray seen in 2015Ny02 is probably the same as 544 in 2004Ni06.		
^x 553 [#] 1	3 1							Placement: from 2367, (21/2 ⁺) level (2015Ny02).		
572.8 7	38 11	1599.6	21/2+	1026.7	17/2+	(E2)	0.02235 32	$\alpha(\mathbf{K})=0.01622\ 23;\ \alpha(\mathbf{L})=0.00463\ 7;\ \alpha(\mathbf{M})=0.001146\ 17$ $\alpha(\mathbf{N})=0.000292\ 4;\ \alpha(\mathbf{O})=5.72\times10^{-5}\ 8;\ \alpha(\mathbf{P})=5.81\times10^{-6}\ 8$ $\mathbf{R}(\exp)=1.1\ 2.$ Mult.: Suggested as most probable		
578.0 7	29 5	1271.1	(17/2 ⁻)	693.1	(13/2 ⁻)	(E2)	0.02190 <i>31</i>	multipolarity in 2004Ni06. $\alpha(K)=0.01593\ 23;\ \alpha(L)=0.00451\ 7;\ \alpha(M)=0.001116\ 16$ $\alpha(N)=0.000285\ 4;\ \alpha(O)=5.57\times10^{-5}\ 8;\ \alpha(P)=5.67\times10^{-6}\ 8$		


Continued on next page (footnotes at end of table)

142 Nd(52 Cr,p2n γ) 2004Ni06 (continued)											
γ ⁽¹⁹¹ Bi) (continued)											
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Mult. [‡]	α [@]	Comments			
								The 578.0 γ is placed from an 1825, (21/2 ⁻) level in 2015Ny02. R(exp)=1.9 4. This γ ray allows one to deduce the existence of an unknown precursor level, from the half-life of 400 ns 40 which can be extracted form the observed time differences (2004Ni06,2003NiZZ) between recoil implantation and the detection of the 578-keV γ ray. No more precise information regarding the precursor state could be obtained in the experiments (2004Ni06). Mult.: Multipolarity suggested by evaluator, based on the measured R(exp)=1.9 4 value, and the assumed spin difference between connected states.			
597.0 7	63 10	1026.7	17/2+	429.7	13/2+	[E2]	0.02036 29	$\alpha(K)=0.01493 \ 21; \ \alpha(L)=0.00411 \ 6; \\ \alpha(M)=0.001014 \ 15 \\ \alpha(N)=0.000259 \ 4; \ \alpha(O)=5.07\times10^{-5} \ 7; \\ \alpha(P)=5.19\times10^{-6} \ 7 \\ Mult.: Suggested as most probable multipolarity in 2004Ni06.$			
599.1 ^{&} 7 603.7 7	8 <i>4</i> 20 <i>6</i>	1616.9? 1351.5	(19/2 ⁻) 19/2 ⁺	1017.8 748.0	(15/2 ⁻) 15/2 ⁺	[E2]	0.01986 28	$\alpha(K)=0.01460\ 21;\ \alpha(L)=0.00398\ 6;\alpha(M)=0.000982\ 14\alpha(N)=0.000250\ 4;\ \alpha(O)=4.91\times10^{-5}\ 7;\alpha(P)=5.04\times10^{-6}\ 7$ Mult.: Suggested as most probable multipolarity in 2004Ni06.			
693.1 7 710 <i>I</i>	55 8 17 8	693.1 1736.6	(13/2 ⁻) (21/2 ⁺)	0.0 1026.7	9/2 ⁻ 17/2 ⁺	Q		R(exp)=1.1 2. E_{γ} : γ not reported in 2015Ny02.			

[†] From 2004Ni06. Relative intensities as percentage of the most intense γ -ray (318.3 keV).

[‡] Multipole character deduced on the basis of the measured angular distribution coefficients (2004Ni06), except where noted otherwise.

[#] The γ ray seen in singles spectra gated by recoils and gated by the 6870-keV α decay from the $(1/2^+)$ intruder state. The The γ ray seen in singles spectra gated by recoils and gated by the 68/0-keV α decay from the $(1/2^+)$ intruder state. The placement of these transitions could not be resolved (2004Ni06). Proposed placement in 2015Ny02 is given under comments. ^(a) Additional information 4. ^(b) Placement of transition in the level scheme is uncertain. ^(c) γ ray not placed in level scheme.

¹⁹¹₈₃Bi₁₀₈

¹⁴²Nd(⁵²Cr,p2nγ) 2004Ni06

