¹⁹⁰Ta β^- decay (5.3 s) 2009A130

	History								
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020						

Parent: ¹⁹⁰Ta: E=0; J^{π} =(3); $T_{1/2}$ =5.3 s 7; Q(β^{-})=5870 SY; % β^{-} decay=100.0

¹⁹⁰Ta-T_{1/2},J^{π}: From ¹⁹⁰Ta Adopted Levels. ¹⁹⁰Ta-Q(β^{-}): 5870 200 (syst, 2017Wa10).

2009A130: ¹⁹⁰Ta from projectile fragmentation of ²⁰⁸Pb beam at 1 GeV/nucleon with ⁹Be target at GSI facility. Fragment Recoil separator (FRS) used to separate and identify ¹⁹⁰Ta nuclide. The secondary ions were implanted into the RISING active stopper consisting of double-sided silicon strip detectors. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\gamma\gamma(t)$, $\beta(implanted ions)$ correlations, $I\beta$, and isomer half-lives using RISING array of 15 seven-element Ge cluster detectors for γ rays, two multi-wire proportional counters for position measurements, two scintillation detectors providing time-of-flight and position information, and two scintillators and an ionization chamber (MUSIC) for energy loss measurements. See also 2012A105 from the same group.

¹⁹⁰W Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0 207 <i>1</i>	0^+ (2 ⁺)	
454 1	(2^+)	J^{π} : (2 ⁺) proposed by 2009A130, stating that spin=1 at this energy in an even-even nucleus is inherently unlikely.
564 2	(4+)	

[†] From $E\gamma$ data, assuming 1 keV uncertainty for each $E\gamma$ value.

[‡] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	$\log ft^{\dagger}$	Comments				
(5306 SY)	564	<22	>6.2	av Eβ=2217 90				
(5416 SY)	454	<61	>5.7	av $E\beta = 2267 \ 90$				
(5663 [#] SY)	207	<38	>6.0	av Eβ=2377 90				

[†] The decay is considered as incomplete by the evaluators, thus the β feedings values are considered as apparent (upper limits), and associated log *ft* values as lower limits.

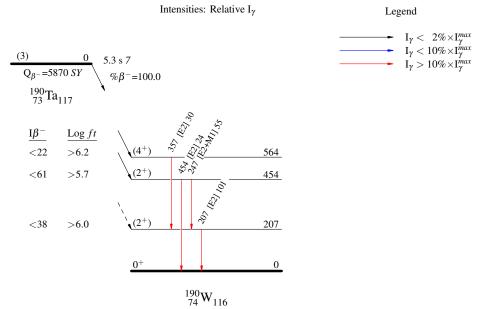
[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{190}{\rm W})$

I γ normalization, I(γ +ce) normalization: Decay scheme is considered as incomplete by the evaluators, thus γ -normalization factors are only approximate.

In 2012Al05, two weak and tentative γ rays of 341 and 490 keV were shown in spectral Fig. 2c, as possibly belonging to the decay of ¹⁹⁰Ta.


E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
207	101 19	207	(2 ⁺)	0	$\overline{0^+}$	[E2]	0.276 5	129 24	α (K)=0.1542 24; α (L)=0.0923 16; α (M)=0.0229 4; α (N)=0.00542 10

	¹⁹⁰ Ta β^- decay (5.3 s) 2009A130 (continued)								
γ ⁽¹⁹⁰ W) (continued)									
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
247	55 14	454	(2+)	207	(2+)	[E2+M1]	0.26 11	69 16	$ \begin{array}{c} \alpha(\text{O}) = 0.000767 \ 14; \ \alpha(\text{P}) = 1.229 \times 10^{-5} \ 19 \\ 206 \text{ in spectral Fig. 2c of } 2012 \text{Al05.} \\ \alpha(\text{K}) = 0.20 \ 11; \ \alpha(\text{L}) = 0.0468 \ 20; \ \alpha(\text{M}) = 0.01107 \\ 22; \ \alpha(\text{N}) = 0.00265 \ 6 \\ \alpha(\text{O}) = 0.00041 \ 3; \ \alpha(\text{P}) = 1.9 \times 10^{-5} \ 12 \\ \end{array} $
357	30 12	564	(4 ⁺)	207	(2 ⁺)	[E2]	0.0508	32 13	$\alpha(K)=0.0360\ 5;\ \alpha(L)=0.01126\ 16;\ \alpha(M)=0.00272$ 4; $\alpha(N)=0.000647\ 9$
454	24 10	454	(2+)	0	0+	[E2]	0.0268	25 11	$\begin{aligned} &\alpha(O) = 9.56 \times 10^{-5} \ 14; \ \alpha(P) = 3.18 \times 10^{-6} \ 5\\ &\alpha(K) = 0.0201 \ 3; \ \alpha(L) = 0.00512 \ 8; \ \alpha(M) = 0.001222\\ &20; \ \alpha(N) = 0.000291 \ 5\\ &\alpha(O) = 4.39 \times 10^{-5} \ 7; \ \alpha(P) = 1.82 \times 10^{-6} \ 3 \end{aligned}$

[†] For absolute intensity per 100 decays, multiply by ≈0.65.
[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁰Ta β^- decay (5.3 s) 2009A130

Decay Scheme

