Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020					

 $Q(\beta^{-})=-3955 \ 15; \ S(n)=7827 \ 12; \ S(p)=2030 \ 30; \ Q(\alpha)=4918 \ 22$ 2017Wa10 $S(2n)=18180 \ 30, \ S(2n)=6579 \ 8 \ (2017Wa10).$

Hyperfine structure and isotope-shift measurements using laser spectroscopy for g.s. and isomer: 2013Ba41 (in-source laser spectroscopy at the Investigation of Radioactive Isotopes on Synchrocyclotron facility of Petersburg Nuclear Physics Institute); 1990Di09; and 1987Bo44 (also 1987Bi08,1986BoZY).

Mass measurements: 2014Bo26 and 2013St25 (using Penning-trap ISOLTRAP a ISOLDE/CERN), 2000Ra23, 1999Sc46.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for about 25 primary references dealing with nuclear structure and other calculations.

Additional information 1.

¹⁹⁰Tl Levels

Cross Reference (XREF) Flags

A	¹⁹⁰ Pb ε decay (71 s)	D	160 Gd(35 Cl,5n γ)
В	¹⁹⁴ Bi α decay (95 s)	Е	168 Er(27 Al,5n γ)
С	¹⁹⁴ Bi α decay (115 s)		

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	2-	2.6 min 3	AB	
83 10	7+	3.6 min <i>3</i>	CE	$ %ε+%β^+=100 μ=+0.493 4 (1992Me07,2019StZV) Q=+0.285 14 (1992Me07,2016St14) Additional information 2. E(level): from measured mass excess=-24289.3 64 for the 7+ isomer (2013St25,2014Bo26) and mass excess=-24372 8 for the g.s. (2017Wa10), as also given in 2017Au03. Others: 89 12 (2013St25), 63 10 (2019Gh11, deduced from known α-decay energies from previous work in 1991Va04). Jπ: spin from laser spectroscopy (1992Me07), parity from agreement of measured magnetic moment with semiempirical estimated value of 0.471 (1992Me07) for πs1/2⊗vi13/2 configuration. Also systematic occurrence of the 7+ isomer in odd-odd thallium isotopes. T1/2: weighted average of 3.6 min 3 (2013St25); 3.7 min 3 (1976Bi09, also 1974Ha10); 3.4 min 2 (1975Va20, 3.9 min 3 in 1970Va27, also 1970FeZY). In the averaging procedure, uncertainty increased to 0.3 min in 1975Va20. μQ: Collinear fast-beam laser spectroscopy (CFBLS) (1992Me07). Other: μ=+0.495 4 (1987Bo44, CFBLS method). %ε≈65, %β+≈35 (from decay scheme).$

Adopted Levels, Gammas (continued)

