¹⁹¹Au IT decay (0.92 s) 1971Be61 Type Author Citation Literature Cutoff Date Full Evaluation M. S. Basunia NDS 195,368 (2024) 1-Dec-2023 Parent: 191 Au: E=266.1 7; $J^{\pi}=(11/2^{-})$; $T_{1/2}=0.92$ s 11; %IT decay=100 The isomer was produced in two different ways: 1) in an off-line experiment a ¹⁹¹Hg source was produced and ^{191m}Au isomer populated in the decay was isolated by fast evaporation. The decay of the isomeric state was measured with a Ge(Li) detector using a multispectrum scaling method; 2) In a second experiment the ^{191m}Au isomer was produced on-line, irradiating a natural platinum target with 60 MeV deuterons. The target was irradiated for 4 seconds and the decay of the isomer was measured with the Ge(Li). The experiment was repeated several times to obtain good statistics. Measured Eγ. ## 191 Au Levels | E(level) | $J^{\pi \dagger}$ | $T_{1/2}^{\dagger}$ | Comments | | | | | | | |----------|-------------------|---------------------|----------|--|--|--|--|--|--| | 0.0 | 3/2+ | 3.18 h 8 | | | | | | | | | 12 | $(1/2^+)$ | 15.5 ns <i>15</i> | | | | | | | | | 253 | $(5/2)^+$ | | | | | | | | | | 266.1 7 | $(11/2^{-})$ | 0.92 s <i>11</i> | %IT=100 | | | | | | | $T_{1/2}$: From 1971Be61: Weighted average of 0.95 s 25 (241 γ (t)) and 0.91 s 12 (253 γ (t)). The evaluator assumed 1971Be61 data superseded their earlier value 1.2 s 3 (1970Be60). [†] From Adopted Levels. ¹⁹¹Au IT decay (0.92 s) **1971Be61** (continued) Iy normalization: From $I(\gamma+ce)(241\gamma)+I(\gamma+ce)(253\gamma)=100\%$. | E_{γ} | I_{γ} | $E_i(level)$ | \mathtt{J}_i^{π} | \mathbf{E}_f | \mathbf{J}^π_f | Mult.‡ | δ | α [#] | $I_{(\gamma+ce)}$ | Comments | |-----------------------|----------------------------|--------------|----------------------|----------------|--------------------|--------|---------|-----------------------|-------------------|--| | (12) | | 12 | $(1/2^+)$ | 0.0 | 3/2+ | | | | 25.6 <i>21</i> | E_{γ} : from E(253 γ)-E(241 γ).
$I_{(\gamma+ce)}$: from $I_{(\gamma+ce)}(12\gamma)=I_{(\gamma+ce)}(241\gamma)$. | | 13.7 [†] 6 | | 266.1 | (11/2 ⁻) | 253 | (5/2)+ | (E3) | | 1.2×10 ⁷ 4 | 163 10 | %Iy=8.4×10 ⁻⁶ 29
ce(L)/(y+ce)=0.49 16; ce(M)/(y+ce)=0.39 14
ce(N)/(y+ce)=0.10 4; ce(O)/(y+ce)=0.015 7;
ce(P)/(y+ce)=4.4×10 ⁻⁶ 18
α (L)=5.6×10 ⁶ 17; α (M)=4.5×10 ⁶ 15
α (N)=1.2×10 ⁶ 4; α (O)=1.7×10 ⁵ 6; α (P)=51 13
I _(y+ce) : from I _(y+ce) (13.7y)=I _(y+ce) (241y + 253y). | | 241 | 21.3 [†] 21 | 253 | (5/2)+ | 12 | (1/2+) | E2 | | 0.2016 28 | | %I γ =13.1 <i>16</i>
α (K)=0.1068 <i>15</i> ; α (L)=0.07136 <i>99</i> ;
α (M)=0.01819 <i>25</i>
α (N)=0.00449 <i>6</i> ; α (O)=0.000740 <i>10</i> ;
α (P)=1.111×10 ⁻⁵ <i>16</i> | | 253 | 100 [†] <i>10</i> | 253 | (5/2)+ | 0.0 | 3/2+ | M1+E2 | 0.89 20 | 0.37 7 | | %I γ =61.5 30
α (K)=0.28 6; α (L)=0.0661 26; α (M)=0.0159 4
α (N)=0.00395 10; α (O)=0.000696 30;
α (P)=3.3×10 ⁻⁵ 8 | $^{^{\}dagger}$ From the decay of $^{191}{\rm Hg}$ (50.8 min). ‡ From Adopted Gammas. 2 [#] Additional information 1. @ For absolute intensity per 100 decays, multiply by 0.615 60. ## ¹⁹¹Au IT decay (0.92 s) 1971Be61 ## Decay Scheme Intensities: ${\rm I}_{(\gamma+ce)}$ per 100 decays through this branch ${\rm \%IT}{=}100$ Legend