Adopted Levels, Gammas

	Histor	ſy	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020

 $Q(\beta^{-})=3125 5$; S(n)=5675 10; S(p)=7252 40; $Q(\alpha)=600 60 2020$ Gr08,2017Wa10

 $Q(\beta^{-}),S(n),S(p),Q(\alpha)$: Deduced by evaluators from mass excess=-35583 5 for ¹⁹⁰Re measured by 2020Gr08, and known masses of ¹⁹⁰Os, ¹⁸⁹Re, ¹⁸⁹W and ¹⁸⁶Ta in 2017Wa10. Values from 2017Wa10: $Q(\beta^{-})=3070$ 70, S(n)=5730 70, S(p)=7310 80, $Q(\alpha)=550$ 90. S(2n)=12760 70, S(2p)=16600 90 (2017Wa10).

Mass measurements: 2020Gr08 (reference to ¹⁹²Ir mass using (d, α) reaction with Q3D magnetic spectrograph at MLL, measured mass excess=-35583 keV 5), 2012Re19 (Schottky mass spectrometry technique at GSI, measured isomer-to-g.s. mass difference=204 keV 10).

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for two primary references dealing with nuclear structure calculations.

2006Wa31 calculated total Routhian surfaces (TRS), which predicted oblate shapes induced by rotation-alignment of

 $\pi h_{11/2} \otimes \nu i_{13/2}$ pair of nucleons, with the oblate shape remaining yrast over a large range of angular momentum. Near-prolate high-K energy minima at $\hbar\omega\approx 0$ and near-oblate energy minima at $\hbar\omega\approx 0.1$ MeV are predicted from total Routhian surface (TRS) calculations in this work.

¹⁹⁰Re Levels

Cross Reference (XREF) Flags

^{190}W	β^{-}	decay	(30.0	min)
-----------	-------------	-------	-------	------

B 190 Re IT decay (3.1 h)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0	(2)-	3.0 min 2	AB	$%β^-=100$ J^{π} : allowed β feeding (log <i>t</i> =5.1) to 3 ⁻ ; absence of β ⁻ feeding to 4 ⁻ . Configuration=ν9/2[505]⊗π5/2[402], $K^{\pi}=2^-$ (1976Ha39, 1974Ya02). $T_{1/2}$: weighted average of 3.1 m 3 (1969Ha44), 2.8 m 5 (1955At21), and 2.92 m 20 (1973DeWI). The original uncertainty of 0.10 in 1973DeWI seems too small (probably statistical only) and has been increased by a factor of 2 in the average by the evaluators.
119.12 5	(3)-		В	J^{π} : 119.1 γ M1(+E2) to (2) ⁻ ; probable band member. 3 ⁻ member of configuration= $\nu 9/2[505] \otimes \pi 5/2[402]$, $K^{\pi}=2^{-}$ (1976Ha39, 1974Ya02).
162.10 <i>10</i>	(0+)		A	J ^{π} : 157.6 γ (M1) from 1 ⁺ ; 162.1 γ (M2) to (2) ⁻ . Configuration= $\nu 9/2[505] \otimes \pi 9/2[514]$, $K^{\pi}=0^+$ (1976Ha39, 1974Ya02). T _{1/2} : >0.94 μ s (from RUL(M2)<1).
204 10	(6 ⁻)	3.1 h 2	В	 ¹(μ) = 142.0 (β(IT) = 45.6 20) ²(β)² = 54.4 20; (β(IT) = 45.6 20) ²(level): from measured mass difference between the isomer and the g.s. (2012Re19). Other: 227 40 from an earlier ESR measurement at the same lab as 2012Re19. J^π: logft=7.9 to 5⁻; weak β⁻ feeding of (8)⁺; a (6)⁻ isomer is known in ¹⁸⁸Re at 169 keV. Also proposed configuration=v7/2[503]⊗π5/2[402], K^π=6⁻ (1976Ha39, 1974Ya02). J^π can also be 7⁻ from configuration=v9/2[505]⊗π5/2[402], same as for the g.s., but with K^π=7⁻, according to GM rule. T_{1/2}: weighted average of 3.3 h 2 (1974Ya02), 3.0 h 5 (1972Ru06), and 2.96 h 20 (1973DeWI)in ¹⁹⁰Re IT decay. The original uncertainty of 0.10 in 1973DeWI seems too small (probably statistical only) and has been increased by a factor of 2 in the average by the evaluators. Other: 2.8 h (1962Ba60). %IT: deduced by the evaluators from γ+ce intensity balances of γ transitions in ¹⁹⁰Os from β⁻ decays of the 3.0-min g.s. and the 3.1-h isomer of ¹⁹⁰Re in equilibrium (which means the total number of ¹⁹⁰Re g.s. decays is equal to the total number of ¹⁹⁰Re IT decays that feeds the g.s.) measured by 1974Ya02. Note that the relative γ intensities given as for ¹⁹⁰Re isomer β⁻ decay in 1974Ya02 are actually for the combination of

Adopted Levels, Gammas (continued)

¹⁹⁰Re Levels (continued)

 $\gamma(^{190}\text{Re})$

E(level) [†]	J^{π}	XREF	Comments	
			¹⁹⁰ Re isomer and g.s. β^- decays, with the latter fed by the IT decays of ¹⁹⁰ Re isomer in equilibrium.	
			See those decay datasets of ¹⁹⁰ Os for more details.	
319 70 15	1+	Α	I^{π} : strong β feeding (log $f \approx 5.0$) from 0^+ parent (¹⁹⁰ W) likely a Gamow-Teller transition	

[†] From a least-squares fit to γ -ray energies.

 α^{\ddagger} E_i(level) $\frac{I_{\gamma}}{100}$ Mult. δ Comments \mathbf{E}_{f} 119.12 M1(+E2) $\alpha(K)=2.3$ 9; $\alpha(L)=0.5$ 3; $\alpha(M)=0.12$ 8 0.4 + 7 - 43.0 5 $\alpha(N)=0.029\ 18;\ \alpha(O)=0.0047\ 24;$ α(P)=0.00025 10 E_{γ} : from ¹⁹⁰Re IT decay. Mult., δ : from $\alpha(\exp)=3.0$ 4 deduced from intensity balance in ¹⁹⁰Re IT decay. $\alpha(K)=5.81$ 9; $\alpha(L)=1.558$ 23; (0^+) (M2)[†] 7.85 162.10 162.1 *1* 100 0 $(2)^{-}$ α(M)=0.380 6 $\alpha(N)=0.0928$ 14; $\alpha(O)=0.01527$ 22; α(P)=0.000984 14 E_{γ} : from ¹⁹⁰W β^- decay. 85[#] 204 (6^{-}) 119.12 (3)-[M3] 8.0×10² 4 E_{γ} : no isomeric transitions from the decay of this isomer have been reported in the literature. Transition to the 119, $(3)^{-}$ level is suggested by evaluators. If this transition has 100% $I(\gamma+ce)$ branching, then B(M3)(W.u.)=0.000102 +12-11. E4 transition to the g.s., $(2)^{-1}$ is also possible. 1^{+} $\alpha(K)=1.172 \ 17; \ \alpha(L)=0.187 \ 3;$ 319.70 157.6 1 100 $162.10 (0^+) (M1)^{\dagger}$ 1.414 $\alpha(M)=0.0428~6$ α (N)=0.01039 15; α (O)=0.001746 25; α(P)=0.0001277 18

[†] From intensity balance arguments in ¹⁹⁰W β^- decay.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

 1^{+}

(6⁻)

(0+)

(3)-

(2)-

0 3.0 min 2

 $^{190}_{75}$ Re $_{115}$