¹⁹⁰Au ε decay (42.8 min) 1973Jo11,1972Fi12

	Histor	ſy	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020

Parent: ¹⁹⁰Au: E=0.0; J^{π}=1⁻; T_{1/2}=42.8 min 10; Q(ε)=4473 4; % ε +% β ⁺ decay=100.0

¹⁹⁰Au-J^{π},T_{1/2}: From ¹⁹⁰Au Adopted Levels.

¹⁹⁰Au-Q(ε): From 2017Wa10.

1973Jo11: ¹⁹⁰Au activity was produced by (p,xn) reactions with 80-MeV protons from the Uppsala synchrocyclotron on natural platinum targets. Measured E γ , I γ , ce, β^+ , T_{1/2}(¹⁹⁰Au).

1972Fi12 (also 1972HuZL,1971Hu11,1971MaXM,1971JoZK,1970Er09): ¹⁹⁰Au isotopes were from decays of ¹⁹⁰Hg produced via (p,3pxn) reactions with 600-MeV protons from the CERN Synchrocyclotron on metallic lead target and were obtained by mass separation. Measured γ , $\gamma\gamma$, ce, ce γ (t). ¹⁹⁰Au isotope.

Others:

Eγ, Iγ: 1980GnZZ, 1970Du09, 1969Na10, 1964Ja05, 1960Al20, 1960Po07, 1959Al94.

 $\gamma\gamma$ -coin: 1980GnZZ (no further details are available as per reply from one of the authors (September 1989)). ce, γ : 1969Na10.

 $T_{1/2}$ of ¹⁹⁰Au: 1969Na10, 1961An02, 1961Ja17, 1960Po07, 1960Al20, 1959Al94. Other: 1966Ch05.

β⁺: 1973Jo11, 1974DiZQ.

 β^+ strength function: 1975Ho03.

¹⁹⁰Pt Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0.0	0+		
295.84 <i>4</i>	2+	45 ps 15	$T_{1/2}$: ce $\gamma(t)$ (1972Fi12).
597.68 <i>4</i>	2+		
737.16 7	4+		
916.66 6	3+		
920.89 7	0+		101
1128.0?	(4 ⁺)		Level proposed (evaluator) on the basis of 191 Ir(p,2n γ).
1203.07 7	2+		
1353.67 11	3-		
1395.26 9	2+		
1602.0 2	$(2,1)^{+}$		
1/5/.0 2	$1 \\ 1^{-} 2^{-} 3^{-}$		
1077.0414	1, 2, 3		
2212.8?* 4	(1)		
2216.2?+ 3	$(2^+,3,4^+)$		
2358.3 3	$(2)^{+}$		
2382.67 14	$(1)^{+}$		
2408.4?+ 2	$(1^{-}, 2^{-}, 3^{-})$		
2497.8? [‡] 3	(2^{+})		
2679.8? [‡] 4	(1 ⁻)		
2723.4? [‡] 2	(1 ⁻)		
2797.0? [‡] 3			
2875.4? [‡] 3			
2942.7? [‡] 5	$(0^{-}, 1^{-}, 2^{-})$		
2980.9 4	1-		
3014.0 2	$(2)^{-}$		
3049.3 2	$(2)^{-}$		
3067.5 2	$(1,2)^{-}$		
3233.7? [‡] 4	(2 ⁻ ,3 ⁻)		

$^{190}\mathrm{Au}\,\varepsilon$ decay (42.8 min) 1973Jo11,1972Fi12 (continued)

¹⁹⁰Pt Levels (continued)

[†] From a least-squares fit to γ-ray energies.
[‡] Tentative level proposed by 1972HuZL.
[#] From the Adopted Levels.

ε, β^+ radiations

Due to many unplaced transitions, the quoted $\varepsilon \beta^+$ feedings and associated log ft are given as approximate values.

E(decay)	E(level)	$\mathrm{I}\beta^+$	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(1239 [#] 4) (1406 4) (1424 4)	3233.7? 3067.5 3049.3	≈0.0013 ≈0.0029	≈1.6 ≈4.5 ≈8.2	≈6.8 ≈6.4 ≈6.2	≈1.6 ≈4.5 ≈8.2	ε K=0.8039; ε L=0.14836 5; ε M+=0.04767 2 av E β =192.7 19; ε K=0.8059; ε L=0.14676 4; ε M+=0.04706 2 av E β =201.0 19; ε K=0.8060; ε L=0.14661 4; ε M+=0.04700 2
(1459 <i>4</i>) (1492 <i>4</i>)	3014.0 2980.9	≈0.0050 ≈0.0022	≈9.8 ≈3.2	≈6.1 ≈6.6	≈9.8 ≈3.2	av $E\beta$ =217.0 <i>18</i> ; ε K=0.8063; ε L=0.14631 <i>4</i> ; ε M+=0.04689 <i>2</i> av $E\beta$ =231.9 <i>18</i> ; ε K=0.8065; ε L=0.14604 <i>4</i> ; ε M+=0.04679 <i>2</i>
(1530 [#] 4)	2942.7?	≈0.0012	≈1.2	≈7.1	≈1.2	av Eβ=249.0 18; εK=0.8066; εL=0.14573 4; εM+=0.04667 2
(1598 [#] 4)	2875.4?	≈0.0016	≈ 1.00	≈7.2	≈1.0	av E β =279.0 18; ε K=0.8067; ε L=0.14520 4; ε M+=0.04647 2
(1676 [#] 4)	2797.0?	≈ 0.0047	≈ 1.8	≈7.0	≈1.8	av E β =313.8 18; ε K=0.8065; ε L=0.14458 4; ε M+=0.04625 2
(1750 [#] 4)	2723.4?	≈0.0063	≈1.6	≈7.1	≈1.6	av E β =346.2 18; ε K=0.8060; ε L=0.14400 4; ε M+=0.04604 2
(1793 ^{#} 4)	2679.8?	≈ 0.0084	≈1.7	≈7.1	≈1.7	av E β =365.3 18; ε K=0.8055; ε L=0.14364 4; ε M+=0.04591 2
(1975 [#] 4)	2497.8?	≈0.017	≈1.6	≈7.2	≈1.6	av E β =445.3 18; ε K=0.8020 1; ε L=0.14202 4; ε M+=0.04534 2
(2065 [#] 4)	2408.4?	≈0.019	≈1.3	≈7.3	≈1.3	av E β =484.5 18; ε K=0.7993 2; ε L=0.14112 5; ε M+=0.04503 2
(2090 4)	2382.67	≈0.19	≈12	≈6.4	≈12	av Eβ=495.7 18; εK=0.7984 2; εL=0.14085 5; εM+=0.04494 2
(2115 4)	2358.3	≈0.022	≈1.3	≈7.3	≈1.3	av E β =506.4 18; ε K=0.7975 2; ε L=0.14058 5; ε M+=0.04485 2
(2257 [#] 4)	2216.2?	≈0.039	≈1.5	≈7.3	≈1.5	av E β =568.7 18; ε K=0.7911 2; ε L=0.13889 6; ε M+=0.04428 2
(2260 [#] 4)	2212.8?	≈0.02	≈0.7	≈7.7	≈0.7	av E β =570.2 18; ε K=0.7909 3; ε L=0.13885 6; ε M+=0.04427 2
(2596 4)	1877.04	≈0.13	≈2.2	≈7.3	≈2.3	av E β =717.7 18; ε K=0.7678 4; ε L=0.13377 7; ε M+=0.04260
(2736 4)	1737.0	≈0.53	≈6.9	≈6.8	≈7.4	av E β =779.4 18; ε K=0.7549 4; ε L=0.13117 8; ε M+=0.04175 3
(2871 4)	1602.0	≈0.16	≈1.6	≈7.5	≈1.8	av Eβ=838.9 18; εK=0.7408 5; εL=0.12841 9; εM+=0.04086 3
(3078 4)	1395.26	≈0.31	≈2.3	≈7.4	≈2.6	av E β =930.5 18; ε K=0.7159 6; ε L=0.1237 1; ε M+=0.03935 3
(3119 [#] 4)	1353.67	<0.70	<4.8	>7.1	<5.5	av E β =949.0 18; ε K=0.7105 6; ε L=0.1227 1; ε M+=0.03902 4 log <i>ft</i> is inconsistent with Δ J=2,(no) transition. The apparent feeding is most likely due to unassigned γ -ray intensity.
(3270 4)	1203.07	≈0.66	≈3.6	≈7.3	≈4.3	av E β =1016.0 18; ε K=0.6898 6; ε L=0.1189 1; ε M+=0.03780 4
(3552 4)	920.89	≈0.49	≈1.9	≈7.6	≈2.4	av Eβ=1142.1 18; εK=0.6473 7; εL=0.11123 12; εM+=0.03534 4
(3556 [#] 4)	916.66	≈0.31	≈3.5	$\approx 9.0^{1u}$	≈3.8	av Eβ=1128.4 18; εK=0.7443 3; εL=0.13291 7; εM+=0.04250 3
(3875 4)	597.68	≈4.1	≈11	≈7.0	≈15	av Eβ=1287.3 18; εK=0.5947 7; εL=0.10187 12; εM+=0.03235 4

				¹⁹⁰ Αu ε	decay (42.8 m	in) 1973Jo11,1972Fi12 (continued)
					ϵ,eta^+	radiations (continued)
E(decay)	E(level)	Ιβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(4177 4)	295.84	0.2 1	0.5 1	8.4 1	0.7 2	av E β =1423.6 <i>19</i> ; ε K=0.5441 <i>7</i> ; ε L=0.09297 <i>12</i> ; ε M+=0.02951 <i>4</i> I(ε + β^+): from I(β^+) relative to ce(K)(296 γ) (1973Jo11). Intensity balance based on γ -ray intensities gives an apparent ε + β^+ feeding of 29%, which must be due to unaccounted γ rays populating the 295.8 level.
4442 15	0.0	0.4 1	0.5 1	8.4 1	0.9 2	av E β =1557.9 <i>19</i> ; ε K=0.4949 <i>7</i> ; ε L=0.08439 <i>12</i> ; ε M+=0.02678 <i>4</i> E(decay): E(β ⁺)=3420 <i>15</i> (1973Jo11). Other: 3358 <i>55</i> (β ⁺ data,

1974DiZQ). I(ε+β⁺): from I(β⁺) relative to ce(K)(296γ) (1973Jo11).

