History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020								

 $Q(\beta^{-}) = -4473 4$; S(n)=8908 10; S(p)=6146 13; Q(α)=3268.6 6 2017Wa10

S(2n)=15628 5, S(2p)=10747.2 6 (2017Wa10).

Hyperfine structure and isotope-shift measurements: 1992Ki30, 1992Hi07 (also 1990Hi08), 1988Bo31, 1987Ne09, 1988Le22.

Mass measurement: 2016Ei01: using LEBIT Penning trap mass spectrometer at NSCL-MSU.

Mass excess from ¹⁹⁰Pt(p,d) reaction: 1980Ka19.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for about 150 primary references dealing with nuclear structure and other calculations.

¹⁹⁰Pt Levels

Band assignments and configurations are from 2014Li21 (also 2008Ma58) in 176 Yb(18 O,4n γ). Additional information 2.

Cross Reference (XREF) Flags

		A 190 B 176 C 188 D 190	Au ε decay (4 Yb(¹⁸ O,4n γ) Os(α ,2n γ) Os(α ,4n γ)	42.8 min) E Coulomb excitation F 191 Ir(p,2n γ) G 192 Pt(p,t)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0&	0+	4.97×10 ^{11#@} y <i>16</i>	ABCDEFG	$%\alpha$ =100 %εβ ⁺ =?. Double-beta decay mode is allowed, but only the lower limits of the half-life of this decay mode have been measured. Evaluated rms charge radius=5.4108 fm 30 (2013An02). Evaluated $\delta < r^2 > (1^{94}Pt, 1^{90}Pt) = -0.137 \text{ fm}^2 2$ (2013An02). $\Delta < r^2 > (1^{94}Pt - 1^{90}Pt) = -0.132 \text{ fm}^2 8$ (1992Hi07). See also 1992Ki30 for $\Delta < r^2 >$ measurement.
295.78 ^{&} 3	2+	62.3 ps <i>31</i>	ABCDEFG	$\begin{array}{l} \mu = +0.57 \ 3 \ (1995 \text{An15}, 2014 \text{StZZ}) \\ J^{\pi}: E2 \ \gamma \ to \ 0^+. \\ T_{1/2}: \ from \ B(E2) = 1.82 \ 9, \ weighted \ average \ of \ 1.82 \ 9 \ (1995 \text{An15}, \\ \text{Coul. ex.}); \ 2.5 \ +13 - 6 \ (1972 \text{Fi}12, \ from \ (ce) \ \gamma(t) \ in \ \varepsilon \ decay); \ 1.75 \ 22 \\ (1966 \text{Gr}20, \ \text{Coul. ex.}, \ uncertainty \ from \ 2001 \text{Ra27} \ evaluation). \\ 2016 \text{Pr01} \ evaluation \ gives \ B(E2) = 1.854 \ 90, \ and \ corresponding \\ T_{1/2} = 61.1 \ \text{ps} \ +31 - 28. \\ \mu, B(E2) \ transient-field \ method \ in \ Coul. \ ex. \ (1995 \text{An15}, 1995 \text{AnZQ}). \end{array}$
597.61 ^{<i>a</i>} 4	2+		A CD FG	J^{π} : E2 γ s to 0 ⁺ and 2 ⁺ .
$737.02^{\circ} 5$	4^+		ABCD F	$J^{\pi}: E2, \Delta J=2 \gamma \text{ to } 2^+; \text{ not } 0^+ \text{ from } \gamma(\theta).$
910.37 3	0^{+}		A CD F	$J : E2 + W1 \gamma s to 4$ and 2. J^{π} : E0 transition to 0 ⁺ .
1128.16 ^{<i>a</i>} 6	(4 ⁺)		A CD FG	XREF: A(?).
1202.62 10	2 ⁺		A C F	J^{π} : L(p,t)=(4). J^{π} : E2 γ to 0 ⁺ .
1287.69° 7	6^+ 3-		BCD F	J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ ; band member. J^{π} : E1 as to 2 ⁺ and 4 ⁺
1385.88 14	$(2^+,3,4^+)$		C F	J^{π} : γ s to 2^+ and (4^+) .
1395.09 10	2+		A F	\mathbf{J}^{π} : E2 γ to 0 ⁺ .

