190 W β^- decay (30.0 min) 1976Ha39

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020

Parent: ¹⁹⁰W: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=30.0 \text{ min } 15$; $Q(\beta^-)=1200 \ 40$; $\%\beta^-$ decay=100.0 ¹⁹⁰W-T_{1/2}: From β -decay curve (1976Ha39), recommended in ¹⁹⁰W Adopted Levels. ¹⁹⁰W-Q(β^-): From ¹⁹⁰W Adopted Levels. Other: 1250 *60* from 2017Wa10.

1976Ha39: sources of ¹⁹⁰W were produced via the (n,2pn) and (p,3p) reactions by the irradiation of isotopically enriched (98%) ¹⁹²O metal with E=25-200 MeV neutrons from the MEIN facility at BNL and E=92 MeV protons from the Brookhaven Linac injector of the alternating gradient synchrotron (AGS). γ rays were detected with a 50-cm³ Ge(Li) detector and β particles were detected with a plastic scintillator. Measured E γ , I γ , β , $\beta\gamma$ -coin, x-ray. Deduced levels, J, π , parent T_{1/2}, configurations, log *ft*, γ -ray multipolarities. Comparisons with theoretical calculations.

¹⁹⁰Re Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0 162.1 <i>1</i> 319.7 2	$(2)^{-}$ (0^{+}) 1^{+}	$T_{1/2}$: >0.94 µs (from RUL(M2)<1).

[†] Based on observed $(950\beta)(157\gamma)$ coin. The 157γ -162 γ cascade is based on intensity balance with known γ rays from 3.1-min ¹⁹⁰Re decay in equilibrium. Also Q(β^-) deduced from the proposed cascade agrees well with that deduced from mass calculations.

[‡] From the Adopted Levels.

3⁻ radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(8.8×10 ² 4)	319.7	≈100	≈5.0	 av Eβ=310 30 Iβ⁻,Log ft: the decay is considered as incomplete by the evaluators, thus the β feeding is considered as apparent (upper limits), and associated log ft values as lower limit. E(decay): 950 70 (1976Ha39).
$(1.20 \times 10^{3 \ddagger 4})$	0.0	< 0.6	$> 8.4^{1u}$	

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{190}\text{Re})$

I γ normalization: From known γ rays from the decay of 3.1-min ¹⁹⁰Re in secular equilibrium with ¹⁹⁰W. β^- feeding to g.s. is expected to be <0.6% (from log $f^{tu}t$ >8.5) if $J^{\pi}({}^{190}\text{Re g.s.})=2^-$.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]	Comments
157.6 <i>1</i>	39 4	319.7	1+	162.1 (0+) (M1)	1.414	$\alpha(K)=1.172 \ 17; \ \alpha(L)=0.187 \ 3; \ \alpha(M)=0.0428 \ 6$
162.1 <i>1</i>	11 <i>I</i>	162.1	(0 ⁺)	0.0 (2)	- (M2)	7.85	$\alpha(N)=0.01039\ 13;\ \alpha(O)=0.001746\ 23;\ \alpha(P)=0.0001277\ 18$ $\alpha(K)=5.81\ 9;\ \alpha(L)=1.558\ 23;\ \alpha(M)=0.380\ 6$ $\alpha(N)=0.0928\ 14;\ \alpha(O)=0.01527\ 22;\ \alpha(P)=0.000984\ 14$

190 W β^- decay (30.0 min) 1976Ha39 (continued)

$\gamma(^{190}\text{Re})$ (continued)

[†] From 1976Ha39.

- [‡] Proposed by 1976Ha39 from intensity balance, assuming 157γ and 162γ are in a cascade. However, deduced I(K vacancies)=118 *12* disagrees with measured value of 77 7 (1976Ha39).
- # Absolute intensity per 100 decays.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁰W β^- decay (30.0 min) 1976Ha39

Decay Scheme