[†] From γ+ce intensity balance at each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{190}\text{Pt})$

Iγ normalization: from $\Sigma(I(\gamma+ce))$ of gammas to g.s.)=98.4 8 and requiring that $\varepsilon+\beta^+$ feeding to g.s. and 296 level is 1.6% (1973Jo11). An uncertainty of 15% is assigned to account for some uncertain features of the decay scheme. The unplaced transitions intensity of $\approx 28\%$ should not affect the normalization factor significantly, as this intensity is most likely associated with deexcitations to excited states rather than to g.s. since there is an apparent intensity imbalance (from present decay scheme) at 296 level suggesting $\varepsilon+\beta^+$ feeding of $\approx 28\%$ as opposed to measured 0.7% (1973Jo11). An apparent $\varepsilon+\beta^+$ feeding of $\approx 6\%$ to 1354 level ($\Delta J=2,\Delta\pi=no \varepsilon$ transition) must also be due to unassigned γ transitions to 1354 level. See also comment above for $I(\beta^+)$ feedings.

Other I(β^+) estimates: from $\gamma^{\pm}/K \propto ray$, $\%\beta^+=2$ (1961Ja17), <1 (1959Al94). From γ -ray spectra shown by 1969Na10 and 1972HuZL (both mass-separated samples), I(γ^{\pm})/I γ (597 γ) \approx 0.5 (evaluators' estimate) implying I(β^+) \approx 2.4% which is consistent with 2% (1961Ja17) and weak β^+ branches (to g.s. and 296 level) observed by 1973Jo11. In the present decay scheme, deduced I(β^+) \approx 4.1% for 597 level.

Values of $\alpha(K)$ exp deduced (evaluator) from averaged I γ and ce(K) data given under comments; the quoted references indicate the source of ce data. The data were normalized to 296 γ , using $\alpha(K)$ =0.0632. The averaging procedure gives $\alpha(K)$ exp values which are somewhat different from those given in 1973Jo11 and 1972Fi12.

For transitions with E0 admixtures, total conversion coefficients are deduced based on ce(K) values. Pair conversion is considered when necessary.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^e	δ ^e	α^{i}	Comments
179.8 ^{&} 3	0.18& 2	916.66	3+	737.16	4+	E2+M1	3 +2-1	0.59 8	α (K)exp=0.30 5 (1973Jo11,1972Fi12) α (K)=0.303 82; α (L)=0.219 7; α (M)=0.0556 20 α (N)=0.0136 5; α (O)=0.00218 6; α (P)=3.07×10 ⁻⁵ 98 For α (K)exp. Iv from 1972Fi12 and ce(K) from 1973Jo11.
192.0 [#] 3	0.12 1	1395.26	2+	1203.07	2+	[M1,E2]		0.73 32	$\alpha(K)=0.53 \ 34; \ \alpha(L)=0.156 \ 14; \ \alpha(M)=0.038 \ 6 \ \alpha(N)=0.0093 \ 13; \ \alpha(O)=0.00157 \ 12; \ \alpha(P)=5.8\times10^{-5} \ 41$
206.1 [#] 3	0.10 <i>I</i>	1602.0	(2,1)+	1395.26	2+	[M1,E2]		0.59 27	α (K)=0.43 28; α (L)=0.121 5; α (M)=0.029 3 α (N)=0.0072 6; α (O)=0.00122 4; α (P)=4.8×10 ⁻⁵ 33
225.0 ^{&k} 3	0.40 ^{&} 5	1353.67	3-	1128.0?	(4^{+})				Placement from 191 Ir(p,2n γ).
282.3 ^{&} 8	1.08 ^{&} 8	1203.07	2+	920.89	0+	E2		0.1182 20	α (K)exp=0.073 <i>14</i> (1972Fi12,1973Jo11) α (K)=0.0711 <i>12</i> ; α (L)=0.0356 <i>7</i> ; α (M)=0.00895 <i>16</i> α (N)=0.00219 <i>4</i> ; α (O)=0.000356 <i>7</i> ; α (P)=7.10×10 ⁻⁶ <i>11</i> δ (E2/M1)>4 from α (K)exp).
286.4 ^{&} 3	0.54 ^{&} 3	1203.07	2+	916.66	3+	E2(+M1)	>5	0.118 5	α (K)exp=0.067 <i>14</i> (1972Fi12,1973Jo11) α (K)=0.073 <i>5</i> ; α (L)=0.0340 <i>6</i> ; α (M)=0.00851 <i>14</i> α (N)=0.00209 <i>4</i> ; α (O)=0.000340 <i>6</i> ; α (P)=7.4×10 ⁻⁶ <i>5</i>
295.82 ^{<i>a</i>} 4	100 ^{<i>a</i>} 2	295.84	2+	0.0	0+	E2		0.1027	K/L=2.09 21; (L1+L2)/L3=3.3 3 (1973Jo11) α (K)=0.0632 9; α (L)=0.0298 5; α (M)=0.00748 11 α (N)=0.00183 3; α (O)=0.000298 5; α (P)=6.36×10 ⁻⁶ 9 α (K)=0.0638 used to normalize ce data for other transitions. Mult.: from K/L and (L1+L2)/L3.

 $^{190}_{78}\mathrm{Pt}_{112}$ -

				¹⁹⁰ Au ε de	ecay (42.8 mi	in) <mark>1973J</mark> o11	,1972Fi12 (continued)
					<u>γ(</u>	(¹⁹⁰ Pt) (continue	<u>d)</u>	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^e	δ^{e}	α^{i}	Comments
301.82 3	33 1	597.68	2+	295.84 2+	E2		0.0967	$\alpha(K)\exp=0.066 \ 5 \ (1973Jo11,1972Fi12)$ K/L=2.17 18 (1973Jo11); (L1+L2)/L3=2.87 23 (1973Jo11) $\alpha(K)=0.0602 \ 9; \ \alpha(L)=0.0276 \ 4; \ \alpha(M)=0.00692 \ 10$ $\alpha(N)=0.001696 \ 24; \ \alpha(O)=0.000276 \ 4; \ \alpha(P)=6.06\times10^{-6} \ 9$ Multi-frem K(L, and (L1+L2)/L2, S(E2(M1))) = 5
318.96 ^{<i>a</i>} 6	6.6 ^{<i>a</i>} 4	916.66	3+	597.68 2+	E2+M1	3.1 +18-7	0.099 10	Mult.: from K/L and (L1+L2)/L3. $\delta(E2/M1)>3$. $\alpha(K)\exp=0.069\ 7\ (1973Jo11,1972Fi12)$ K/L=2.9 5 (1973Jo11); (L1+L2)/L3=3.3 8 (1973Jo11) $\alpha(K)=0.068\ 9;\ \alpha(L)=0.0237\ 8;\ \alpha(M)=0.00585\ 16$ $\alpha(L)=0.02144\ \alpha(L)=0.02202\ 0;\ \alpha(L)=0.00585\ 16$
323.17 7	1.45 9	920.89	0+	597.68 2+	E2		0.0792	$\begin{aligned} &\alpha(N)=0.00144\ 4;\ \alpha(O)=0.000238\ 8;\ \alpha(P)=7.1\times10^{-6}\ 11\\ &\alpha(K)\exp=0.056\ 4\ (1973Jo11,1972Fi12)\\ &\alpha(K)=0.0508\ 8;\ \alpha(L)=0.0215\ 3;\ \alpha(M)=0.00535\ 8\\ &\alpha(N)=0.001312\ 19;\ \alpha(O)=0.000215\ 3;\ \alpha(P)=5.16\times10^{-6}\ 8\\ &\delta(E2/M1)>4\ from\ \alpha(K)exp. \end{aligned}$
x383.2 [@] f x398.0 [#] f 3	<0.30 0.12 <i>10</i>							Suggested placement from 1737 level (1972HuZL). α (K)exp<0.0016 (1973Jo11) Suggested placement from 1603 level (1972Fi12).
x436.0 ^f 10 441.25 7	5.26 10	737.16	4+	295.84 2+	E2		0.0338	Reported by 1969Na10 only and placed from 1353 level. $\alpha(K)\exp=0.030 \ 3 \ (1973Jo11,1972Fi12); \ K/L=3.2 \ 4 \ (1973Jo11) \ \alpha(K)=0.0242 \ 4; \ \alpha(L)=0.00732 \ 11; \ \alpha(M)=0.00179 \ 3 \ \alpha(N)=0.000440 \ 7; \ \alpha(O)=7.37\times10^{-5} \ 11; \ \alpha(P)=2.53\times10^{-6} \ 4 \ \delta; \ from \ K/L, \ \delta(E2/M1)>4.$
^x 460.7 ^{&} 3	0.18 ^{&} 2				M1(+E2)	<0.6	0.088 9	α (K)exp=0.092 25 (1972Fi12) α (K)=0.072 8; α (L)=0.0120 9; α (M)=0.00279 20 α (N)=0.00069 5; α (O)=0.000123 10; α (P)=8.1×10 ⁻⁶ 9 I _y : from 1972Fi12, Iy=0.44 7 (1973Jo11).
466.0 ^{&} 3	0.67 ^{&} 4	1203.07	2+	737.16 4+	E2		0.0295	α (K)exp=0.021 4 (1972Fi12) α (K)=0.0214 3; α (L)=0.00615 9; α (M)=0.001500 22 α (N)=0.000369 6; α (O)=6.20×10 ⁻⁵ 9; α (P)=2.24×10 ⁻⁶ 4 δ (E2/M1)>4 from α (K)exp).
478.4 ^{&} 3	0.45 ^{&} 16	1395.26	2+	916.66 3+	M1(+E2)	<0.8	0.076 12	α (K)exp=0.065 <i>12</i> (1972Fi12) α (K)=0.062 <i>11</i> ; α (L)=0.0105 <i>12</i> ; α (M)=0.0024 <i>3</i>
523.28 <i>13</i>	0.24 2	1877.04	1 ⁻ ,2 ⁻ ,3 ⁻	1353.67 3-	E2(+M1)	>1	0.034 12	$\begin{aligned} &\alpha(N) = 0.00060 \ 7; \ \alpha(O) = 0.000108 \ I3; \ \alpha(P) = 7.0 \times 10^{-6} \ I2 \\ &\alpha(K) \exp[=0.027 \ I0 \ (1972Fi12); \ \alpha(K) \exp[=0.029 \ 8 \ (1973Jo11) \\ &\alpha(K) = 0.027 \ I1; \ \alpha(L) = 0.0055 \ I3; \ \alpha(M) = 0.0013 \ 3 \\ &\alpha(N) = 0.00032 \ 7; \ \alpha(O) = 5.6 \times 10^{-5} \ I3; \ \alpha(P) = 2.9 \times 10^{-6} \ I2 \\ &I_{\gamma}: \ from \ 1972Fi12. \ I\gamma = 0.60 \ I1 \ (1973Jo11). \end{aligned}$
530.6 ^{&k} 3	0.60 ^{&} 6	1128.0?	(4+)	597.68 2+	(E2)		0.0214	α (K)exp<0.025 (1972Fi12,1973Jo11) α (K)=0.01603 23; α (L)=0.00413 6; α (M)=0.000999 14 α (N)=0.000246 4; α (O)=4.17×10 ⁻⁵ 6; α (P)=1.691×10 ⁻⁶ 24 Mult.: E1 is not excluded by α (K)exp.