¹⁹⁰Tl Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				$\Delta < r^2 > (^{205}\text{Tl} - ^{190m}\text{Tl}) = -0.7223 \text{ fm}^2 5 510 \text{(syst)} (2013\text{Ba41}); \text{ first}$ uncertainty is from isotope shift, the second uncertainty is systematic from the scaling uncertainty of the specific mass shift. $\Delta < r^2 > (^{205}\text{Tl} - ^{190}\text{Tl}) = -0.69 \text{ fm}^2 8 (1990\text{Di09}).$
151.3 3	1+,2+,3+	>34 ns	В	Isotope shift: $\Delta \chi(^{-11} 11) = -730$ MHZ 780 (2013Ba41). $T_{1/2}$: from $\alpha \gamma(t)$ (1991Va04). J^{π} : E1 γ to 2 ⁻ . E(level): this level may be the same as 151.31 populated in ¹⁹⁰ Pb ε decay, but opposite parities are suggested from the mult(151.3 γ)=E1 in ¹⁹⁴ Bi α decay (1991Va04) and mult(151.19 γ)=(M1,E2) in ¹⁹⁰ Pb ε decay (1981E103)
151.31 8	(1^{-})		A	J^{π} : (M1,E2) γ to 2 ⁻ ; (E1) γ from 1 ⁺ .
158.15 15	$(0 \text{ to } 3)^{(-)}$		Α	J^{π} : (M1,E2) γ to 2 ⁻ ; γ from (0,1).
195 10	$(6^+, 7^+)$	<0.25 ns	С	J^{π} : (M1) γ to $7^{(+)}$; no transition from (9 ⁻).
210.55 13	$(1^-, 2^-, 3^-)$		Α	J^{π} : (M1) γ to 2 ⁻ .
245? 10	(8 ⁻)	0.75 (E	J^{π} : possible (E1+M2) γ to $7^{(+)}$.
245+X?		0.75 ms 4	E	$I_{1/2}$: from $\gamma(t)$ (1981Kr20). F(level): proposed by the evaluators, where x is likely to be low energy
				1991 Va04 (from study of ¹⁹⁴ Bi α decay) suggest that the placement of 161.9 γ from this isomer is incorrect for the following reasons: no (10 ⁻) to (8 ⁻) α transition observed, no coincidences observed between 5598 α and 5660 α with a possible (9 ⁻) to (8 ⁻) M1 γ transition, and E1 hindrance factor of 161.9 γ is high by three to four orders of magnitude, as compared to those for neighboring T1 nuclides.
274.17 8	(1 ⁻ ,2 ⁻ ,3 ⁻)		Α	J^{π} : (M1) γ to 2 ⁻ .
325.2 5	(9 ⁻)	>1 µs	CD	%IT=100
				Additional information 3. $T_{1/2}$: estimated by 1991Va04 in ¹⁹⁴ Bi α decay from lack of $\alpha\gamma$ -coin, and non-observation of gamma de-excitation from this level to lower levels, although a gamma ray with <10 keV cannot be excluded.
372.75? 24	$(0 \text{ to } 4)^{(-)}$		Α	J^{π} : (M1) γ to (1 ⁻ ,2 ⁻ ,3 ⁻).
376.26 8	$(1^{-},2^{-})$		Α	J^{π} : (M1) γ to 2 ⁻ ; γ from 1 ⁺ .
389.0 [#] 5	$(10^{-})^{+}$	<0.25 ns	CD	$T_{1/2}$: $\alpha\gamma(t)$ (1991Va04).
416.68 22	(0,1,2) $(0^{-},1^{-},2^{-})$		A A	J [*] : γ to (1); weak β feeding (log $ft=6.7$) from 0 ⁺ .
539.81 21	(0, 1, 2) $(0, 1, 2^{-})$		A	J^{π} : possible $\beta^+ + \varepsilon$ feeding from 0^+ .
598.33 17	$(1^-, 2^-, 3^-)$		Α	J^{π} : (M1) γ to 2 ⁻ .
661.3 [#] 5	(11 ⁻) [‡]		CDE	
738.99 16	$(0^{-} \text{ to } 4^{-})$		Α	J^{π} : γ to $(1^{-}, 2^{-})$.
890.72 17	(1+)		A	J^{n} : probable log $ft \approx 5.7$ from 0^{+} .
941.8 [#] 5	$(12^{-})^{+}$		DE	\overline{M} , $1 = 6, 4.7$ from 0^+ strong (* 440%) 0^+ is for line supports allowed
942.21 9	1		A	J [*] : log $ft \approx 4.7$ from 0 ⁺ , strong ($\approx 44\%$) $\beta^{+} + \varepsilon$ feeding suggests allowed transition.
1235.50 15	(1^{+})		Α	J^{π} : probable log <i>ft</i> =5.2 2 from 0 ⁺ .
1243.6 [@] 5	(11)		D	
1324.2 [#] 5	$(13^{-})^{\ddagger}$		DE	
1494.5 [@] 7	(12)		D	
1651.3 [#] 5	14 ^{-‡}		D	
1824.0 [@] 8	(13)		D	
1854.5 <i>3</i>	(1^{+})		Α	J^{π} : probable log $ft=5.2$ 1 from 0 ⁺ .
2081.7 [#] 5	15 ^{-‡}		D	B(M1)/B(E2)=1.5 6 (2005Xi06).
2153.5 [@] 8	(14)		D	

Adopted Levels, Gammas (continued)

¹⁹⁰Tl Levels (continued)

E(level) [†]	J^{π}	XREF
2412.6 [#] 5	16 ^{-‡}	D
2508.6 [@] 10	(15)	D
2752.5 [#] 6	17-‡	D
2990.8? [#] 8	(18 ⁻) [‡]	D

[†] From least-squares fit to γ -ray energies, assuming 0.5 keV uncertain for energy, when not stated. [‡] Probable member of band based on 8⁻, configuration= $\pi h_{9/2} \otimes v i_{13/2}$.