¹⁹⁰Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1449.80 ^{<i>a</i>} 11 1464.51 6 1543 5	(5^+) 5^- (2^+) (2^+)		CD F BCD F G	J^{π} : probable band member; γ s to 3^+ and (4^+) . J^{π} : E1, $\Delta J=1 \gamma$ to 4^+ ; γ to 6^+ . J^{π} : L(p,t)=(2).
1600.67 21 1601.99 20	(2^+) $(2,1)^+$		C F A	XREF: C(?). J^{π} : γ s to 0 ⁺ and 4 ⁺ . J^{π} : γ to 0 ⁺ ; M1+E2 γ to 2 ⁺ . Possible 864.5 γ to 4 ⁺ disfavors 1 ⁺ .
1624.85 <i>17</i>	$(2^+,3,4)$		C F	XREF: C(?). J^{π} : γ s to 4 ⁺ , 3 ⁺ , and 3 ⁻ . W are to 4 ⁺ , 3 ⁺ , and 3 ⁻ .
1621.09 ^{<i>c</i>} 8	(2,,3,4) 7-	0.79 ns 5	BCD F	μ=+4.3 6 (2006Le06,2014StZZ) $J^{π}$: E2, ΔJ=2 γ to 5 ⁻ ; ΔJ=1 γ to 6 ⁺ . Possible configuration=v3/2[512]⊗v11/2[615]. T _{1/2} : ce(t) for 167γ in (α,4ηγ). Weighted average of 0.77 ns 14 (1979Ri08) and 0.80 ns 5 (1978Ti02). Others: γ(t): <1 ns (1976Hj01), ≈1.2 ns (1976Cu02).
1670 5 1732.64 ^{<i>a</i>} 18 1736.92 16 1833.83 9 1842 5	0 ⁺ (6 ⁺) 1 ⁻ (6 ⁻)		G C A F CD F	μ : integral perturbed angular correlation (IPAC) method (2006Le06). J^{π} : L(p,t)=0. J^{π} : probable band member. J^{π} : E1 γ to 0 ⁺ . J^{π} : $\Delta J=1 \gamma$ to 5 ⁻ .
1876.77 <i>13</i> 1915.34 ^{&} <i>10</i> 2043.81 <i>13</i>	1 ⁻ ,2 ⁻ ,3 ⁻ 8 ⁺ (7,8,9 ⁻)		A BCD F CD F	J^{π} : E1 γ to 2 ⁺ . 3 ⁻ less likely if ε feeding from 1 ⁻ is correct. J^{π} : E2, $\Delta J=2 \gamma$ to 6 ⁺ ; band member. J^{π} : γ to 7 ⁻ .
2078.30 ^{<i>d</i>} 12 2212.8? 4 2216.0? 3 2222.62 ^{<i>c</i>} 12	8 ⁻ (1 ⁻) (2 ⁺ ,3,4 ⁺) 9 ⁻		BCD F A A BCD	$J^{\pi}: M1+E2, \Delta J=1 \gamma \text{ to } 7^{-}.$ $J^{\pi}: E1 \gamma \text{ to } 0^{+}.$ $J^{\pi}: M1 \gamma \text{ to } 2^{+}.$ $J^{\pi}: E2, \Delta J=2 \gamma \text{ to } 7^{-}.$
2297.45 ^d 17	(10 ⁻)	48 ns 5	BCD	$\mu = -0.02 \ 4 \ (2006 \text{Le}06, 2014 \text{StZZ})$ $J^{\pi}: (E2), \ \Delta J = (2) \ \gamma \text{ to } 8^-; \ \gamma \text{ to } 9^$ $\mu: \text{ integral perturbed angular correlation (IPAC) method. Measured value is from 2006 \text{Le}06. Other measurement: +0.09 \ 8 \text{ in } (\alpha, 2n\gamma) \ (2001 \text{Ko}41).$ Configuration= $\nu 9/2[505]\nu 11/2[615] \ (2001 \text{Ko}41)$ from consistency measured and calculated g factor. T _{1/2} : 219 γ (t) in $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$. Weighted average of 48 ns 5 (1976 \text{Hi}01) and 47 ns 6 (1976 \text{C}n02)
2358.2 <i>3</i> 2382.58 <i>14</i> 2408.09? <i>19</i> 2497.69? <i>25</i>	$(2)^{+} (1)^{+} (1^{-}, 2^{-}, 3^{-}) (2^{+})$		A A A A	J^{π} : M1 γ to 2 ⁺ ; (E0+E2+M1) γ to 2 ⁺ . J^{π} : M1 γ to 0 ⁺ . J^{π} : (M1,E2) 1054.7 γ to 3 ⁻ ; 1205.5 γ to 2 ⁺ . J^{π} : (E2) γ to 0 ⁺ .
2535.28 ^b 12 2570.71 ^d 23 2603.08 16 2679.7? 4 2683.4 5 2701.94 22 2723.35? 23	$ \begin{array}{c} 10^{+} \\ (11^{-}) \\ 10^{+} \\ (1^{-}) \\ (10^{-}) \\ (10)^{+} \\ (1^{-}) \end{array} $		BCD BCD A D BCD A	$J^{\pi}: \Delta J=2, E2 \gamma \text{ to } 8^+.$ $J^{\pi}: \Delta J=1 \gamma \text{ to } (10^-).$ $J^{\pi}: \Delta J=2 \gamma \text{ to } 8^+; \gamma \text{ from } 12^+.$ $J^{\pi}: (E1) \gamma \text{ to } 0^+.$ $J^{\pi}: \Delta J=(2) \gamma \text{ to } 8^$ $J^{\pi}: E2, \Delta J=(2) \gamma \text{ to } 8^+.$ $J^{\pi}: (1^-) \text{ from } E1 \gamma \text{ to } 0^+, \text{ but } \gamma \text{ to } 4^+ \text{ requires } E3.$
2726.62 ^b 14	12+	1.39 ns <i>12</i>	BCD	μ=-2.0 <i>14</i> (2006Le06,2014StZZ) J ^π : E2, ΔJ=2 γ to 10 ⁺ . T _{1/2} : weighted average of 1.27 ns 9 (1978Ti02, ce(t) for 191γ) and 1.52 ns 9 (1979Ri08, ce(t) for 123γ and 191γ) in (α,4nγ). Others: γ(t): <1 ns (1976Hj01), ≈1.5 ns (1976Cu02). μ: integral perturbed angular correlation (IPAC) method (2006Le06).
2760.9 ^c 3	(11 ⁻)		BCD	J^{π} : $\Delta J=2 \gamma$ to 9^{-} .

