## <sup>190</sup>Os(α,4nγ) **1976Cu02,1976Hj01**

| History         |                                                      |                   |                        |  |  |  |  |  |  |
|-----------------|------------------------------------------------------|-------------------|------------------------|--|--|--|--|--|--|
| Туре            | Author                                               | Citation          | Literature Cutoff Date |  |  |  |  |  |  |
| Full Evaluation | Balraj Singh, <sup>1</sup> and Jun Chen <sup>2</sup> | NDS 169, 1 (2020) | 15-Oct-2020            |  |  |  |  |  |  |

1976Cu02 (also 1975Pi02): E=30.9-50.3 MeV from the Michigan State University sector-focused cyclotron. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(t)$ ,  $\gamma(t)$ ,  $\gamma(\theta)$ . Main data at E $\alpha$ =45.5 MeV.

1976Hj01 (and 1975Fu04): E=48 MeV from the Stockholm 225-cm cyclotron. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma(\theta)$ , ce. 1976Hj01 also report data on ( $\alpha$ ,2n $\gamma$ ).

Others:

1997Ka34: <sup>186</sup>W(<sup>16</sup>O,4n2 $\alpha\gamma$ ) E=110 MeV. Measured Doppler shift for 688 $\gamma$  from 10<sup>+</sup> state.

1979Ri08: <sup>176</sup>Yb(<sup>18</sup>O,4nγ) E=77-88 MeV, measured ce(t).

1978Ti02: E=49 MeV, measured ce(t).

1965La02: E=48 MeV. Measured E $\gamma$ , I $\gamma$ .

## <sup>190</sup>Pt Levels

| E(level)              | $J^{\pi #}$    | T <sub>1/2</sub> | Comments                                                                                                                                      |
|-----------------------|----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $0^{+}$        |                  |                                                                                                                                               |
| 295.7 1               | 2+             |                  |                                                                                                                                               |
| 597.5 1               | 2+             |                  |                                                                                                                                               |
| 736.9 2               | 4+             |                  |                                                                                                                                               |
| 916.5 2               | 3+             |                  |                                                                                                                                               |
| 1128.3 2              | 4 <sup>+</sup> |                  |                                                                                                                                               |
| 1287.6 2              | 6'             |                  |                                                                                                                                               |
| 1353.1 10             | 3-             |                  |                                                                                                                                               |
| 1449.6 4              | 5+             |                  |                                                                                                                                               |
| 1464.6 2              | 5              | 0.70 5           | T = ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (                                                                                                       |
| 1631.2 2              | /              | 0.79 ns 5        | $\Gamma_{1/2}$ : from (ce for 16/γ)(t). Weighted average of 0.77 ns 14 (19/9R108), 0.80 ns 5 (1978Ti02). Other: ≈1.2 ns from γ(t) (1976Cu02). |
| 1834.0 5              | (6)-           |                  |                                                                                                                                               |
| 1915.3 <i>3</i>       | 8+             |                  |                                                                                                                                               |
| 2043.8 5              |                |                  |                                                                                                                                               |
| 2078.5 <i>3</i>       | 8-             |                  |                                                                                                                                               |
| 2222.7 3              | 9-             |                  |                                                                                                                                               |
| 2297.6 4              | $(10)^{-}$     | 47 ns 6          | $T_{1/2}$ : from 219.1 $\gamma$ (t) (1976Cu02).                                                                                               |
| 2535.4 4              | 10+            |                  |                                                                                                                                               |
| 2570.9 4              | (11)           |                  |                                                                                                                                               |
| 2003.5 5              | $10^{-1}$      |                  |                                                                                                                                               |
| 2085.0 5              | $(10^{+})$     |                  |                                                                                                                                               |
| 2726.8 4              | $10^{+}$       | 1.39 ns 12       | $T_{1/2}$ : weighted average of 1.27 ns 9 (1978Ti02, ce(t) for 191 $\gamma$ ) and 1.52 ns 9 (1979Ri08,                                        |
| 2761.0.5              | 11-            |                  | cc(t) for 1257 and 1917). Other, ~1.5 its from $y(t)$ (1970 $cd02$ ).                                                                         |
| $2820.7^{\dagger}$ 6  | $(11^+)$       |                  |                                                                                                                                               |
| 2821.9 <sup>‡</sup> 5 | $(11^{-})$     |                  |                                                                                                                                               |
| 3024 8 7              | $(12^{-})$     |                  |                                                                                                                                               |
| 306944                | (12)<br>$14^+$ |                  |                                                                                                                                               |
| $21110^{\pm}5$        | $(12^{-})$     |                  |                                                                                                                                               |
| 33111.9 5             | $(13^{-})$     |                  |                                                                                                                                               |
| 3415.0.5              | $(13^{+})$     |                  |                                                                                                                                               |
| 3576.6 6              | 16+            |                  |                                                                                                                                               |
| 3666.2 5              | $(16^{+})$     |                  |                                                                                                                                               |
| 3808.0 5              | ()             |                  |                                                                                                                                               |
|                       |                |                  |                                                                                                                                               |