 $^{190}_{78} Pt_{112}$ -5

I

From ENSDF

 $^{190}_{78}\mathrm{Pt}_{112}\text{-}5$

				¹⁹⁰ Au ε ο	decay	(42.8 min)	1973Jo11,1972F	Fi12 (continue	d)
						$\gamma(^{190}\text{Pt})$	(continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^e	δ^{e}	α^{i}	Comments
^x 586.7 ^{&} 3 597.68 8	0.15 ^{&} 1 13.3 9	597.68	2+	0.0	0+	E2		0.01624	$ \begin{aligned} &\alpha(\text{K}) \exp = 0.0139 \ 11 \ (1973\text{Jo11}, 1972\text{Fi12}) \\ &\text{K/L} = 4.0 \ 6 \ (1973\text{Jo11}); \ (\text{L1+L2})/\text{L3} = 7.8 \ 20 \\ &(1973\text{Jo11}) \\ &\alpha(\text{K}) = 0.01241 \ 18; \ \alpha(\text{L}) = 0.00292 \ 4; \ \alpha(\text{M}) = 0.000702 \\ &10 \\ &\alpha(\text{N}) = 0.0001728 \ 25; \ \alpha(\text{O}) = 2.96 \times 10^{-5} \ 5; \end{aligned} $
605.21 ^{<i>a</i>} 12	2.11 ^{<i>a</i>} 5	1203.07	2+	597.68	2+	M1(+E2)	<0.4	0.0452 23	α (P)=1.313×10 ⁻⁶ <i>19</i> δ : from K/L and (L1+L2)/L3, δ (E2/M1)>4. α (K)exp=0.040 <i>3</i> (1973Jo11,1972Fi12); K/L12=6.7 <i>10</i> (1973Jo11) α (K)=0.0373 <i>20</i> ; α (L)=0.0060 <i>3</i> ; α (M)=0.00139 <i>6</i> α (N)=0.000344 <i>14</i> ; α (O)=6.2×10 ⁻⁵ <i>3</i> ;
616.24 ^{<i>a</i>} 14	2.20 ^{<i>a</i>} 11	1353.67	3-	737.16	4+	E1		0.00536	$\alpha(P)=4.17\times10^{-6} 23$ $\alpha(K)\exp=0.0049 \ 8 \ (1973Jo11,1972Fi12)$ $\alpha(K)=0.00448 \ 7; \ \alpha(L)=0.000679 \ 10;$ $\alpha(M)=0.0001553 \ 22$ $\alpha(N)=3.82\times10^{-5} \ 6; \ \alpha(O)=6.79\times10^{-6} \ 10;$ $\alpha(P)=4.32\times10^{-7} \ 6$
620.89 ^a 12	3.4 ^{<i>a</i>} 3	916.66	3+	295.84	2+	E2+M1	2.0 +20-6	0.021 5	δ (M2/E1)<0.1 from α (K)exp. α (K)exp=0.017 4 (1973Jo11,1972Fi12) α (K)=0.017 4; α (L)=0.0033 5; α (M)=0.00077 11
625.1 2	4.2 2	920.89	0+	295.84	2+	E2		0.01467	$\alpha(N)=0.00019 \ 3; \ \alpha(O)=3.3\times10^{-5} \ 5; \ \alpha(P)=1.8\times10^{-6} \ 4 \\ \alpha(K)\exp=0.012 \ 2 \ (1973Jo11,1972Fi12) \\ \alpha(K)=0.01129 \ 16; \ \alpha(L)=0.00258 \ 4; \ \alpha(M)=0.000618 \ 9 \\ \alpha(N)=0.0001521 \ 22; \ \alpha(O)=2.61\times10^{-5} \ 4; \\ \alpha(P)=1.195\times10^{-6} \ 17 \\ \delta(E2/M1)>3 \ from \ \alpha(K)\exp.$
^x 634.0 ^{&} 3	0.22 ^{&} 4					M1(+E2)	<0.7	0.037 5	α (K)exp=0.043 <i>15</i> (1972Fi12); α (K)exp<0.022 (1973Jo11) α (K)=0.031 <i>4</i> ; α (L)=0.0050 <i>5</i> ; α (M)=0.00117 <i>12</i> α (N)=0.00029 3; α (Q)=5.2×10 ⁻⁵ 6; α (P)=3.4×10 ⁻⁶ 5
657.9 ^{&} 3	0.17 ^{&} 2	1395.26	2+	737.16	4+	(E2)		0.01309	$\alpha(K) = 0.00025 \ (1973Jo11) \\ \alpha(K) = 0.01015 \ 15; \ \alpha(L) = 0.00224 \ 4; \ \alpha(M) = 0.000536 \ 8 \\ \alpha(N) = 0.0001319 \ 19; \ \alpha(O) = 2.27 \times 10^{-5} \ 4; \\ \alpha(P) = 1.075 \times 10^{-6} \ 15$
^x 675.3 ^{&} 3	0.32 ^{&} 3					E0+(E2,M1)		0.090 23	α (K)exp=0.072 <i>18</i> (1972Fi12) Mult.: M2 is also possible from α (K)exp. I(E0)=0.026 6.
729.88 ^{ck} 17	1.26 6	2942.7?	(0^-,1^-,2^-)	2212.8?	(1 ⁻)	M1		0.0292	α (K)exp=0.036 6 (1972Fi12,1973Jo11) α (K)=0.0242 4; α (L)=0.00385 6; α (M)=0.000885 13

From ENSDF

 $^{190}_{78}\text{Pt}_{112}\text{-}6$

					¹⁹⁰ A	$\mathbf{u} \in \mathbf{decay} \ (42.8)$	min)	1973Jo11,1	972Fi12 (c	continued)
							$\gamma(^{190}\text{Pt})$) (continued)	<u>)</u>	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^e	δ^{e}	α^{i}	$I_{(\gamma+ce)}^{h}$	Comments
756.4 ^k 2	0.20 5	1353.67	3-	597.68	2+	E1		0.00357		α (N)=0.000219 3; α (O)=3.95×10 ⁻⁵ 6; α (P)=2.70×10 ⁻⁶ 4 No E2 from α (K)exp. α (K)exp=0.0045 14 (1973Jo11) α (K)=0.00299 5; α (L)=0.000448 7; α (M)=0.0001021 15
^x 779.0 4	0.41 6					M1(+E2)	<0.7	0.022 3		$\begin{aligned} \alpha(N) &= 2.52 \times 10^{-5} \ 4; \ \alpha(O) &= 4.49 \times 10^{-6} \ 7; \ \alpha(P) &= 2.91 \times 10^{-7} \ 4 \\ \delta(M2/E1) &< 0.2 \ \text{from } \alpha(K) \text{exp.} \\ \alpha(K) &= 0.023 \ 6 \ (1972 \text{Fi}12, 1973 \text{Jo}11) \\ \alpha(K) &= 0.0183 \ 22; \ \alpha(L) &= 0.0030 \ 3; \ \alpha(M) &= 0.00068 \ 7 \end{aligned}$
797.5 3	0.16 2	1395.26	2+	597.68	2^{+}	E0+(E2,M1)		0.28 4		α (N)=0.000168 <i>17</i> ; α (O)=3.0×10 ⁻⁵ <i>3</i> ; α (P)=2.0×10 ⁻⁶ <i>3</i> α (K)exp=0.22 <i>3</i> (1973Jo11); α (K)exp<0.19 (1972Fi12) U(E0)=0.038 5
816.1 ^{<i>a</i>} 2	0.58 ^{<i>a</i>} 5	1737.0	1-	920.89	0+	E1		0.00309		$\alpha(K) = 0.033 \ 6 \ (1972Fi12, 1973Jo11)$ $\alpha(K) = 0.00259 \ 4; \ \alpha(L) = 0.000385 \ 6; \ \alpha(M) = 8.79 \times 10^{-5} \ 13$ $\alpha(N) = 2.16 \times 10^{-5} \ 3; \ \alpha(O) = 3.86 \times 10^{-6} \ 6; \ \alpha(P) = 2.53 \times 10^{-7} \ 4$ $\delta(M2/F1) < 0.17 \ \text{from } \alpha(K) = 0.17 \ fr$
^x 836.4 ^{&} 3	0.20 ^{&} 2					M1(+E2)	<1	0.017 4		$\alpha(K) \exp[=0.015 \ 3 \ (1972Fi12); \ \alpha(K) \exp[<0.010 \ (1973Jo11) \\ \alpha(K) = 0.014 \ 3; \ \alpha(L) = 0.0023 \ 4; \ \alpha(M) = 0.00054 \ 9 \\ \alpha(N) = 0.000133 \ 21; \ \alpha(O) = 2.4 \times 10^{-5} \ 4; \ \alpha(P) = 1.6 \times 10^{-6} \ 4$
864.5 ^{&k} 3	0.17 ^{&} 2	1602.0	(2,1)+	737.16	4+			0.030 6		α (K)exp=0.025 5 (1973Jo11) Mult.: (E0+E2+M1) from α (K)exp, which is inconsistent with ΔJ^{π} .
^x 869.2 2	0.41 4					M1		0.0187		α: based on α(K)exp value. α(K)exp=0.025 6 (1973Jo11) α(K)=0.01550 22; α(L)=0.00245 4; α(M)=0.000563 8 α(N)=0.0001393 20; α(O)=2.51×10 ⁻⁵ 4; α(P)=1.721×10 ⁻⁶
907.30 9	2.05 5	1203.07	2+	295.84	2+	E0+(E2,M1)		0.049 6		25 $\alpha(K)\exp=0.039\ 5\ (1973Jo11);\ \alpha(K)\exp=0.050\ 11$ (1972Fi12) $\alpha(L1)\exp+\alpha(L2)\exp=0.0071\ 15;\ \alpha(L3)\exp<0.00031;$ $\alpha(M)\exp=0.0022\ 6\ (1971Hu11)$ K/L=6.8 8 (1973Jo11); K/L=7.6 20 (1971Hu11); L12/L3>23 (1971Hu11) I _y : from 1972Fi12. I _Y =3.2 4 (1973Jo11). $\alpha(M)\exp$ value is for M1 to M5 shells.
^x 912.2 [#] 3	0.13 2					(E2)		0.00658		I(E0)=0.10 2. α (K)exp<0.010 (1973Jo11) α (K)=0.00529 8; α (L)=0.000988 14; α (M)=0.000232 4 α (N)=5.71×10 ⁻⁵ 8; α (O)=1.001×10 ⁻⁵ 14; α (P)=5.58×10 ⁻⁷ 8
921.05 14	<0.1	920.89	0^{+}	0.0	0^{+}	E0			0.090 4	Mult.: E1 is also possible from α (K)exp. I _(γ+<i>ce</i>) : deduced from ce(K)/ce(K)(296 γ)=0.0124 5 (1973Jo11), 0.0110 25 (1972Fi12) and