¹⁹⁰Pt Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
2796.89? 25		A	J^{π} : (3 ⁻) from E1 γ to 2 ⁺ and γ to 4 ⁺ , but (M1) γ to 0 ⁺ suggests (1 ⁺). Note that all the gamma-ray placements are questionable, thus no J^{π} is assigned for the 2797 level.
2820.3? 3	(11^{+})	CD	J^{π} : $\Delta J=1 \gamma$ to 10^+ .
2821.8 4	(12 ⁻)	D	$J^{\pi}: \Delta J = (2) \gamma$ to $(10^{-}).$
2875.14? 24		Α	
2942.7? 5	$(0^{-}, 1^{-}, 2^{-})$	Α	J^{π} : M1 γ to (1 ⁻).
2980.9 4	1-	Α	J^{π} : E1 γ to 0 ⁺ .
3013.88 20	$(2)^{-}$	A	J^{π} : E1 γ s to 2 ⁺ and 3 ⁺ ; probable ε feeding from 1 ⁻ .
3024.6 6	(12)	D	J^{*} : $\Delta J = 1 \gamma$ to (11).
3049.19 22	(2) $(1,2)^{-}$	A	J^{π} : E1 γ s to 2 ⁻¹ and 3 ⁻¹ ; probable ε feeding from 1 ⁻¹ .
3007.2020	(1,2)	A	J. ET γ to 2, probable ε recalling from 1.
3069.19° 20	14	BCD	$J^*: \Delta J=2, E2 \gamma$ to 12° ; band member.
3111.74 3	(13^{-})	B D	$J^{\pi}: \Delta J = 2 \gamma \text{ to } (11^{-}).$
3233.4? 4	(2,3)	A	J [*] : (M1(+E2)) γ to 3; γ to 2 ⁺ .
5544.0° 5	(15)	вл	J^{T} : $\Delta J = 2$, $E_2 \gamma$ to (11); band member.
3414.86 ^J 24	(14')	ВD	J^{*} : γ s to 12' and (14').
3576.50 4	(16^{+})	B D	J^{π} : $\Delta J=2 \gamma$ to (14 ⁺); probable band member.
3666.1 ^J 3	(16 ⁺)	B D	J^{π} : $\Delta J=2$, E2 γ to (14 ⁺).
3807.9 ⁵ 4	(18 ⁺)	B D	J^{π} : $\Delta J=2$, (E2) γ to (16 ⁺).
3856.0 [°] 4	(15 ⁻)	В	J^{π} : $\Delta J=2 \gamma$ to (13 ⁻); $\Delta J=1 \gamma$ to 14 ⁺ ; band member.
4055.5? 6		В	J^{π} : (16) from $\Delta J=1 \gamma$ to (15 ⁻).
4083.2 ^e 4	(17 ⁻)	ΒD	J^{π} : $\Delta J=2$, (E2) γ to (15 ⁻); $\Delta J=1 \gamma$ to (16 ⁺); band member.
4133.8 5	(20^{+})	В	J^{π} : $\Delta J=2$, (E2) γ to (18 ⁺); band member.
4214.6 ⁰ 6	(18 ⁺)	B D	J^{π} : $\Delta J=2 \gamma$ to (16 ⁺); band member.
4266.6 ^e 5	(19 ⁻)	В	
4612.3 7	(21^+)	В	J^{π} : $\Delta J=1 \gamma$ to (20 ⁺).
4653.5 6	(21)	В	
4929.7 ^J 7	(22^{+})	В	J^{π} : $\Delta J=2 \gamma$ to (20 ⁺); band member.
4958.2 ⁰ 8	(20^{+})	В	J^{π} : $\Delta J=2 \gamma$ to (18 ⁺); band member.
5330.1 7	(23^{+})	В	J^{π} : $\Delta J=1 \gamma$ to (22 ⁺).
5391.4? ^J 8	(24^{+})	В	J^{π} : $\Delta J=2 \gamma$ to (22 ⁺); band member.
5448.0 ^e 7	(23 ⁻)	В	J^{π} : $\Delta J=2 \gamma$ to (21 ⁻); band member.
5720.4 8	(25^{+})	В	$J^{\pi}: \Delta J=2, (E2) \gamma \text{ to } (23^{+}).$
6006./? ^e 8	(24)	В	J^{A} : $\Delta J = 1 \gamma$ to (23); band member.
6282.2? ^J 8	(26^+)	В	J^{π} : $\Delta J=2 \gamma$ to (24 ⁺); band member.
6/39.6? ^e 10	(26)	В	J^{A} : $\Delta J=2 \gamma$ to (24); band member.
6790.5? ^J 10	(28^+)	В	J^{π} : $\Delta J=2 \gamma$ to (26 ⁺); band member.
7227.3? ^e 11	(28 ⁻)	В	J^{n} : $\Delta J=2 \gamma$ to (26 ⁻); band member.
7469.1? ^J 11	(30 ⁺)	В	J^{π} : $\Delta J=2 \gamma$ to (28 ⁺); band member.
7534.2? ^e 12	(30^{-})	В	J ⁿ : $\Delta J=2 \gamma$ to (28 ⁻); band member.
1957.1? ^e 13	(32)	В	J^{*} : $\Delta J = 2 \gamma$ to (30); band member.
7992.0? ^J 12	(32^+)	В	J^{n} : $\Delta J=2 \gamma$ to (30 ⁺); band member.
8130.9?° 14	(33^{-})	В	J^{n} : $\Delta J = 1 \gamma$ to (32); band member.
8/12.3? 15	(35 ⁻)	В	$J^{\prime}: \Delta J = 2 \gamma$ to (33); band member.