Band(A): πh_{9/2}⊗νi_{13/2} band.
 @ Band(B): Band based on (11).

Adopted Levels, Gammas (continued)									
						$\gamma(^{190}T)$	<u>l)</u>		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	δ	α^{\ddagger}	Comments
151.3 151.31	$1^+, 2^+, 3^+$ (1 ⁻)	151.3 <i>3</i> 151.19 <i>10</i>	100 100	0.0 0.0	2 ⁻ 2 ⁻	E1 (M1+E2)		0.1523 <i>23</i> 1.88 <i>76</i>	
158.15	$(0 \text{ to } 3)^{(-)}$	158.15 15	100	0.0	2-	(M1,E2)		1.64 69	
195	$(6^+,7^+)$	112.2	100	83	7+	(M1)		6.18	
210.55	(1 ⁻ ,2 ⁻ ,3 ⁻)	59.4 [@] 210.55 <i>13</i>	100 25	151.31 0.0	(1 ⁻) 2 ⁻	(M1)		1.042	
245?	(8 ⁻)	161.9 [@] 2	100	83	7+	(E1+M2)	0.50 5	2.6 4	 1991Va04 suggest that the placement of 161.9γ from a 0.75 ms isomer proposed by 1981Kr20 is incorrect. See comment for 245+x level. Mult.,δ: from α(K)exp determined from K x ray (1981Kr20), considered as uncertain by evaluators. If 245 level is an isomer of 0.75 ms half-life as suggested in 1981Kr20, B(E1)(W.u.)=1.43×10⁻¹¹ 19, B(M2)(W.u.)=6.3×10⁻⁴ 13, giving unrealistically low B(E1)(W.u.) value by two orders of magnitude.
245+x?		x [@]		245?	(8 ⁻)				Possibly highly converted transition.
274.17	(1 ⁻ ,2 ⁻ ,3 ⁻)	122.25 <i>20</i> 274.21 <i>10</i>	22 <i>3</i> 100 <i>18</i>	151.31 0.0	(1 ⁻) 2 ⁻	(M1+E2) (M1)		3.7 <i>12</i> 0.502	
372.75?	$(0 \text{ to } 4)^{(-)}$	162.2 2	100	210.55	$(1^{-},2^{-},3^{-})$	(M1(+E2))		2.17	α : for M1.
376.26	$(1^-, 2^-)$	101.8 2	9.2 13	274.17	$(1^-, 2^-, 3^-)$	[M1,E2]		6.8 14	
		376.35 10	100 13	0.0	2-	(M1)		0.212	
389.0	(10 ⁻)	63.9	100	325.2	(9 ⁻)	(M1)		5.81	γ from ¹⁹⁴ Bi α decay.
416.68	(0,1,2 ⁻)	142.2 <i>3</i> 265.7 [@] <i>3</i>	≈ 100 ≈ 2	274.17 151.31	$(1^{-},2^{-},3^{-})$ (1^{-})				
495.07	$(0^{-}, 1^{-}, 2^{-})$	78.6 [@]		416.68	$(0,1,2^{-})$				
		118.8 2	100 24	376.26	$(1^{-},2^{-})$	(M1+E2)		4.1 12	
539.81	$(0,1,2^{-})$	381.66 15	100	158.15	$(0 \text{ to } 3)^{(-)}$				
598.33	$(1^{-}, 2^{-}, 3^{-})$	598.3 2	100	0.0	2-	(M1(+E2))		0.0621	α : for M1.
661.3	(11 ⁻)	272.3 1	100 5	389.0	(10^{-})	D			
		336.1 ^w 5	≤5.0	325.2	(9 ⁻)				
738.99	$(0^{-} \text{ to } 4^{-})$	140.6 3	≈220	598.33	$(1^-, 2^-, 3^-)$				
800 72	(1^{+})	362.74 15	100 14	3/0.20	(1,2)				
941 8	(1^{-})	280 5 1	100 5	661.3	(1)	D			
741.0	(12)	552.8 1	48.7 24	389.0	(10^{-})	0			
942.21	1+	566.0 2 790.90 20	13.6 7 8.7 8	376.26 151.31	$(1^-, 2^-)$ (1^-)	(E1) (E1)		0.00714 0.00370	
1225 50	(1^{+})	942.20 10	100 ð 100	0.0	∠ 2 [−]	(EI)		0.00268	
1255.50	(1)	1255.50 15	100 15	661.3	(11^{-})	D			
1273.0	(11)	854.5 3	98 15	389.0	(10^{-})	D			Mult.: $\Delta J=0$, dipole.