 \neg

				¹⁹⁰ Au ε decay	y (42.8 min)	1973J o	11,1972Fi12	(continued)	
					γ (¹⁹⁰ H	Pt) (contin	ued)		
${\rm E_{\gamma}}^\dagger$	$I_{\gamma}^{\dagger h}$	E _i (level)	${ m J}^{\pi}_i$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^e	δ^{e}	α^{i}	$I_{(\gamma+ce)}^{h}$	Comments
									ce(L1+L2)/ce(K)(296γ)=0.0019 5 (1971Hu11). ce(L3)/ce(K)(296γ)<0.0018 (1971Hu11).
^x 977.0 3	0.20 2				M1		0.01388		$\begin{array}{l} X(E0/E2) = 0.62 \ 12 \ (19/2Fi12).\\ \alpha(K) \exp = 0.017 \ 3 \ (1972Fi12, 1973Jo11)\\ \alpha(K) = 0.01153 \ 17; \ \alpha(L) = 0.00181 \ 3;\\ \alpha(M) = 0.000417 \ 6\\ \alpha(N) = 0 \ 0001032 \ 15; \ \alpha(O) = 1.86 \times 10^{-5} \ 3; \end{array}$
987.4 2	0.94 5	2382.67	$(1)^{+}$	1395.26 2+	M1(+E2)	<1	0.0115 20		$\alpha(\text{R})=0.0001052 15, \ \alpha(\text{C})=1.60\times10^{-5}, \ \alpha(\text{P})=1.277\times10^{-6} \ 18 \ \alpha(\text{K})\exp=0.012 \ 4 \ (1972\text{Fi}12); \ \alpha(\text{K})\exp=0.0088$
									$ \begin{array}{l} 17 \ (1973Jo11) \\ \alpha(K)=0.0096 \ 17; \ \alpha(L)=0.00153 \ 24; \\ \alpha(M)=0.00035 \ 6 \\ \alpha(N)=8.7\times10^{-5} \ 14; \ \alpha(O)=1.57\times10^{-5} \ 25; \\ \alpha(P)=1.05\times10^{-6} \ 20 \end{array} $
^x 1003.1 7	0.27 3				M1(+E2)	<0.7	0.0117 <i>13</i>		I _y : from 1972Fi12. Iy=1.49 22 (1973Jo11). α (K)exp=0.014 5 (1973Jo11) α (K)=0.0097 11; α (L)=0.00155 15; α (M)=0.00036 4
1005.4 4	0.83 16	1602.0	(2,1)+	597.68 2+	M1+E2	0.7 5	0.0104 22		$\alpha(N)=8.8\times10^{-5} \ 9; \ \alpha(O)=1.59\times10^{-5} \ 16; \alpha(P)=1.07\times10^{-6} \ 12 \alpha(K)exp=0.0088 \ 20 \ (1973Jo11) \alpha(K)=0.0086 \ 19; \ \alpha(L)=0.0014 \ 3; \ \alpha(M)=0.00032 6 \alpha(N)=7.9\times10^{-5} \ 15; \ \alpha(O)=1.4\times10^{-5} \ 3; \alpha(D)=0.5\times10^{-7} \ 21 \ 21 \ 21 \ 21 \ 21 \ 21 \ 21 \ 2$
1013 1 <i>j&ck 1</i>	0.12j & 1	2216 22	$(2^+ 3 4^+)$	1203 07 2+					$\alpha(P) = 9.5 \times 10^{-5} 21$
$1013.1^{j\&ck}$ 4	$0.12^{j} \frac{1}{2}$	2408.4?	$(2^{-},3,4^{-})$ $(1^{-},2^{-},3^{-})$	$1205.07 \ 2$ $1395.26 \ 2^+$	(E1)		0.008 5		α (K)exp<0.016 (1973Jo11) Mult.: (D.E2) from ce data.
1054.7 ^{ck} 3	0.50 5	2408.4?	(1 ⁻ ,2 ⁻ ,3 ⁻)	1353.67 3-	(M1,E2)		0.0082 33		$\alpha(K) \exp = 0.010 \ 3 \ (1972Fi12); \ \alpha(K) \exp = 0.0038$ $I2 \ (1973Jo11)$ $\alpha(K) = 0.0068 \ 28; \ \alpha(L) = 0.00110 \ 40;$ $\alpha(M) = 2.54 \times 10^{-4} \ 89$ $\alpha(N) = 6 \ 3 \times 10^{-5} \ 22; \ \alpha(O) = 1 \ 12 \times 10^{-5} \ 41;$
1057.7 3	4.9 6	1353.67	3-	295.84 2+	E1		0.00191		$\begin{array}{l} \alpha(\mathrm{P}) = 7.4 \times 10^{-7} \ 32 \\ \mathrm{I}_{\gamma}: \ \mathrm{from} \ 1972\mathrm{Fil}_{2}. \ \mathrm{I}_{\gamma} = 1.4 \ 4 \ (1973\mathrm{Jol}_{1}). \\ \alpha(\mathrm{K}) \mathrm{exp} = 0.0023 \ 4 \ (1973\mathrm{Jol}_{1}, 1972\mathrm{Fil}_{2}) \\ \alpha(\mathrm{K}) = 0.001609 \ 23; \ \alpha(\mathrm{L}) = 0.000236 \ 4; \\ \alpha(\mathrm{M}) = 5.36 \times 10^{-5} \ 8 \\ \alpha(\mathrm{N}) = 1.322 \times 10^{-5} \ 19; \ \alpha(\mathrm{O}) = 2.37 \times 10^{-6} \ 4; \\ \alpha(\mathrm{P}) = 1.582 \times 10^{-7} \ 23 \\ \delta(\mathrm{M2/E1}) < 0.2 \ \mathrm{from} \ \alpha(\mathrm{K}) \mathrm{exp}. \end{array}$

