¹⁹⁰Re IT decay (3.1 h) 1974Ya02,2012Re19

History					
Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020		

Parent: 190 Re: E=204 10 ; J^{π} =(6⁻); $T_{1/2}$ =3.1 h 2; %IT decay=45.6 20

- 190 Re-%IT decay: Deduced by the evaluators from γ +ce intensity balances of γ transitions in 190 Os from β^- decays of the 3.0-min g.s. and the 3.1-h isomer of ¹⁹⁰Re in equilibrium (which means the total number of ¹⁹⁰Re g.s. decays is equal to the total number of ¹⁹⁰Re IT decays that feeds the g.s.) measured by 1974Ya02. Note that the relative γ intensities given as for ¹⁹⁰Re isomer β ⁻ decay in 1974Ya02 are actually for the combination of 190 Re isomer and g.s. β^- decays, with the latter fed by the IT decays of ¹⁹⁰Re isomer in equilibrium. See those decay datasets of ¹⁹⁰Os for more details.
- 1974Ya02 (also 1974YaZU): 190 Re ions were produced by the (d,α) reaction with natural osmium bombarded with a 18 MeV deuteron beam from the ANL 152-cm cyclotron. γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(t)$. Deduced $T_{1/2}$ of g.s. and isomer. See more data for ¹⁹⁰Os in ¹⁹⁰Re β^- decay.
- 2012Re19: direct measurement of the masses of ground state and isomer of ¹⁹⁰Re by Schottky mass spectrometry technique. ¹⁹⁰Re produced in ⁹Be(¹⁹⁷Au,X),E=478-492 MeV/nucleon reaction using UNILAC-SIS facility at GSI. Target was ⁹Be 1035 mg/cm² with a 221 mg/cm² niobium backing. Mostly bare atoms of the highly-charged reaction products were separated with FRS and injected into storage ring ESR. The ions were stochastically and electron cooled. Deduced masses from Schottky spectra; identified high-spin isomer.

Others: 1973DeWI, 1972Ru06, 1972KaYS, 1966BaZY, 1964Fl02, 1962Ba60.

¹⁹⁰Re Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	Comments	
0.0	(2)	3.0 min 2	Number of ions detected>40 (2012Re19). Configuration= $\pi 5/2[402] \otimes \nu 9/2[505]$, $K^{\pi}=2^{-}$ (1974Ya02).	
119.12 5	$(3)^{-}$		-	
204 10	(6^{-})	3.1 h 2	 %β⁻=54.4 20; %IT=45.6 20 E(level): from measured mass difference between the isomer and the g.s. (2012Re19), with number of ions detected>60. T_{1/2}: the adopted value is from weighted average of 3.3 h 2 (1974Ya02), 3.0 h 5 (1972Ru06), and 2.96 h 20 (1973DeWI). The original uncertainty of 0.10 in 1973DeWI seems too small (probably statistical only) and has been increased by a factor of 2 in the average by the evaluators. Other: 2.8 h (1962Ba60). Configuration=π5/2[402]⊗v7/2[503], K^π=6⁻ (1974Ya02). Also possible configuration=v9/2[505]⊗π5/2[402], same as for the g.s., but with K^π=7⁻, according to GM rule. 	

[†] From the Adopted Levels.

Iy normalization: From $I(\gamma+ce)(119\gamma)=100$.

$$\frac{E_{\gamma}^{\dagger}}{85^{\&}}$$
 $\frac{E_{i}(\text{level})}{204}$ $\frac{J_{i}^{\pi}}{(6^{-})}$ $\frac{E_{f}}{119.12}$ $\frac{J_{f}^{\pi}}{(3)^{-}}$ $\frac{\text{Mult.}}{[\text{M3}]}$ $\frac{\alpha^{\textcircled{@}}}{8.0 \times 10^{2}}$

Comments

 $\alpha(K)=154.7$ 22; $\alpha(L)=443$ 7; $\alpha(M)=126.5$ 18 $\alpha(N)=31.25$; $\alpha(O)=4.737$; $\alpha(P)=0.160423$

 $B(M3)(W.u.)=1.02\times10^{-4}+12-11$

 E_{ν} : no isomeric transitions from the decay of this isomer have been reported in the literature. Transition to the 119, (3) level is suggested by evaluators. If this transition has 100% $I(\gamma+ce)$ branching, then B(M3)(W.u.)= $1.02\times10_4 +12-11$. E4 transition to the g.s., $(2)^-$ is also possible.

¹⁹⁰Re IT decay (3.1 h) **1974Ya02,2012Re19** (continued)

$\gamma(^{190}\text{Re})$ (continued)

$$\frac{E_{\gamma}^{\dagger}}{19.12} = \frac{I_{\gamma}^{\ddagger \#}}{56.5} = \frac{E_{i}(\text{level})}{119.12} = \frac{J_{i}^{\pi}}{(3)^{-}} = \frac{E_{f}}{0.0} = \frac{J_{f}^{\pi}}{(2)^{-}} = \frac{\text{Mult.}}{\text{M1(+E2)}} = \frac{\delta}{0.4 + 7 - 4} = \frac{\alpha^{\textcircled{@}}}{3.0.5}$$

Comments

 $\alpha(\text{K}){=}2.3$ 9; $\alpha(\text{L}){=}0.5$ 3; $\alpha(\text{M}){=}0.12$ 8 $\alpha(\text{N}){=}0.029$ 18; $\alpha(\text{O}){=}0.0047$ 24; $\alpha(\text{P}){=}0.00025$ 10

Mult., δ : from α =3.0 4 deduced by the evaluators from γ +ce balance of 119 γ at 119 level, which is fed by the IT decay of the 3.1-h isomer and de-excites via the 119γ to the 3.0-min g.s. assuming $I(\gamma + ce)$ (absolute)(119 γ)=100, with β^- decays of the 3.0-min g.s. and the 3.1-h isomer in equilibrium. The feedings to 119 level from the 3.1-h isomer are obtained from and equal to the sum of net γ +ce intensities from 2352, 1996 and 1387 levels in ¹⁹⁰Os, which are the only levels fed directly by the β^- decay of the 3.0-min g.s. but not directly fed by the $\beta^$ decay of the 3.1-h isomer, as claimed by 1974Ya02. See ¹⁹⁰Re β^- decay (3.1 h) for more details on the feedings.

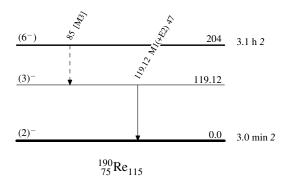
[†] From 1974Ya02.

[‡] Relative to $I_{\gamma}=100$ for 371 γ from the combination of β^- decays of the ¹⁹⁰Re 3.1-h isomer and 3.0-min g.s. in equilibrium (1974Ya02).

[#] For absolute intensity per 100 decays, multiply by 0.21 3.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Placement of transition in the level scheme is uncertain.


¹⁹⁰Re IT decay (3.1 h) 1974Ya02,2012Re19

Legend

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays %IT=45.6 20

---- → γ Decay (Uncertain)