## <sup>190</sup>Os(α,4nγ) **1976Cu02,1976Hj01** (continued)

## <sup>190</sup>Pt Levels (continued)

 $\frac{\text{E(level)}}{4083.3^{\ddagger} \ 6} \qquad \frac{\text{J}^{\pi \#}}{4214.4^{\dagger} \ 8} \qquad 18^{+}$ 

<sup>†</sup> Level proposed by 1976Hj01 only.

<sup>±</sup> Level proposed by 1976Cu02 only.

<sup>#</sup> As proposed in 1976Cu01 and 1976Hj01 based on  $\gamma(\theta)$  data and multipolarity assignments. See the Adopted Levels for detailed arguments.

# $\gamma(^{190}\text{Pt})$

Experimental conversion coefficients are from 1976Hj01. Uncertainty based on a general comment by 1976Hj01 that typical errors may be 30%. The authors used ce(K) data of 296 $\gamma$ , 441 $\gamma$ , 551 $\gamma$  and 628 $\gamma$  (all treated as E2) for normalization purposes.

| $E_{\gamma}^{\dagger}$                     | $I_{\gamma}^{\ddagger}$           | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | α <sup><i>C</i></sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------|-----------------------------------|------------------------|----------------------|-------------------------------------|--------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75.0 <sup>&amp;</sup> 5                    | 2.0 6                             | 2297.6                 | (10)-                | 2222.7 9-                           | (M1)               | 2.73 7                | $\alpha$ (L)=2.10 5; $\alpha$ (M)=0.486 12<br>$\alpha$ (N)=0.120 3; $\alpha$ (O)=0.0216 6; $\alpha$ (P)=0.00146 4<br>Mult.: from intensity balance, mult=M1 is more<br>likely than F2 1976Cu01 assigned M1                                                                                                                                                                                                                                                                                                                                                   |
| 123.2 3                                    | 0.7 2                             | 2726.8                 | 12+                  | 2603.5 10 <sup>+</sup>              | [E2]               | 2.11 4                | $\alpha(K) = 0.517 \ 8; \ \alpha(L) = 1.2001 \ 22; \ \alpha(M) = 0.310 \ 6$<br>$\alpha(N) = 0.0756 \ 14; \ \alpha(O) = 0.01182 \ 22; \ \alpha(P) = 5.22 \times 10^{-5} \ 8$<br>$F_{V} = 123 \ 2 \ V_{V} = 0 \ 8 \ (1976 \text{Hi01})$                                                                                                                                                                                                                                                                                                                        |