 ∞

				190 Au ε de	ecay (42.8 min)	1973	3Jo11,1972Fi1	2 (continued)
					γ ⁽¹⁹⁰ I	Pt) (con	tinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^e	δ ^e	α^{i}	Comments
1099.48 16	1.35 8	1395.26	2+	295.84 2+	E0+(E2,M1)		0.041 6	α(K)exp=0.033 5 (1973Jo11,1972Fi12); K/L=6.1 4 (1973Jo11) I(E0)=0.040 7.
1139.3 ^a 3	2.04 ^{<i>a</i>} 7	1737.0	1-	597.68 2+	E1		1.68×10 ⁻³	$\alpha(K)\exp=0.0015 \ 3 \ (1972Fi12, 1973Jo11)$ $\alpha(K)=0.001409 \ 20; \ \alpha(L)=0.000206 \ 3; \ \alpha(M)=4.68\times10^{-5}$ 7 (N) 1 152 110 ⁻⁵ 17 (O) 2 07 110 ⁻⁶ 3
								$\alpha(N)=1.153 \times 10^{-5} I/; \alpha(O)=2.0/\times 10^{-5} 3;$ $\alpha(P)=1.388 \times 10^{-7} 20; \alpha(IPF)=3.79 \times 10^{-6} 7$ $\delta(M2/E1)<0.15$ from $\alpha(K)$ exp.
^x 1154.2 [‡] 4	0.45 11				M1(+E2)	<1	0.0079 13	$\begin{aligned} &\alpha(\text{K}) \exp[=0.0074 \ 21 \ (1973\text{Jol1}) \\ &\alpha(\text{K}) = 0.0065 \ 11; \ \alpha(\text{L}) = 0.00104 \ 16; \ \alpha(\text{M}) = 0.00024 \ 4 \\ &\alpha(\text{N}) = 5.9 \times 10^{-5} \ 9; \ \alpha(\text{O}) = 1.06 \times 10^{-5} \ 16; \ \alpha(\text{P}) = 7.2 \times 10^{-7} \\ &12; \ \alpha(\text{IPF}) = 1.87 \times 10^{-6} \ 20 \end{aligned}$
^x 1161.0 [‡] 4	1.02 23				E2(+M1)	>3	0.0043 3	α (K)exp=0.0029 8 (1973Jo11) α (K)=0.00355 22; α (L)=0.00060 3; α (M)=0.000140 7 α (N)=3.46×10 ⁻⁵ 18; α (O)=6.1×10 ⁻⁶ 4; α (P)=3.75×10 ⁻⁷ 25: α (IPE)=1.63×10 ⁻⁶ 6
1203.4 4	0.30 3	1203.07	2+	0.0 0+	(E2)		0.00382	$\begin{aligned} \alpha(\text{K}) &\approx \text{p}=0.0039 \ 13 \ (1973\text{Jol}1,1972\text{Fil}2) \\ \alpha(\text{K}) &= 0.00313 \ 5; \ \alpha(\text{L}) &= 0.000531 \ 8; \ \alpha(\text{M}) &= 0.0001234 \ 18 \\ \alpha(\text{N}) &= 3.04 \times 10^{-5} \ 5; \ \alpha(\text{O}) &= 5.39 \times 10^{-6} \ 8; \ \alpha(\text{P}) &= 3.29 \times 10^{-7} \\ 5; \ \alpha(\text{IPF}) &= 4.50 \times 10^{-6} \ 8 \\ \alpha(\text{K}) &\approx \text{p for } 1203.4\gamma + 1205.5\gamma. \end{aligned}$ $\begin{aligned} & \text{E}_{\gamma}, \text{I}_{\gamma}: \text{ from } 1972\text{Fil}2, \text{ who also report a } 1205.5\gamma \\ & \text{(I}\gamma &= 0.41). \text{ Only one } \gamma \text{ at } 1203.1 \ (\text{I}\gamma &= 0.70 \ 20) \\ & \text{reported by } 1973\text{Jol}1. \end{aligned}$
1205.5 ^{#ck} 4	0.41 4	2408.4?	(1 ⁻ ,2 ⁻ ,3 ⁻)	1203.07 2+				I_{γ} : quoted uncertainty=0.40 (1972Fi12) is probably a misprint.
1279.5 <i>3</i>	1.28 <i>23</i>	1877.04	1-,2-,3-	597.68 2+	(E1)		1.41×10 ⁻³	$\alpha(K)\exp=0.0015 \ 4 \ (1973Jo11); \ \alpha(K)\exp=0.0035 \ 9 \\ (1972Fi12) \\ \alpha(K)=0.001150 \ 17; \ \alpha(L)=0.0001669 \ 24; \\ \alpha(M)=3.79\times10^{-5} \ 6 \\ \alpha(N)=9.35\times10^{-6} \ 13; \ \alpha(O)=1.678\times10^{-6} \ 24; \\ \alpha(P)=1.136\times10^{-7} \ 16; \ \alpha(IPF)=4.75\times10^{-5} \ 7 \\ \alpha(P)=1.136\times10^{-7} \ 16; \ \alpha(PF)=4.75\times10^{-5} \ 16; \ \alpha(PF)=4.75$
×1304.8 9	1.16 5				E2(+M1)	>2	0.0036 4	I _γ : from 1973Jo11. Iγ=0.90 5 (1972Fi12). δ (M2/E1)<0.24. α(K)exp (1972Fi12) also allows E2. α(K)exp=0.0026 7 (1973Jo11) α(K)=0.0030 3; α(L)=0.00049 5; α(M)=0.000113 10 α(N)=2.80×10 ⁻⁵ 25; α(O)=5.0×10 ⁻⁶ 5; α(P)=3.2×10 ⁻⁷
1307.6 5	0.56 6	1602.0	$(2,1)^+$	295.84 2+	M1		0.00669	4; $\alpha(\text{IPF})=1.85\times10^{-5}$ <i>I1</i> $\alpha(\text{K})\exp=0.0073$ <i>I5</i> (1973Jo11)

I

				¹⁹⁰ Au ε de	cay (42.8 min)	1973.	Jo11,1972Fi12	2 (continued)
					γ ⁽¹⁹⁰ F	t) (cont	inued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger h}$	E _i (level)	J_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^e	δ ^e	α^{i}	Comments
×1345.8 <i>3</i>	0.87 12				M1(+E2)	<1.5	0.0052 11	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00554 \ 8; \ \alpha(\mathrm{L}) = 0.000865 \ 13; \ \alpha(\mathrm{M}) = 0.000199 \ 3\\ &\alpha(\mathrm{N}) = 4.91 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 8.86 \times 10^{-6} \ 13; \\ &\alpha(\mathrm{P}) = 6.11 \times 10^{-7} \ 9; \ \alpha(\mathrm{IPF}) = 2.77 \times 10^{-5} \ 4\\ &\alpha(\mathrm{K}) \exp = 0.0050 \ 16 \ (1972 \mathrm{Fi} 12, 1973 \mathrm{Jo} 11) \\ &\alpha(\mathrm{K}) = 0.0043 \ 9; \ \alpha(\mathrm{L}) = 0.00067 \ 14; \ \alpha(\mathrm{M}) = 0.00015 \ 3\\ &\alpha(\mathrm{N}) = 3.8 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 6.9 \times 10^{-6} \ 14; \ \alpha(\mathrm{P}) = 4.6 \times 10^{-7} \end{aligned}$
1395.34 20	3.2 4	1395.26	2+	0.0 0+	E2		0.00292	11; $\alpha(\text{IPF})=3.4\times10^{-5} 5$ $\alpha(\text{K})\exp=0.0028 5 (1973\text{Jo}11,1972\text{Fi}12)$ $\alpha(\text{K})=0.00238 4; \alpha(\text{L})=0.000390 6; \alpha(\text{M})=9.00\times10^{-5} 13$ $\alpha(\text{N})=2.22\times10^{-5} 4; \alpha(\text{O})=3.95\times10^{-6} 6;$ $\alpha(\text{P})=2.49\times10^{-7} 4; \alpha(\text{IPF})=3.65\times10^{-5} 6$ $\delta(\text{F2}/\text{M1})>1.3 \text{ from } \alpha(\text{K})\exp$
1401.9 ^{ck} 3	0.73 4	2797.0?		1395.26 2+	E1		1.28×10 ⁻³	$\alpha(K) \exp[=0.0017 \ 3 \ (1973 Jo11) \\ \alpha(K) = 0.000983 \ 14; \ \alpha(L) = 0.0001420 \ 20; \\ \alpha(M) = 3.23 \times 10^{-5} \ 5 \\ \alpha(N) = 7.95 \times 10^{-6} \ 12; \ \alpha(O) = 1.429 \times 10^{-6} \ 20; \\ \alpha(P) = 9 \ 72 \times 10^{-8} \ 14; \ \alpha(IPF) = 0 \ 0001133 \ 16$
1441.3 <i>3</i>	5.6 6	1737.0	1-	295.84 2+	E1		1.25×10 ⁻³	$\alpha(K) = 2.10^{-1} (14, \alpha(H1) = 0.0001135 10)$ $\alpha(K) = 2.00010 2 (1973Jo11); \alpha(K) = 2.00024 (1972Fi12)$ $\alpha(K) = 0.000938 14; \alpha(L) = 0.0001353 19; \alpha(M) = 3.07 \times 10^{-5} 5$ $\alpha(M) = 3.07 \times 10^{-5} 5$ $\alpha(N) = 7.58 \times 10^{-6} 11; \alpha(O) = 1.362 \times 10^{-6} 19; \alpha(P) = 9.28 \times 10^{-8} 13; \alpha(IPF) = 0.0001386 20$ $I_{\gamma}: \text{ from } 1973Jo11. I_{\gamma} = 4.05 10 (1972Fi12).$ $\delta(M2/E1) < 0.16 \text{ from } \alpha(K) \text{ exp.}$
1461.6 ^{&} 4	0.83 ^{&} 8	2382.67	(1)+	920.89 0+	M1		0.00513	$\alpha(K) \exp[=0.0043 \ 11 \ (1972Fi12, 1973Jo11) \\ \alpha(K) = 0.00420 \ 6; \ \alpha(L) = 0.000653 \ 10; \ \alpha(M) = 0.0001499 \\ 21 \\ \alpha(N) = 3.71 \times 10^{-5} \ 6; \ \alpha(O) = 6.69 \times 10^{-6} \ 10; \\ \alpha(P) = 4.62 \times 10^{-7} \ 7; \ \alpha(IPF) = 8.37 \times 10^{-5} \ 12 \\ \delta_{1} < 11 \ from \ \alpha(K) \exp[$
^x 1475.0 ^{@f} 5	< 0.04				(E0)			α (K)exp \approx 0.057 (1972HuZL) 1972HuZL suggest placement with a 1475, 0 ⁺ level, but this level is not connected to any other levels
^x 1500.9 [‡] 6	0.57 17				M1		0.00483	$\alpha(K) \exp = 0.0060 \ 20 \ (1973 \text{Jol1}) \\ \alpha(K) = 0.00393 \ 6; \ \alpha(L) = 0.000611 \ 9; \ \alpha(M) = 0.0001402 \ 20 \\ \alpha(N) = 3.47 \times 10^{-5} \ 5; \ \alpha(O) = 6.26 \times 10^{-6} \ 9; \\ \alpha(P) = 4.33 \times 10^{-7} \ 6; \ \alpha(IPF) = 0.0001017 \ 15$
^x 1528.1 [‡] 8	0.34 11				E0+(E2,M1)		0.113 <i>39</i>	α (K)exp=0.0090 <i>31</i> (1973Jo11) Mult.: M2 is also possible from α (K)exp. U(F0)=0.0024 <i>8</i>
1581.5 ^a 3	1.00 ^a 8	1877.04	1-,2-,3-	295.84 2+	E1		1.19×10^{-3}	$\alpha(K)\exp(-0.0012 (1972Fi12, 1973Jo11))$