 † From least-squares fit to $E\gamma$ values.

[‡] When deduced from in-beam γ -ray datasets, it is assumed that levels with ascending spins are populated as the excitation energy increases. This is generally supported by systematics of such reactions and by decay modes. It is also assumed that transitions

¹⁹⁰Pt Levels (continued)

with quoted mult=D+Q and Q are M1+E2 and E2, respectively. The quoted ΔJ values are interpreted from $\gamma(\theta)$ data.

- [#] Measured by 2017Br04 through the detection of the 3183-keV α emitted by ¹⁹⁰Pt with a total of 10103 *101* events, after subtraction of 77 background events, resulting in decay rate of 133.1 *13* counts per day from the decay of ¹⁹⁰Pt. The quoted uncertainty in half-life includes statistical as well as systematic, the two combined in quadrature. Authors compared their result with previous 13 measurements (eight from direct counting and five from geological methods), compiled and evaluated by 2006Ta01, and concluded that their measured value was in good agreement with an average value of 4.78×10¹¹ y *5* from geological methods, but not with averaged 3.9×10^{11} y *2* from direct counting methods, which among themselves suffer from inconsistency. Others: 3.2×10^{11} y *1* (1997Ta33); 6.65×10^{11} y *28* (1987Al28,1986AlZT); 1966Ka23; 5.4×10^{11} y *6* (1963Gr08, 6.8×10^{11} y in 1961Gr37); 6.9×10^{11} y *5* (1961Ma05); 4.7×10^{11} y *17* (1961Pe23); 10×10^{11} y (1954Po24, also 1956Po16,1953Po01); $\approx5\times10^{11}$ y (1921Ho01). Geological measurements of half-life of ¹⁹⁰Pt: 8.8×10^{11} y *7* (1991Wa32); 4.49×10^{11} y *4* (1997Wa40; this value revised to 4.69×10^{11} y *4* by 2001Be81); 4.7×10^{11} y *3* (2002Mo47); 4.9×10^{11} y *1* and 4.90×10^{11} y *4* (2004Co30); revised to 5.1×10^{11} y *1* and 5.08×10^{11} y *5*, respectively by 2006Ta01, considering the revised half-life of ¹⁸⁷Re. Evaluators obtain a weighted averaged (NRM approach) value of 4.93×10^{11} y *10* from above 11 values listed with uncertainties, but using a minimum uncertainty of 0.1×10^{11} , with reduced χ^2 =3.8, somewhat larger than the critical χ^2 =1.8, implying that measured half-lives represent a discrepant dataset. See 2006Ta01 (also 2011Ta23) for compilation of experimental and theoretical α -decay half-lives of ¹⁹⁰Pt, statistical analysis and theoretical calculations. Partial measured half-lives to excited states of ¹⁸⁶Os: 2.6×10^{14} y +4-3(stat) 6(syst) (2011Be08) for the de
- [@] Half-life measurements for double-beta decay: $\geq 9.2 \times 10^{15}$ y (2011Be32) for two-neutrino $\epsilon\beta^+$ decay mode to the g.s. of ¹⁹⁰Os. Also deduced in this work was the lower limit for 0-neutrino $\epsilon\beta^+$ decay to the ground state of ¹⁹⁰Os: $T_{1/2} \geq 9.0 \times 10^{15}$ y, and the lower limit for two-neutrino + 0-neutrino $\epsilon\beta^+$ decay to the first excited state of ¹⁹⁰Os: $T_{1/2} \geq 8.4 \times 10^{15}$ y. A lower limit for the resonant 2ϵ capture to the 1382.4 keV level of ¹⁹⁰Os was also set: $T_{1/2} \geq 2.9 \times 10^{16}$ y, along with limits for double electron capture from various combinations of the K and L shells (see 2011Be32 for details). Others: $T_{1/2}(0\nu\beta\epsilon)>3.1\times 10^{11}$ (1952Fr23,2002Tr04).
- & Band(A): g.s. band.
- ^{*a*} Band(B): Possible γ band.
- ^b Band(C): 2-quiparticle band based on 10⁺. Configuration= $vi_{13/2}^{-2}$.

^c Seq.(E): γ cascade based on 7⁻. Possible configuration= $\nu i_{13/2}^{-1} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2014Li21). Possible Nilsson

- configuration=*v*3/2[512]⊗*v*11/2[615].
- ^d Seq.(F): γ cascade based on 8⁻.
- ^{*e*} Seq.(G): γ cascade based on 17⁻. Possible configuration= $\nu i_{13/2}^{-3} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2014Li21, assignment based on total Routhian surface calculations).
- ^{*f*} Band(D): Band based on 14⁺. Possible configuration= $\nu i_{13/2}^{-2} \otimes \nu h_{9/2}^{-1} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2008Ma58, 2014Li21, assignment based on total Routhian surface calculations).