| 141.8 2                                    | 1.4 3                             | 3808.0                 |                      | 3666.2 (16 <sup>+</sup> )           |                    |                       | $A_2 = -0.06 \ 13 \ (1976Hj01)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 166.6 <i>1</i>                             | 21.6 22                           | 1631.2                 | 7-                   | 1464.6 5-                           | E2                 | 0.681                 | E $\gamma$ =141.8, 1 $\gamma$ =1.5 (19/6Hj01).<br>$\alpha$ (L)exp=0.30 9<br>A <sub>2</sub> =+0.28 10; A <sub>4</sub> =-0.13 10 (1976Cu02)<br>A <sub>2</sub> =+0.22 2; A <sub>4</sub> =+0.04 2 (1976Hj01)<br>$\alpha$ (K)=0.267 4; $\alpha$ (L)=0.312 5; $\alpha$ (M)=0.0800 12<br>$\alpha$ (N)=0.0196 3; $\alpha$ (O)=0.00309 5;<br>$\alpha$ (P)=2.52×10 <sup>-5</sup> 4                                                                                                                                                                                     |
| 191.4 <i>1</i>                             | 11.9 10                           | 2726.8                 | 12+                  | 2535.4 10 <sup>+</sup>              | E2                 | 0.418                 | Eγ=166.6, Iγ=24.5; ce(L)=7.4 (1976Hj01).<br>Mult.: E2,M1 from $\alpha$ (L)exp.<br>$\alpha$ (K)exp=0.23 7; $\alpha$ (L)exp=0.10 3;<br>$\alpha$ (M)exp=0.04 2<br>A <sub>2</sub> =+0.31 10; A <sub>4</sub> =-0.19 10 (1976Cu02)<br>A <sub>2</sub> =+0.37 2; A <sub>4</sub> =-0.04 2 (1976Hj01)<br>$\alpha$ (K)=0.190 3; $\alpha$ (L)=0.1717 25; $\alpha$ (M)=0.0439 7<br>$\alpha$ (N)=0.01072 16; $\alpha$ (O)=0.001704 25;<br>$\alpha$ (P)=1.80×10 <sup>-5</sup> 3<br>Eγ=191.4, Iγ=13.0; ce(K)≈3.0, ce(L)=1.3,<br>ce(M)=0.5 (1976Hj01).<br>$\delta$ (E2/M1)>2. |
| <sup>x</sup> ≈196.5 <sup>a</sup>           | ≈2.0 <sup><i>a</i></sup>          |                        |                      |                                     |                    |                       | From $\gamma\gamma$ (1976Hj01), the 196.5 $\gamma$ feeds the g.s. band at or above 2727, 12 <sup>+</sup> level.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> ≈199 <sup>ab</sup><br>217.2 3 | ≈1.0 <sup><i>a</i></sup><br>1.5 2 | 2820.7                 | (11+)                | 2603.5 10+                          | (M1+E2)            | 0.51 24               | $\begin{array}{l} A_2 = -0.03 \ 10 \ (1976 \text{Hj}01) \\ A_2 = -0.83 \ 30 \ (1976 \text{Cu}02); \ A_2 = -0.8 \ 2 \\ (1976 \text{Hj}01) \\ \alpha(\text{K}) \exp \approx 0.10; \ \alpha(\text{L}) \exp = 0.10 \ 3 \\ \alpha(\text{K}) = 0.37 \ 24; \ \alpha(\text{L}) = 0.1008 \ 16; \ \alpha(\text{M}) = 0.0245 \end{array}$                                                                                                                                                                                                                               |