				190	Au ε	decay (42.8 min	n) 19	73Jo11,1972F	i12 (continued)
						$\gamma(1)$	⁹⁰ Pt) (c	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^e	δ^{e}	α^{i}	Comments
1601.5 4	0.25 3	1602.0	(2,1)+	0.0	0+	(M1,E2)	_	0.00326 93	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000802 \ 12; \ \alpha(\mathrm{L}) = 0.0001154 \ 17; \\ &\alpha(\mathrm{M}) = 2.62 \times 10^{-5} \ 4 \\ &\alpha(\mathrm{N}) = 6.46 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 1.161 \times 10^{-6} \ 17; \\ &\alpha(\mathrm{P}) = 7.95 \times 10^{-8} \ 12; \ \alpha(\mathrm{IPF}) = 0.000235 \ 4 \\ &\delta(\mathrm{M2/E1}) < 0.26 \ \mathrm{from} \ \alpha(\mathrm{K}) \mathrm{exp}. \\ &\alpha(\mathrm{K}) \mathrm{exp} = 0.0038 \ 15 \ (1972\mathrm{Fi12}); \ \alpha(\mathrm{K}) \mathrm{exp} = 0.0039 \ 11 \\ &(1973\mathrm{Jo}11) \\ &\alpha(\mathrm{K}) = 0.00260 \ 75; \ \alpha(\mathrm{L}) = 4.1 \times 10^{-4} \ 12; \ \alpha(\mathrm{M}) = 9.4 \times 10^{-5} \end{aligned}$
^x 1622.9 [#] 4	0.27 3					E0+(E2,M1)		0.014 4	26 $\alpha(N)=2.31\times10^{-5} \ 64; \ \alpha(O)=4.2\times10^{-6} \ 12; \ \alpha(P)=2.81\times10^{-7} \ 88; \ \alpha(IPF)=0.00013 \ 3$ $I_{\gamma}: \text{ from } 1972\text{Fi}12. \ I_{\gamma}=0.60 \ 15 \ (1973\text{Jo}11).$ $\alpha(K)\exp=0.011 \ 3 \ (1972\text{Fi}12); \ \alpha(K)\exp<0.007 \ (1973\text{Jo}11)$ Mult.: M2 is also possible from $\alpha(K)\exp$.
$x^{1636.5}^{\#f} 4$	0.36 4								(E0)=0.0022 7. $ce(K)$ (1972Fi12) probably corresponds to 1638.7 γ . 1973Jo11 assigned this γ to double escape of 2658 γ .
^x 1638.7 [‡] 6	≤0.17					(E0)			α (K)exp \geq 0.014 (1973Jo11,1972Fi12)
^x 1664.1 [‡] 5	0.68 22					M1(+E2)	<0.5	0.00368 18	α (K)exp=0.0045 <i>15</i> (1973Jo11) α (K)=0.00291 <i>14</i> ; α (L)=0.000452 <i>21</i> ; α (M)=0.000104 5
1672.4 ^{ck} 3 1672.4 3	0.84 12	2875.4? 3067.5	(1,2) ⁻	1203.07 1395.26	2+ 2+	E1		1.17×10 ⁻³	$\alpha(N)=2.56\times10^{-5} \ 12; \ \alpha(O)=4.63\times10^{-6} \ 22; \\ \alpha(P)=3.19\times10^{-7} \ 16; \ \alpha(IPF)=0.000183 \ 7$ Main placement from the 3067 level (1973Jo11). $\alpha(K)=p=0.0011 \ 2 \ (1973Jo11) \\ \alpha(K)=0.000731 \ 11; \ \alpha(L)=0.0001049 \ 15; \\ \alpha(M)=2.38\times10^{-5} \ 4 \\ \alpha(N)=5.87\times10^{-6} \ 9; \ \alpha(O)=1.056\times10^{-6} \ 15; \\ \alpha(P)=7.25\times10^{-8} \ 11; \ \alpha(IPF)=0.000301 \ 5$
^x 1738.9 ^a 3	1.20 ^{<i>a</i>} 10					M1		0.00351	δ (M2/E1)<0.3 from α (K)exp. α (K)exp=0.0038 7 (1973Jo11,1972Fi12) α (K)=0.00273 4; α (L)=0.000422 6; α (M)=9.69×10 ⁻⁵ 14
1760.7 <i>3</i>	1.12 7	2358.3	(2)+	597.68	2+	M1(+E2)	<0.8	0.0032 <i>3</i>	$\alpha(N)=2.40\times10^{-5} 4; \alpha(O)=4.33\times10^{-6} 6; \alpha(P)=3.00\times10^{-7} 5; \alpha(IPF)=0.000234 4 \alpha(K)=p=0.0030 7 (1973Jo11,1972Fi12) \alpha(K)=0.00243 22; \alpha(L)=0.00038 4; \alpha(M)=8.7\times10^{-5} 8 \alpha(N)=2.14\times10^{-5} 19; \alpha(O)=3.9\times10^{-6} 4; \alpha(P)=2.7\times10^{-7} 3; \alpha(IPE)=0.000231 17 $
1760.7 ^{ck} 3		2497.8?	(2+)	737.16	4+				Main placement from 2358 level (1973Jo11).

From ENSDF

 $^{190}_{78} Pt_{112}$ -11

				190 Au ε	deca	y (42.8 mi	n) 1973Jo 1	11,1972Fi12 (continued)
						<u>γ(</u>	¹⁹⁰ Pt) (continu	ied)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger h}$	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^e	α^{i}	Comments
^x 1772.8 [@] 5 1784.9 3	0.22 2 2.91 <i>15</i>	2382.67	(1)+	597.68	2+	M1	0.00333	$\alpha(K)\exp=0.0030 \ 3 \ (1973Jo11); \ \alpha(K)\exp<0.0035 \ (1972Fi12) \\ \alpha(K)=0.00256 \ 4; \ \alpha(L)=0.000396 \ 6; \ \alpha(M)=9.07\times10^{-5} \ 13 \\ \alpha(N)=2.24\times10^{-5} \ 4; \ \alpha(O)=4.05\times10^{-6} \ 6; \ \alpha(P)=2.81\times10^{-7} \ 4; \\ \alpha(IPF)=0.000262 \ 4 \\ Additional information \ 1.$
1802.8 ^{<i>ck</i>} 3	0.66 8	2723.4?	(1-)	920.89	0+	E1	1.16×10 ⁻³	α (K)exp=0.00057 <i>10</i> (1973Jo11) α (K)=0.000645 <i>9</i> ; α (L)=9.24×10 ⁻⁵ <i>13</i> ; α (M)=2.10×10 ⁻⁵ <i>3</i> α (N)=5.17×10 ⁻⁶ <i>8</i> ; α (O)=9.30×10 ⁻⁷ <i>13</i> ; α (P)=6.41×10 ⁻⁸ <i>9</i> ; α (IPF)=0.000397 <i>6</i>
1810.7 <i>jbk 5</i> 1810.7 <i>jbk 5</i> x1821.1 ^{@f} 5	0.21 ^j 2 0.21 ^j 2 0.08 <i>I</i>	2408.4? 3014.0	$(1^-, 2^-, 3^-)$ $(2)^-$	597.68 1203.07	2+ 2+			
^x 1836.0 ^a 4	1.22 ^{<i>a</i>} 12					M1	0.00316	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0044 \ 10 \ (1973\text{Jo}11, 1972\text{Fi}12) \\ &\alpha(\text{K}) = 0.00239 \ 4; \ \alpha(\text{L}) = 0.000369 \ 6; \ \alpha(\text{M}) = 8.45 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 2.09 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.77 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 2.62 \times 10^{-7} \ 4; \\ &\alpha(\text{IPF}) = 0.000295 \ 5 \end{aligned}$
$x^{x}1844.2^{@}5$ $x^{x}1850.9^{@}5$	0.47 <i>5</i> 0.43 <i>5</i>							
1864.5 <i>4</i>	1.4 ^d 3	3067.5	(1,2) ⁻	1203.07	2+	(E1)	1.17×10 ⁻³	α (K)exp=0.0012 3 (1973Jo11) α (K)=0.000611 9; α (L)=8.73×10 ⁻⁵ 13; α (M)=1.98×10 ⁻⁵ 3 α (N)=4.88×10 ⁻⁶ 7; α (O)=8.79×10 ⁻⁷ 13; α (P)=6.07×10 ⁻⁸ 9; α (IPF)=0.000442 7 I _{γ} : 1.00 5 (1972HuZL). Mult.: E2 also possible from α (K)exp.
x1871.2 [@] 5	0.37 4							
1880.0 ^{JCK} 4	0.87 <i>Ju</i> 17	2797.0?		916.66	3+	(M1)	0.00302	α (K)exp=0.0027 <i>18</i> (1973Jo11) α (K)=0.00225 <i>4</i> ; α (L)=0.000347 <i>5</i> ; α (M)=7.96×10 ⁻⁵ <i>12</i> α (N)=1.97×10 ⁻⁵ <i>3</i> ; α (O)=3.56×10 ⁻⁶ <i>5</i> ; α (P)=2.47×10 ⁻⁷ <i>4</i> ; α (IPF)=0.000323 <i>5</i> δ : <1 from α (K)exp. I _Y : 0.70 <i>7</i> (1972HuZL).
1880.0 ^{jck} 4	0.87 ^{jd} 17	3233.7?	(2 ⁻ ,3 ⁻)	1353.67	3-	(M1)	0.0027 3	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00203 \ 22; \ \alpha(\mathrm{L}) = 0.00031 \ 4; \ \alpha(\mathrm{M}) = 7.2 \times 10^{-5} \ 8 \\ &\alpha(\mathrm{N}) = 1.78 \times 10^{-5} \ 19; \ \alpha(\mathrm{O}) = 3.2 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 2.2 \times 10^{-7} \ 3; \\ &\alpha(\mathrm{IPF}) = 0.00030 \ 3 \\ &\delta: \ <1 \ \mathrm{from} \ \alpha(\mathrm{K}) \mathrm{exp}. \end{aligned}$
$x^{x}1886.6^{\textcircled{0}}5$ $x^{x}1904.9^{\textcircled{0}}5$	0.23 <i>3</i> 0.40 <i>4</i>							
1920.4 ^{ck} 4	1.5 ^d 3	2216.2?	(2+,3,4+)	295.84	2^{+}	M1	0.00291	α (K)exp=0.0031 9 (1973Jo11)