4

y(¹⁹⁰ F	rt)
----	------------------	-----

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α #	$I_{(\gamma+ce)}$	Comments
295.78 597.61	2+ 2+	295.76 <i>3</i> 301.82 <i>3</i>	100 100.0 <i>23</i>	$\begin{array}{ccc} 0.0 & 0^+ \\ 295.78 & 2^+ \end{array}$	E2 E2		0.1027 0.0967		B(E2)(W.u.)=56.1 28 δ(E2/M1)=+6.8 +30-12 from γ(θ) in (p,2nγ) (1972Yo77)
737.02	4+	597.66 7 441.22 <i>4</i>	40 <i>3</i> 100	$\begin{array}{ccc} 0.0 & 0^+ \\ 295.78 & 2^+ \end{array}$	E2 E2		0.01624 0.0339		(17721022).
916.57	3+	179.6 <i>3</i> 318.93 <i>5</i>	2.8 <i>3</i> 100 <i>4</i>	737.02 4^+ 597.61 2^+	E2+M1 E2+M1	3 + 2 - 1 3.1 + 18 - 7	0.60 8 0.099 10		δ: from α(K)exp in ε decay.
920.83	0^{+}	620.777 323.177 62512	34.5 21 100 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E2+M1 E2 E2	2.0 +20-6	0.030 12 0.0792 0.01467		δ : from $\alpha(\mathbf{K})$ exp in ε decay.
		921.05 14	100.5	0.0 0+	E0		0.01107	2.1 <i>I</i>	E_{γ} : from ce data in ε decay. $q_{K}^{2}(E0/E2)=1.45 \ 17, \ X(E0/E2)=0.0143 \ 17$ (2005Ki02)
1128.16	(4 ⁺)	391.02 <i>9</i> 530.62 <i>12</i> 832 40 21	27.9 22 100 5 7 1 20	737.02 4^+ 597.61 2^+ 205.78 2^+	[M1,E2] (E2)		0.098 <i>52</i> 0.0214		(2003/102).
1202.62	2+	282.3 8	51 <i>4</i>	920.83 0 ⁺	E2		0.1182 20		$E\gamma$ and branching ratio data of γ rays from 1203 level are from the ε decay dataset.
		286.2 3	18 8	916.57 3+	E2(+M1)	>5	0.118 5		Additional information 3. δ : from $\alpha(K)$ exp in ε decay.
		466.0 <i>3</i> 604.56 <i>17</i>	32 2 100 2	737.02 4 ⁺ 597.61 2 ⁺	E2 M1(+E2)	<0.4	0.0295 0.0452 <i>23</i>		E _γ : NRM weighted average of 605.21 <i>12</i> (ε decay), 604.48 <i>17</i> (α,2nγ) and 604.46 <i>17</i> (p,2nγ). Weighted average is 604.84 <i>26</i> with normalized χ^2 =9.5. δ: from α(K)exp and K/(L1+L2) ratio in ε decay
		906.61 20	96 4	295.78 2+	E0+(E2,M1)		0.049 6		becay. E_{γ} : NRM weighted average of 907.30 9 (ε decay), 906.5 2 (α ,2n γ) and 906.5 2 (p,2n γ). Weighted average is 907.07 26 with normalized χ^2 =11.4. I_{γ} : NRM weighted average of 97.2 24 (ε decay), 46 12 (α ,2n γ) and 89 11 (p,2n γ). Weighted average is 95 7 with normalized χ^2 =8 9
1287.69 1353.33	6+ 3 ⁻	1203.4 <i>4</i> 550.66 <i>5</i> 224.9 <i>3</i> 616 20 9	14.2 <i>14</i> 100 8.2 9 43 3	$\begin{array}{rrrr} 0.0 & 0^+ \\ 737.02 & 4^+ \\ 1128.16 & (4^+) \\ 737.02 & 4^+ \end{array}$	(E2) E2		0.0196		A 600
1385.88	(2+,3,4+)	756.4 2 1057.42 <i>10</i> 257.6 <i>4</i>	4.1 <i>10</i> 100 <i>6</i> 6 <i>3</i>	$\begin{array}{c} 597.62 \\ 597.61 \\ 2^{+} \\ 295.78 \\ 2^{+} \\ 1128.16 \\ (4^{+}) \end{array}$	E1 E1 E1				