4

From ENSDF

 $^{190}_{81}\mathrm{Tl}_{109}\text{-}4$

		Adopted Levels, Gammas (continued)											
		γ ⁽¹⁹⁰ Tl) (continued)											
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]		
1324.2	(13-)	382.4 1	100 5	941.8 (12 ⁻)	D	2081.7	15-	757.5 3	100 15	1324.2 (13 ⁻)	Q		
		662.8 <i>3</i>	48 7	661.3 (11 ⁻)	Q	2153.5	(14)	329.5 [#] 3	100 [#]	1824.0 (13)	(D)		
1494.5	(12)	250.9 5	100	1243.6 (11)	D	2412.6	16-	330.9 5	39 12	2081.7 15-	D		
1651.3	14-	327.1 <i>3</i>	86 13	1324.2 (13-)	D			761.3 <i>3</i>	100 15	1651.3 14-	Q		
		709.5 1	100 5	941.8 (12 ⁻)	Q	2508.6	(15)	355.1 5	100	2153.5 (14)	(D)		
1824.0	(13)	329.5 [#] 3	100 [#]	1494.5 (12)	(D)	2752.5	17^{-}	339.9 5	100 30	2412.6 16-	D		
1854.5	(1^{+})	1854.5 <i>3</i>	100	$0.0 \ 2^{-1}$				670.8 5	75 <i>23</i>	2081.7 15-	Q		
2081.7	15^{-}	430.5 5	79 24	1651.3 14-	D	2990.8?	(18 ⁻)	238.3 [@] 5	100	2752.5 17-	D		

[†] From ¹⁹⁰Pb ε decay for γ rays from low-spin (J<6) levels, and from ¹⁶⁰Gd(³⁵Cl,5n γ) for γ rays from high-spin levels.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Multiply placed with undivided intensity.
@ Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

	Legend	1	
	Level Scheme		
	Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given ► γ	Decay (Uncertain)	
(18 ⁻) - - - - - - - - - - - - -		2990.8	
<u>17</u> - ↓ ⁰		2752.5	
(15) 16 [−] ↓ ^{𝔅^𝔅} ^𝔅 ^𝔅 ^𝔅		2508.6 2412.6	
		2153.5 2081.7	
(1 ⁺) (13)		1854.5	
<u>14-</u> (12)		1651.3	
(13 ⁻) (11) (1 ⁺)		<u> </u>	
$\frac{1^+}{(12^-)}$	2000 C C C C C C C C C C C C C C C C C C	942.21 941.8 890.72	
(11 ⁻)		661.3	
<u>(10⁻)</u> (1 ⁻ ,2 ⁻)		<u> </u>	<0.25 ns
(1 ⁻)		151.31	
2-	\downarrow \downarrow \downarrow	0.0	2.6 min <i>3</i>
	100		

 $^{190}_{81}{\rm Tl}_{109}$

 $^{190}_{81}{\rm Tl}_{109}$

Adopted Levels, Gammas

 $^{190}_{81}{\rm Tl}_{109}$