				190 Au ε de	cay (42.8 min)	1973Jo11,197	2Fi12 (continued)		
					γ (¹⁹⁰ Pt) (continued)	ued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger h}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^e	α^{i}	Comments		
							α (K)=0.00213 3; α (L)=0.000329 5; α (M)=7.55×10 ⁻⁵ 11 α (N)=1.87×10 ⁻⁵ 3; α (O)=3.37×10 ⁻⁶ 5; α (P)=2.34×10 ⁻⁷ 4; α (IPF)=0.000350 5 I _{γ} : 1.27 13 (1972HuZL). Complex γ in 1973Jo11.		
^x 1936.8 [@] 5	0.35 3								
^x 1952.0 [@] 5	0.18 2								
1958.8 ^{bk} 5	0.27 3	2875.4?		916.66 3+					
$x_{1967.2}^{@} 5$	0.30 3								
^x 1972.9 [@] 5	0.44 4								
1985.8 ^{bk} 5	0.32 4	2723.4?	(1 ⁻)	737.16 4+	[E3]				
$x^{2001.3}$ [@] 5	0.25 3								
^x 2024.9 [‡] 6	< 0.2				(E0)		α (K)exp>0.016 (1973Jo11)		
$x^{2034.8}$ [@] 5	0.24 3								
$x^{2040.4}$ <i>a</i>	0.44 4								
2061.1 ^{<i>j</i>} 13	0.34 ^j 4	2358.3	(2)+	295.84 2+	(E0+M1+E2)	0.0094 18	α (K)exp=0.0075 <i>14</i> (1973Jo11) I _{γ} : from 1972HuZL. I γ <0.2 (1973Jo11). α (K)exp using I γ =0.34 (1972HuZL). I(E0)=0.0023 <i>6</i> .		
2061.1 <i>jck 13</i>	0.34 <i>j</i> 4	2797.0?		737.16 4+					
2081.6 ^{bk} 5	0.80 8	2679.8?	(1 ⁻)	597.68 2+					
2087.3 4	1.6 ^{<i>d</i>} 3	2382.67	(1)+	295.84 2+	E2,M1	0.0021 5	$\begin{aligned} &\alpha(\text{K}) \exp[=0.0015 \ 4 \ (1973\text{Jol}1)) \\ &\alpha(\text{K}) = 0.0014 \ 3; \ \alpha(\text{L}) = 0.00022 \ 5; \ \alpha(\text{M}) = 5.1 \times 10^{-5} \ 11 \\ &\alpha(\text{N}) = 1.3 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.3 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.5 \times 10^{-7} \ 4; \\ &\alpha(\text{IPF}) = 0.00039 \ 8 \\ &\text{I}_{\gamma}: \ 1.2 \ 2 \ (1972\text{HuZL}). \end{aligned}$		
2097.2 3	3.1 ^{<i>d</i>} 4	3014.0	(2)-	916.66 3+	E1	1.21×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) \exp = 0.00053 \ 12 \ (1973 \mathrm{Jol11}) \\ \alpha(\mathrm{K}) = 0.000504 \ 7; \ \alpha(\mathrm{L}) = 7.18 \times 10^{-5} \ 10; \ \alpha(\mathrm{M}) = 1.629 \times 10^{-5} \\ 23 \\ \alpha(\mathrm{N}) = 4.02 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 7.24 \times 10^{-7} \ 11; \ \alpha(\mathrm{P}) = 5.02 \times 10^{-8} \\ 7; \ \alpha(\mathrm{IPF}) = 0.000608 \ 9 \end{array} $		
							I_{γ} : 2.03 <i>12</i> (1972HuZL).		
2111.9 ^{bk} 6	0.23 3	2408.4?	$(1^-, 2^-, 3^-)$	295.84 2+					
2125.0 ^{bk} 6	0.14 1	2723.4?	(1 ⁻)	597.68 2+					
2132.5 3	1.36 ^d 23	3049.3	(2)-	916.66 3+	E1	1.21×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) \exp[=0.00070 \ 21 \ (1973\text{Jol1}) \\ &\alpha(\text{K}) = 0.000491 \ 7; \ \alpha(\text{L}) = 6.99 \times 10^{-5} \ 10; \ \alpha(\text{M}) = 1.585 \times 10^{-5} \\ &23 \\ &\alpha(\text{N}) = 3.91 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 7.04 \times 10^{-7} \ 10; \ \alpha(\text{P}) = 4.88 \times 10^{-8} \\ &7; \ \alpha(\text{IPF}) = 0.000632 \ 9 \end{aligned}$		

 $^{190}_{78}\text{Pt}_{112}\text{-}13$

From ENSDF

 $^{190}_{78}\text{Pt}_{112}\text{-}13$

						¹⁹⁰ Au ε decay (42.8 min) 1973Jo11,1972Fi12 (continued)						
							$\gamma(^{190}\text{Pt})$ (cos	ntinued)				
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^e	α^{i}	Comments				
					<u> </u>			I _γ : 0.97 9 (1972HuZL).				
x2142.8 [@] 6	0.28.5							δ (M2/E1)<0.4 from α (K)exp.				
$x_{2142.6} = 0$	0.28 5											
$x_{2149.6} = 0$	0.44 5											
2103.2 /	0.102 21d3	2212 82	(1^{-})	0.0	O^+	E1	1.23×10^{-3}	$\alpha(K) = 0.00082 (1073 Lo11)$				
2212.0 4	2.1 3	2212.0?	(1)	0.0	0	EI	1.23×10	$\alpha(K) \exp\{0.00082 (1973)011\}$ $\alpha(K) = 0.000463 7; \ \alpha(L) = 6.58 \times 10^{-5} 10; \ \alpha(M) = 1.491 \times 10^{-5} 21$ $\alpha(N) = 3.68 \times 10^{-6} 6; \ \alpha(O) = 6.63 \times 10^{-7} 10; \ \alpha(P) = 4.60 \times 10^{-8} 7;$ $\alpha(IPF) = 0.000687 10$ I _y : 1.8 1 (1972HuZL).				
$x^{2242.6}^{@} 6$	0.80 15											
^x 2260.7 [@] 7	0.18 <i>3</i>											
^x 2271.1 [@] 7	0.60 9											
2277.6 ^{jbk} 7	0.77 <mark>j</mark> 8	2875.4?		597.68	2^{+}							
2277.6 ^{jbk} 7	0.77 <mark>j</mark> 8	3014.0	$(2)^{-}$	737.16	4+							
^x 2288.9 [@] 10	0.10 2											
$x^{2314.5}^{@} 6$	0.67 7											
$x^{2325.4}^{@}$ 6	0.45 5											
$x^{2334.2}^{@}6$	0.55 6											
2382.6 3	7.2 ^d 6	2382.67	$(1)^{+}$	0.0	0^+	(M1)	0.0018 4	α (K)exp=0.00109 <i>11</i> (1973Jo11)				
								$\alpha(K)=0.00108 \ 18; \ \alpha(L)=0.00016 \ 3; \ \alpha(M)=3.8\times10^{-5} \ 7 \ \alpha(N)=9.3\times10^{-6} \ 16; \ \alpha(O)=1.7\times10^{-6} \ 3; \ \alpha(P)=1.16\times10^{-7} \ 22; \ \alpha(IPF)=0.00055 \ 11$				
								I_{γ} : 5.2 5 (19/2HuZL). Mult : (M1 E2) from ce date				
								$\delta(\text{E2/M1})=1.2 + 11-5$ from $\alpha(\text{K})$ exp; also Mult=M1 is not excluded.				
^x 2401.3 [@] 7	0.50 2											
2416.4 3	6.8 ^d 6	3014.0	(2)-	597.68	2+	E1	1.30×10 ⁻³	α (K)exp=0.00043 6 (1973Jo11) α (K)=0.000402 6; α (L)=5.70×10 ⁻⁵ 8; α (M)=1.292×10 ⁻⁵ 18 α (N)=3.19×10 ⁻⁶ 5; α (O)=5.75×10 ⁻⁷ 8; α (P)=4.00×10 ⁻⁸ 6; α (IPF)=0.000820 12 L ₂ : 4.7 5 (1972HuZL).				
2428.0 ^{bk} 7	0.60 7	2723.4?	(1^{-})	295.84	2^{+}			I				
^x 2435.9 [@] 8	0.37 4											
^x 2448.5 5	0.76 17					E0+(E2,M1)	0.0063 15	α (K)exp=0.0050 <i>12</i> (1973Jo11) I(E0)=0.0040 <i>13</i> . 2451.7 γ (1972HuZL) is probably a composite of 2448 γ and 2452 γ				
2452.0.5	1 0 d 2	2040.2	$(2)^{-}$	507 (9	2+	E 1	1.21×10^{-3}	reported by $19/3J011$.				
2432.0 3	1.8 3	3049.3	(2)	397.08	2.	E1	1.31×10 °	$\alpha(\mathbf{K})\exp=0.00045 \ I3 \ (19/3J011)$				