 $\boldsymbol{\nabla}$

¹⁹⁰₇₈Pt₁₁₂-5

γ (¹⁹⁰Pt) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α #	Comments
1385.88	$(2^+,3,4^+)$	469.0 5	100 18	916.57 3+				
		788.30 14	53 12	597.61 2+				
1395.09	2^{+}	192.2 <i>3</i>	3.8 4	1202.62 2+	[M1,E2]		0.73 32	
		478.2 2	16 3	916.57 3+	M1(+E2)	< 0.8	0.076 12	δ : from $\alpha(K)$ exp in ε decay.
		657.9 <i>3</i>	5.3 6	737.02 4+	(E2)		0.01309	
		/9/.5 3	5.0 0	597.61 2 ⁺	E0+(E2,M1)		0.28 4	
		1099.5 2	43 0	$295.78 2^{+}$	E0+(E2,M1) E2		0.041 0	
1//0 80	(5^{+})	321 76 13	22 7	$1128 16 (4^+)$	E2 [M1 E2]		0 166 87	I : from $(n, 2n_2)$ $I_2(-80, 20)$ in $(\alpha, 2n_2)$
1449.00	(5)	533 08 15	100 7	916 57 3+	[111,122]		0.100 07	1γ . Hom (p,21), $1\gamma = 0$, 20 m (α ,21).
1464.51	5-	176.8.3	2.4 10	$1287.69 6^+$	[E1]		0.0956	
1101101	0	336.32 5	18.0 12	$1128.16(4^+)$	D		010700	
		727.53 6	100 4	737.02 4+	E1			
1600.67	(2^{+})	863.8 4	16 4	737.02 4+				
		1003.4 5	16 8	597.61 2+				
		1304.8 <i>3</i>	100 16	295.78 2+				
		1599.8 8	84	$0.0 0^+$				
1601.99	$(2,1)^+$	206.1 3	12 1	1395.09 2+	[M1,E2]		0.59 27	
		864.5 ⁴ 3	20.2	737.02 4+	141 50	0 7 7	0.0104.00	Mult.: (E0+E2+M1) from ce data is inconsistent with ΔJ^{n} .
		1005.4 4	100 19	597.61 2	MI+E2	0.7 5	0.0104 22	δ : from $\alpha(\mathbf{K})$ exp in ε decay.
		1507.0 5	0/ /	$295.78 2^{\circ}$	MI (M1 E2)			
1624.85	$(2^+ 3 4)$	271 5 2	50 4 100 17	1353 33 3-	(IVI1,E2)			
1024.05	(2,,5,4)	472.5^{a}	100 17	$1202.62 \ 2^+$				α reported in (α 2n α) only
		496.8 4	67 17	$1202.02 \ 2$ $1128.16 \ (4^+)$				γ reported in (n,2n γ) only.
		708.4 4	83 33	916.57 3+				γ reported in (p,2n γ) only.
		887.5 6	67 33	737.02 4+				γ reported in (p,2n γ) only.
1628.04	$(2^+, 3, 4)$	274.73 14	50 9	1353.33 3-				
		711.5 3	100 14	916.57 3+				
		890.9 <i>3</i>	23 5	737.02 4+				
1631.09	7^{-}	166.6 <i>1</i>	100 4	1464.51 5-	E2		0.681	B(E2)(W.u.)=36.7 24
		343.35 6	65 <i>3</i>	$1287.69 6^+$	(E1)		0.0190	$B(E1)(W.u.) = 1.78 \times 10^{-6} 14$
	(c.t.)		100					I_{γ} : from (α ,4n γ). I_{γ} =130 13 in (p,2n γ).
1732.64	(6 ⁺)	604.48 17	100	$1128.16 (4^{+})$	D 1			
1736.92	1	816.1 2	10.4 9	920.83 0 ⁺	EI E1			
		1139.2 3	50.5 <i>15</i>	205 78 2 ⁺				
1833 83	(6^{-})	360 32 6	100 10	$293.70 \ 2$ $1464.51 \ 5^{-}$	$(M1\pm F2)$	$\pm 0.3.1$	0 164 7	δ : from $\alpha(\theta)$ data in $(\alpha An\alpha)$
1876 77	1-2-3-	523.28 13	18.8 16	1353.33 3-	$E_2(+M_1)$	>1	0.034 12	δ : from $\alpha(\mathbf{K})$ exp in ε decay.
10,0.77	1,2,5	1279.5 3	100 18	597.61 2 ⁺	(E1)	~ 1	0.00112	. nom a (mont in o doou).
		1581.5 3	78 6	295.78 2+	E1			
1915.34	8+	627.70 7	100	1287.69 6+	E2		0.01454	
2043.81	(7,8,9 ⁻)	412.72 10	100	1631.09 7-				