 $^{190}_{78}$ Pt $_{112}$ -3

|                                          |                         |               |                      | <sup>190</sup> <b>Os</b> ( $\alpha$ ,4n $\gamma$ ) | 1976Cu02           | , <b>1976Hj0</b> 1 | (continued)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------------|-------------------------|---------------|----------------------|----------------------------------------------------|--------------------|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(190</sup> Pt) (continued) |                         |               |                      |                                                    |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| $E_{\gamma}^{\dagger}$                   | $I_{\gamma}^{\ddagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$                | Mult. <sup>#</sup> | $\delta^{@}$       | $\alpha^{c}$    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                          |                         |               |                      |                                                    |                    |                    |                 | <i>I4</i><br>$ α(N)=0.0060 3; α(O)=0.001020 21;  α(P)=4.2×10^{-5} 29Eγ=217.1, Iγ=3.0; ce(K)≈0.7,  ce(L)=0.9 (1976Hj01).  ce(K), ce(L), α(K)exp and α(L)exp for 217.2γ+219.1γ.  Placement from 1976Hj01, unplaced  in 1976Cu02.$                                                                                                                                                                                                                                                                                  |  |
| 219.1 2                                  | 4.7 5                   | 2297.6        | (10)-                | 2078.5 8-                                          | (E2)               |                    | 0.264           | $\begin{aligned} &\alpha(K)\exp\approx0.10; \ \alpha(L)\exp=0.10 \ 3\\ &A_2=+0.32 \ 10 \ (1976Cu02)\\ &A_2=+0.17 \ 4; \ A_4=+0.01 \ 3\\ &(1976Hj01)\\ &\alpha(K)=0.1349 \ 20; \ \alpha(L)=0.0976 \ 15;\\ &\alpha(M)=0.0248 \ 4\\ &\alpha(N)=0.00607 \ 9; \ \alpha(O)=0.000971\\ &I4 \ \alpha(P)=1.303\times10^{-5} \ 19\\ &E\gamma=219.1, \ I\gamma=5.5; \ ce(K)\approx0.7,\\ &ce(L)=0.9 \ (1976Hj01).\\ ce(K), \ ce(L), \ \alpha(K)\exp \ and \ \alpha(L)\exp \\ &for \ 217.2\gamma+219.1\gamma. \end{aligned}$ |  |
| x227.3 <sup>∞</sup> 3<br>251.2 2         | 1.2 2<br>5.9 5          | 3666.2        | (16 <sup>+</sup> )   | 3415.0 (14 <sup>+</sup> )                          | E2                 |                    | 0.1698          | $\alpha$ (K)exp=0.11 3<br>$A_2$ =+0.36 18; $A_4$ =-0.16 15<br>(1976Cu02)<br>$A_2$ =+0.39 2; $A_4$ =-0.02 2 (1976Hj01)<br>$\alpha$ (K)=0.0954 14; $\alpha$ (L)=0.0562 8;<br>$\alpha$ (M)=0.01420 21<br>$\alpha$ (N)=0.00347 5; $\alpha$ (O)=0.000560 8;<br>$\alpha$ (P)=9.38×10 <sup>-6</sup> 14<br>E $\gamma$ =251.2, I $\gamma$ =7.2; ce(K)=0.8<br>(1976Hj01).<br>$\delta$ (E2(M)>2 5                                                                                                                           |  |
| 273.3 2                                  | 4.9 4                   | 2570.9        | (11)-                | 2297.6 (10)-                                       | (M1+E2)            | -0.2 1             | 0.384 <i>13</i> | $\begin{array}{l} \alpha(\mathrm{K})=0.315\ 12;\ \alpha(\mathrm{L})=0.0526\ 10;\\ \alpha(\mathrm{M})=0.01218\ 20\\ \alpha(\mathrm{N})=0.00301\ 5;\ \alpha(\mathrm{O})=0.000541\\ 10;\ \alpha(\mathrm{P})=3.58\times10^{-5}\ 14\\ \mathrm{A}_{2}=-0.72\ 12\ (1976\mathrm{Cu}02);\ \mathrm{A}_{2}=-0.41\\ 11\ (1976\mathrm{Hj}01)\\ \mathrm{E}\gamma=273.2,\ \mathrm{I}\gamma=6.0\ (1976\mathrm{Hj}01).\\ \delta;\ \mathrm{from}\ \gamma(\theta)\ (1976\mathrm{Hj}01)\\ \end{array}$                               |  |
| 295.7 1                                  | 100.0                   | 295.7         | 2+                   | 0.0 0+                                             | E2                 |                    | 0.1028          | a(K)exp=0.063 21; a(L)exp=0.033<br>I0; a(M)exp=0.012 4<br>$A_2=+0.24 I1; A_4=-0.10 9$<br>(1976Cu02)<br>$A_2=+0.25 I; A_4=+0.03 I$<br>(1976Hj01)<br>a(K)=0.0633 9; a(L)=0.0299 5;<br>a(M)=0.00749 II<br>a(N)=0.00183 3; a(O)=0.000298 5;<br>$a(P)=6.36\times10^{-6} 9$<br>$E\gamma=295.7, I\gamma=100; ce(K)=6.3,$<br>ce(L)=3.3, ce(M)=1.2 (1976Hj01)                                                                                                                                                             |  |
| 301.8 <i>1</i>                           | 7.4 6                   | 597.5         | 2+                   | 295.7 2+                                           |                    |                    |                 | $A_2=0.00 \ 6; \ A_4=+0.11 \ 6 \ (1976Hj01)$<br>$E_{\gamma=301.8} \ I_{\gamma=7.4} \ (1976Hj01)$                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 303.3 <b>&amp;</b> 5                     | 1.5 5                   | 3415.0        | (14+)                | 3111.9 (13-)                                       |                    |                    |                 | <i>L</i> <sub>1</sub> -501.0, 1 <sub>1</sub> -1.7 (17/011j01).                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