From ENSDF

 $^{190}_{78}\mathrm{Pt}_{112}\text{-}14$

¹⁹⁰ Au ε decay (42.8 min) 1973Jo11,1972Fi12 (continued)										
	γ ⁽¹⁹⁰ Pt) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^e	α^{i}	Comments		
	,							$\alpha(K)=0.000393 \ 6; \ \alpha(L)=5.57\times10^{-5} \ 8; \ \alpha(M)=1.262\times10^{-5} \ 18$ $\alpha(N)=3.11\times10^{-6} \ 5; \ \alpha(O)=5.61\times10^{-7} \ 8; \ \alpha(P)=3.91\times10^{-8} \ 6; \ \alpha(IPF)=0.000842 \ 12$ $I_{\gamma}: \ 1.38 \ 15 \ (1972HuZL).$		
2469.5 4	1.7 ^{<i>a</i>} 3	3067.5	(1,2) ⁻	597.68	2+	E1	1.31×10 ⁻³	α (K)exp=0.00048 <i>13</i> (1973Jo11) α (K)=0.000389 <i>6</i> ; α (L)=5.51×10 ⁻⁵ <i>8</i> ; α (M)=1.248×10 ⁻⁵ <i>18</i> α (N)=3.08×10 ⁻⁶ <i>5</i> ; α (O)=5.55×10 ⁻⁷ <i>8</i> ; α (P)=3.87×10 ⁻⁸ <i>6</i> ; α (IPF)=0.000853 <i>12</i> I _y : complex γ in 1973Jo11. I γ =1.40 <i>14</i> (1972HuZL).		
2497.6 ^{ck} 4	1.81 ^{<i>d</i>} 24	2497.8?	(2 ⁺)	0.0	0+	(E2)	1.49×10 ⁻³	$\alpha(K)\exp=0.00070 \ 16 \ (1973Jo11)$ $\alpha(K)=0.000830 \ 12; \ \alpha(L)=0.0001248 \ 18; \ \alpha(M)=2.85\times10^{-5} \ 4$ $\alpha(N)=7.04\times10^{-6} \ 10; \ \alpha(O)=1.267\times10^{-6} \ 18; \ \alpha(P)=8.62\times10^{-8} \ 12;$ $\alpha(IPF)=0.000502 \ 7$ $L_{\gamma}: 1.12 \ 20 \ (1972HuZL).$		
^x 2517.9 [@] 8	0.24.3									
$x_{2526,2}^{a}$ 8	0.17.2									
$x_{2571.0}^{@} 8$	0.21.3									
$2579 4 \frac{bk}{8} 8$	0.09.2	2875 49		295 84	2+					
x2613 [@] 1	0.12.2	2070111		2,0101	-					
$2636 2^{bk} 8$	0.95 10	3233 79	$(2^{-}3^{-})$	597 68	2^{+}					
$x_{2643.4}^{a}$ 10	0.30 4	0200111	(_ ,0)	071100	-					
x2658.2 5	3.4 ^{<i>d</i>} 4					(E1)	1.38×10 ⁻³	α (K)exp=0.00054 <i>11</i> (1973Jo11) α (K)=0.000346 <i>5</i> ; α (L)=4.89×10 ⁻⁵ <i>7</i> ; α (M)=1.109×10 ⁻⁵ <i>16</i> α (N)=2.74×10 ⁻⁶ <i>4</i> ; α (O)=4.93×10 ⁻⁷ <i>7</i> ; α (P)=3.45×10 ⁻⁸ <i>5</i> ; α (IPF)=0.000966 <i>14</i> I _{γ} : 2.2 <i>3</i> (1972HuZL). Mult.: M2 is also possible from α (K)exp.		
2680.2 ^{ck} 5	1.05 ^d 17	2679.8?	(1 ⁻)	0.0	0+	(E1)	1.38×10 ⁻³	α (K)exp<0.00062 (1973Jo11) α (K)=0.000342 5; α (L)=4.83×10 ⁻⁵ 7; α (M)=1.094×10 ⁻⁵ 16 α (N)=2.70×10 ⁻⁶ 4; α (O)=4.87×10 ⁻⁷ 7; α (P)=3.40×10 ⁻⁸ 5; α (IPF)=0.000979 14 I _{γ} : 0.75 8 (1972HuZL). Mult.: E2 is also possible from α (K)exp.		
2685.1 <i>5</i>	1.92 ^d 21	2980.9	1-	295.84	2+	E1	1.38×10 ⁻³	α (K)exp<0.00045 (1973Jo11) α (K)=0.000341 5; α (L)=4.82×10 ⁻⁵ 7; α (M)=1.091×10 ⁻⁵ 16 α (N)=2.69×10 ⁻⁶ 4; α (O)=4.86×10 ⁻⁷ 7; α (P)=3.39×10 ⁻⁸ 5; α (IPF)=0.000982 14 I _{γ} : 1.36 15 (1972HuZL).		
^x 2697.0 [@] 7	0.34 4									
$x^{x}2726.0^{\textcircled{0}}$ 7	0.11 2									
2753.3 4	6.0 ^{<i>d</i>} 6	3049.3	(2)-	295.84	2+	E1	1.41×10 ⁻³	α (K)exp=0.00034 7 (1973Jo11) α (K)=0.000328 5; α (L)=4.63×10 ⁻⁵ 7; α (M)=1.048×10 ⁻⁵ 15 α (N)=2.59×10 ⁻⁶ 4; α (O)=4.67×10 ⁻⁷ 7; α (P)=3.26×10 ⁻⁸ 5; α (IPF)=0.001020 15 I _y : 4.0 5 (1972HuZL).		

 $^{190}_{78}\text{Pt}_{112}\text{-}15$

From ENSDF

 $^{190}_{78}\text{Pt}_{112}\text{-}15$

				1	⁹⁰ Au	ε decay (4	12.8 min)	973Jo11,1972Fi12 (continued)
							$\gamma(^{190}\text{Pt})$ (c	continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger h}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^e	α^{i}	Comments
2771.2 5	1.03 ^d 18	3067.5	(1,2)-	295.84	2+	E1	1.41×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.00037 \ 13 \ (1973\text{Joll}) \\ &\alpha(\text{K}) = 0.000324 \ 5; \ \alpha(\text{L}) = 4.58 \times 10^{-5} \ 7; \ \alpha(\text{M}) = 1.038 \times 10^{-5} \ 15 \\ &\alpha(\text{N}) = 2.56 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 4.62 \times 10^{-7} \ 7; \ \alpha(\text{P}) = 3.23 \times 10^{-8} \ 5; \\ &\alpha(\text{IPF}) = 0.001030 \ 15 \\ &\text{I}_{\gamma}: \ 0.83 \ 10 \ (1972\text{HuZL}). \end{aligned}$
x2875.0 5	0.28 5 1.14 ^d 23					M1,E2	0.00168 24	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.00095 \ 32 \ (1973\text{Jol}1) \\ &\alpha(\text{K}) = 0.00072 \ 8; \ \alpha(\text{L}) = 0.000108 \ 13; \ \alpha(\text{M}) = 2.5 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 6.1 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 1.11 \times 10^{-6} \ 14; \ \alpha(\text{P}) = 7.7 \times 10^{-8} \ 10; \\ &\alpha(\text{IPF}) = 0.00082 \ 15 \\ &I_{\gamma}: \ 0.50 \ 6 \ (1972\text{HuZL}). \end{aligned}$
^x 2881.4 6	1.10 ^d 22					M1,E2	0.00168 24	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.00075 \ 26 \ (1973\text{Jol1}) \\ &\alpha(\text{K}) = 0.00072 \ 8; \ \alpha(\text{L}) = 0.000108 \ 13; \ \alpha(\text{M}) = 2.5 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 6.1 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 1.10 \times 10^{-6} \ 14; \ \alpha(\text{P}) = 7.6 \times 10^{-8} \ 10; \\ &\alpha(\text{IPF}) = 0.00082 \ 15 \\ &\text{I}_{\gamma}: \ 0.70 \ 10 \ (1972\text{HuZL}). \end{aligned}$
^x 2921.2 ^{^w} 10 ^x 2941.9 7	0.23 <i>3</i> 1.07 ^{<i>d</i>} 23					M1,E2	0.00167 24	α (K)exp=0.0011 4 (1973Jo11) α (K)=0.00068 7; α (L)=0.000103 12; α (M)=2.4×10 ⁻⁵ 3 α (N)=5.8×10 ⁻⁶ 7; α (O)=1.05×10 ⁻⁶ 12; α (P)=7.3×10 ⁻⁸ 9; α (IPF)=0.00085 16 L _Y : 0.63 7 (1972HuZL).
$x_{2956.7}^{\ddagger g} 9$	1.3 4							
~2959.8*8 9 2980.9 6	1.5 5 1.6 ^d 3	2980.9	1-	0.0	0+	E1	1.49×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00036 \ 13 \ (1973 \text{Joll}) \\ &\alpha(\text{K}) = 0.000290 \ 4; \ \alpha(\text{L}) = 4.08 \times 10^{-5} \ 6; \ \alpha(\text{M}) = 9.25 \times 10^{-6} \ 13 \\ &\alpha(\text{N}) = 2.28 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 4.12 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.88 \times 10^{-8} \ 4; \\ &\alpha(\text{IPF}) = 0.001143 \ 16 \\ &\text{I}_{\gamma}: \ 0.92 \ 10 \ (1972 \text{HuZL}). \\ &\delta(\text{M2/E1}) < 0.4 \ \text{from} \ \alpha(\text{K}) \text{exp.} \end{aligned}$
^x 3024.3 [@] 10 ^x 3036.1 [@] 10	0.33 <i>4</i> 0.30 <i>6</i>							
^x 3081.7 5 ^x 3094.8 5 ^x 3142.0 [@] 10	$1.06^{a} 22$ $0.68^{d} 14$ 0.10^{2}							I _γ : 0.55 <i>10</i> (1972HuZL). I _γ : 0.30 7 (1972HuZL).
x3178.0 8 x3199.5 5 x3206.5 [@] 10 x3311.6 [@] 10	$\begin{array}{c} 0.90^{d} \ 20\\ 0.80^{d} \ 23\\ 0.29 \ 4\\ 0.12 \ 2 \end{array}$							I _γ : 0.50 <i>5</i> (1972HuZL). I _γ : 0.35 <i>6</i> (1972HuZL).

$\gamma(^{190}\text{Pt})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger h}$	E _i (level)	Comments
^x 3355.8 5	1.0 ^d 2		I _γ : 0.35 4 (1972HuZL).
^x 3639.0 [@] 10	0.12 2		
^x 3652.0 [@] 10	0.11 2		
[†] Weighted	average fi	rom 1973Jo1	1 and 1972Fi12 (from 1972HuZL above 1836), unless otherwise stated.
$^{\ddagger} \gamma$ reported	by 1973J	oll only.	
# γ reported	by 1972	Fi12 (and 19	72HuZL) only.
$^{@}\gamma$ reported	by 1972	HuZL only.	
^{&} From 1972	2Fi12. In	1973Jo11, γ	is complex due to contribution from impurity.
^{<i>a</i>} Complex γ	v in 1973.	Jo11 but auth	nors have corrected for admixtures. Values given here are weighted averages of 1973Jo11 and 1972Fi12 (from 1972HuZL above
1836 keV)			
^{<i>b</i>} γ from 19	72HuZL	only. Placem	ent considered tentative (evaluator).
^c Tentative _I	olacement	suggested b	y 1972HuZL.
^{<i>a</i>} From 1973	3Joll. Va	lue from 197	² HuZL (given under comments) is systematically lower by $\approx 30\%$ for γ rays above 1840 keV.
^e From the	Adopted (Gammas. Th	e adopted values are based on or supported by ce data in 1973Jo11 and 1972Fi12 where available, unless otherwise noted.
^J Uncertain	γ.	(0) 0 0000	
${}^{s} \alpha(K) \exp(2$	$957\gamma + 290$	50γ = 0.0003	9 13 (19/3Jo11). Mult=E1 for both or (E2,M1) for one component and E1 for the other.
^{<i>i</i>} For absolu	te intensi	ty per 100 d	ecays, multiply by 0.90 14.
assigned m	ultipolari	ties, and mix	ion coefficients, calculated using the Brice code (2008K107) with Prozen orbital approximation based on γ -ray energies,
^j Multiply n	laced wit	h undivided	intensity.
^k Placement	of transit	tion in the le	vel scheme is uncertain.
$x \gamma$ ray not	placed in	level scheme	

17

¹⁹⁰Au ε decay (42.8 min) 1973Jo11,1972Fi12

 $^{190}_{78}$ Pt $_{112}$

¹⁹⁰Au ε decay (42.8 min) 1973Jo11,1972Fi12