From ENSDF

	Adopted Levels, Gammas (continued)													
	$\gamma(^{190}\text{Pt})$ (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	α #	Comments						
2078.30	8-	447.21 9	100	1631.09 7-	M1+E2	+0.56 16	0.087 8	δ : from $\gamma(\theta)$ data in $(\alpha, 4n\gamma)$.						
2212.8?	(1 ⁻)	2212.8 ^{<i>a</i>} 4	100	$0.0 0^+$	E1									
2216.0?	$(2^+, 3.4^+)$	1013.1 ^{@a} 4	<8.0 [@]	1202.62 2+										
		1920.4 ^{<i>a</i>} 4	100 20	295.78 2+	M1									
2222.62	9-	591.43 10	100	1631.09 7-	E2		0.01663							
2297.45	(10^{-})	75.0 5	43 13	2222.62 9-	[M1]		2.73 7	$B(M1)(W.u.) = 1.6 \times 10^{-4} 6$						
		219.14 14	100 6	2078.30 8-	(E2)		0.264	B(E2)(W.u.)=0.125 + 50 - 34						
2358.2	$(2)^{+}$	1760.7 <i>3</i>	100 6	597.61 2+	M1(+E2)	< 0.8		δ : from $\alpha(\mathbf{K})$ exp in ε decay.						
		2061.1 [@] 13	<30 [@]	295.78 2+	(E0+E2+M1)		0.0094 18							
2382.58	$(1)^{+}$	987.4 2	13.1 7	1395.09 2+	M1(+E2)	<1	0.0115 20	δ : from $\alpha(K)$ exp in ε decay.						
		1461.6 4	11.5 11	920.83 0+	M1			δ : <1.1 from ce data, but ΔJ^{π} requires δ =0.						
		1784.9 <i>3</i>	40.4 21	597.61 2+	M1			•						
		2087.3 4	22 4	295.78 2+	M1,E2									
		2382.6 3	100 8	$0.0 0^+$	(M1)			Mult.: ce data give (M1,E2); but ΔJ^{π} requires M1.						
2408.09?	(1 ⁻ ,2 ⁻ ,3 ⁻)	1013.1 ^{@a} 4	<24 [@]	1395.09 2+	(E1)		0.008 5	Mult.: (D,E2) from ce data in ¹⁹⁰ Au ε decay, but ΔJ^{π} requires E1.						
		1054.7 ^a 3	100 10	1353.33 3-	(M1,E2)		0.0082 33							
		1205.5 ^a 4	82 8	1202.62 2+										
		1810.7 ^{@a} 5	<42 [@]	597.61 2+										
		2111.9 ^a 6	46 6	295.78 2+										
2497.69?	(2^{+})	1760.7 ^a 3		737.02 4+										
		2497.6 ^a 4	100 13	$0.0 0^+$	(E2)		1.49×10^{-3}							
2535.28	10^{+}	620.00 8	100	1915.34 8+	E2		0.01494							
2570.71	(11 ⁻)	273.27 16	100	2297.45 (10 ⁻)	(M1+E2)	-0.2 1	0.384 13	δ : from $\gamma(\theta)$ data in (α,4n γ).						
2603.08	10^{+}	380.0 ^a 2	56 8	2222.62 9-				γ not reported in (¹⁸ O,4n γ).						
		687.90 24	100 32	1915.34 8+	Q									
2679.7?	(1 ⁻)	2081.6 ^{<i>a</i>} 5	76 8	597.61 2+										
		2680.2 ^{<i>a</i>} 5	100 16	$0.0 0^+$	(E1)									
2683.4	(10^{-})	605.1 4	100	20/8.30 8	(Q)									
2701.94	(10)	786.6 2	100	1915.34 8'	E2									
2723.35?	(1)	1802.84 3	100 12	920.83 0	EI									
		1985.8 5	49 0	$737.02 4^{\circ}$	[E3]									
		2125.0^{4} 0	21.2 I3	$397.01 2^{\circ}$										
2726 62	12+	123.2.2	91 11 5 8 13	$293.78 \ 2^{\circ}$	[E2]		2 11 4	$B(E2)(W_{11}) = 8.0 + 32.25$						
2720.02	12	123.2 2	5.8 15 100 6	2003.00 10 2535.28 10 ⁺	[Ľ∠] F2		2.114 0.418	$B(E2)(Wu) = 0.0 \pm 32 - 23$ B(E2)(Wu) = 15.3.14						
2760.9	(11^{-})	538.3 3	100 0	2222.62 9-	0		0.410	D(D2)(m,u,j=13.3,17)						
2796.89?	(11)	1401.9^{a} 3	100.5	$1395.09 2^+$	Ě1									
<u> </u>		$1880.0^{@a}$	<120@	016 57 3+	(M1)			$\delta(F2/M1) < 1$ from $\alpha(K)$ evp in a decay						
		1000.0 4	<120 .47 ^(a)	710.57 5	(111)			$u(\mathbf{L}_{2}) = 1 \text{ from } u(\mathbf{K}) = 1 \text{ from } u(\mathbf{K}) = 1 \text{ for } u$						
		2001.1 ~ 13	<4/	131.02 4										

 \neg

γ (¹⁹⁰Pt) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
2820.3?	(11^{+})	217.2 2	100	2603.08	10^{+}	(M1+E2)	0.51 24	
2821.8	(12^{-})	524.3 <i>3</i>	100	2297.45	(10^{-})	· · · ·		
2875.14?		1672.4 ^a 3		1202.62	2+			
		1958.8 <mark>a</mark> 5	100 11	916.57	3+			
		$2277.6^{@a}$ 7	<285 [@]	597.61	2^{+}			
		2579.4^{a} 8	33.7	295.78	- 2 ⁺			
2942.7?	$(0^{-}, 1^{-}, 2^{-})$	729.88 ^{<i>a</i>} 17	100	2212.8?	(1^{-})	M1	0.0292	
2980.9	1-	2685.1 5	100 11	295.78	2+	E1		
		2980.9 6	83 16	0.0	0^{+}	E1		
3013 88	$(2)^{-}$	$1810.7^{@}5$	< 31@	1202.62	2+			
2012100	(-)	2097.2.3	46.6	916.57	<u>3</u> +	E1		
		$2277.6^{@}7$	<11@	737.02	<u>4</u> +			
		2416.4.3	100.9	597.61	- 2+	F1		
3024.6	(12^{-})	453.9.5	100 2	2570 71	(11^{-})	D+0		
3049.19	$(12)^{-}$	2132.5.3	23 4	916.57	3+	El		
	(-)	2452.0 5	30 5	597.61	2+	E1		
		2753.3 4	100 10	295.78	2+	E1		
3067.26	$(1,2)^{-}$	1672.4 <i>3</i>	49 7	1395.09	2^{+}	E1		
		1864.5 <i>4</i>	82 18	1202.62	2+	(E1)		
		2469.5 4	100 18	597.61	2^{+}	E1		
		2771.2 5	61 11	295.78	2+	E1		
3069.19	14+	342.57 17	100	2726.62	12^{+}	E2	0.0670	
3111.7	(13 ⁻)	541.0 3	100	2570.71	(11^{-})	Q		
3233.4?	$(2^{-}, 3^{-})$	1880.0 ^{@a} 4	<92 [@]	1353.33	3-	(M1)	0.0027 3	$\delta(\text{E2/M1}) < 1$ from $\alpha(\text{K}) \exp \text{ in } \varepsilon$ decay.
		2636.2 ^a 8	100 11	597.61	2^{+}			
3344.6	(13-)	583.7 <i>3</i>	100 8	2760.9	(11^{-})	E2	0.01715	
		618.1 5		2726.62	12^{+}			γ only from (¹⁸ O,4n γ).
3414.86	(14^{+})	303.2 4	38 7	3111.7	(13 ⁻)	D		I_{γ} : from (¹⁸ O,4n γ) for all γ rays from 3415 level.
		345.7 <i>3</i>	93 11	3069.19	14^{+}	(M1,E2)	0.137 72	
		688.2 ^{&} 4	100 ^{&} 8	2726.62	12^{+}	Q		
3576.5	(16 ⁺)	507.3 <i>3</i>	100	3069.19	14^{+}	Q		
3666.1	(16^{+})	251.2 2	100 9	3414.86	(14^{+})	E2	0.1698	
		596.8 <i>5</i>		3069.19	14^{+}			γ only from (¹⁸ O,4n γ).
3807.9	(18^{+})	141.8 2	100	3666.1	(16^{+})	(E2)		
3856.0	(15^{-})	441.2 5		3414.86	(14^{+})	_		
		511.4 5	100 10	3344.6	(13^{-})	Q		
1055 59		/86.8 5	50.9	3069.19	14'	D		
4055.5?	(17-)	199.5 3	100	3836.U	(15)	D		
4083.2	(1/)	(21.1)	21.2	4033.3? 2856.0	(15^{-1})	(E2)		
		417 1 3	34 3 100 8	3666 1	(15)	(E2) D		
		506.6.5	100.0	3576.5	(10^{+})	D		
		500.0 5		5570.5	(10)			

 ∞

From ENSDF

$\gamma(^{190}\text{Pt})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]
4133.8	(20^{+})	325.9 3	100	3807.9 (18+)	(E2)	6006.7?	(24^{-})	558.7 5	100	5448.0 (23-)	D
4214.6	(18^{+})	638.1 4	100	3576.5 (16 ⁺)	Q	6282.2?	(26^{+})	561.8 5		5720.4 (25 ⁺)	
4266.6	(19 ⁻)	183.4 <i>3</i>	100	4083.2 (17 ⁻)	(E2)			890.8 5	100 9	5391.4? (24 ⁺)	Q
4612.3	(21^{+})	478.5 5	100	4133.8 (20 ⁺)	D	6739.6?	(26 ⁻)	732.9 5	100	6006.7? (24 ⁻)	Q
4653.5	(21^{-})	386.9 <i>3</i>	100	4266.6 (19 ⁻)	(E2)	6790.5?	(28^{+})	508.3 5	≤100	6282.2? (26 ⁺)	Q
4929.7	(22^{+})	795.9 5	100	4133.8 (20+)	Q	7227.3?	(28^{-})	487.7 5	100	6739.6? (26 ⁻)	Q
4958.2	(20^{+})	743.6 5	100	4214.6 (18 ⁺)	Q	7469.1?	(30^{+})	678.6 5	100	6790.5? (28 ⁺)	Q
5330.1	(23^{+})	400.4 5	100 11	4929.7 (22+)	D	7534.2?	(30-)	306.9 5	100	7227.3? (28 ⁻)	Q
		717.8 5	≤66	4612.3 (21 ⁺)		7957.1?	(32^{-})	422.9 5	100	7534.2? (30 ⁻)	Q
5391.4?	(24^{+})	461.7 5	100	4929.7 (22+)	Q	7992.0?	(32^{+})	522.9 5	100	7469.1? (30 ⁺)	Q
5448.0	(23^{-})	794.5 <i>3</i>	100	4653.5 (21 ⁻)	Q	8130.9?	(33 ⁻)	173.8 5	100	7957.1? (32 ⁻)	D
5720.4	(25^{+})	390.3 5	100	5330.1 (23+)	(E2)	8772.3?	(35 ⁻)	641.4 5	100	8130.9? (33 ⁻)	Q

[†] Weighted averages of values from γ -ray datasets, when data are available from more than one dataset. Above 2850 keV, data are mainly available from (¹⁸O,4n γ).

[‡] From ce data in ¹⁹⁰Au ε decay and (α ,4n γ); $\gamma(\theta)$ data in (α ,4n γ), and $\gamma\gamma(\theta)$ (ADO) data in (¹⁸O,4n γ). Below 400 keV, $\Delta J=2$ (stretched) quadrupole transitions are assigned mult=(E2) in preference to M2, as no level lifetimes >10 ns or so are indicated in $\gamma\gamma$ -coin data in in-beam γ -ray data.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

9

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{190}_{78}\text{Pt}_{112}\text{-}9$

¹⁹⁰₇₈Pt₁₁₂

14

 $^{190}_{78}\text{Pt}_{112}\text{-}14$

 $^{190}_{78}\text{Pt}_{112}\text{-}14$

From ENSDF

 $^{190}_{78} \mathrm{Pt}_{112}$