 $^{190}_{78}$ Pt $_{112}$ -4

|                                                             |                         |                        |                      | <sup>190</sup> <b>Os</b> ( $\alpha$ ,4n $\gamma$ ) | γ) <b>1976Cu02,1976Hj01</b> (continued) |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------|-------------------------|------------------------|----------------------|----------------------------------------------------|-----------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                             |                         |                        |                      |                                                    | $\gamma(^{190}\text{Pt})$ (c            | continued)   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $E_{\gamma}^{\dagger}$                                      | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f = J_f^{\pi}$                                  | Mult. <sup>#</sup>                      | $\delta^{@}$ | α <sup>c</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| x306.6 <sup>&amp;</sup> 3<br>319.0 3                        | 2.3 2<br>2.7 <i>3</i>   | 916.5                  | 3+                   | 597.5 2+                                           |                                         |              |                | A <sub>2</sub> =+0.44 <i>16</i> (1976Cu02); A <sub>2</sub> =+0.01<br><i>18</i> (1976Hj01)                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 336.4 2                                                     | 4.9 5                   | 1464.6                 | 5-                   | 1128.3 4+                                          | D                                       |              |                | $E\gamma$ =318.9, $I\gamma$ =3.0 (1976Hj01).<br>$A_2$ =-0.19 9 (1976Cu02)<br>$A_2$ =+0.01 4; $A_4$ =+0.09 6 (1976Hj01)<br>$E_2$ =226 4 L 44 (1077U101)                                                                                                                                                                                                                                                                                                                                                     |  |
| 342.6 3                                                     | 11.4 11                 | 3069.4                 | 14+                  | 2726.8 12+                                         | (E2)                                    |              | 0.0670         | Ey=536.4, iy=4.4 (1976Hj01).<br>$\alpha$ (K)exp=0.08 2; $\alpha$ (L)exp=0.013 4<br>A <sub>2</sub> =+0.51 18 (1976Cu02); A <sub>2</sub> =+0.30<br>19 (1976Hj01)<br>$\alpha$ (K)=0.0441 7; $\alpha$ (L)=0.01737 25;<br>$\alpha$ (M)=0.00432 7<br>$\alpha$ (N)=0.001059 16; $\alpha$ (O)=0.0001740<br>25; $\alpha$ (P)=4.51×10 <sup>-6</sup> 7<br>Ey=342.4, Iy=11.5; ce(K)=2.3,<br>ce(L)=0.4 (1976Hj01).<br>ce(K), ce(L), $\alpha$ (K)exp and $\alpha$ (L)exp                                                 |  |
| 343.5 3                                                     | 14.2 12                 | 1631.2                 | 7-                   | 1287.6 6+                                          | (E1)                                    |              | 0.0190         | for $342.6\gamma+343.5\gamma+345.7\gamma$ .<br>$\alpha(K)\exp=0.08\ 2;\ \alpha(L)\exp=0.013\ 4$<br>$A_2=-0.10\ 8;\ A_2=+0.07\ 8;\ (1976Hj01)$<br>$\alpha(K)=0.01575\ 23;\ \alpha(L)=0.00251\ 4;$<br>$\alpha(M)=0.000576\ 9$<br>$\alpha(N)=0.0001414\ 20;\ \alpha(O)=2.48\times10^{-5}$<br>$4;\ \alpha(P)=1.459\times10^{-6}\ 21$<br>$E\gamma=343.4,\ I\gamma=16.5;\ ce(K)=2.3,$<br>ce(L)=0.4 (1976Hj01).<br>$ce(K)$ $ce(L)$ $\alpha(K)exp$ and $\alpha(L)exp$                                              |  |
| 345.7 3                                                     | 2.7 3                   | 3415.0                 | (14+)                | 3069.4 14+                                         | (M1,E2)                                 |              | 0.137 72       | for 342.6 $\gamma$ +343.5 $\gamma$ +345.7 $\gamma$ .<br>$\alpha$ (K)exp=0.08 2; $\alpha$ (L)exp=0.013 4<br>A <sub>2</sub> =+0.42 16 (1976Cu02); A <sub>2</sub> =+0.51<br>17 (1976Hj01)<br>$\alpha$ (K)=0.107 65; $\alpha$ (L)=0.022 6;<br>$\alpha$ (M)=0.0053 12<br>$\alpha$ (N)=0.0013 3; $\alpha$ (O)=2.28×10 <sup>-4</sup> 60;<br>$\alpha$ (P)=1.19×10 <sup>-5</sup> 76<br>E $\gamma$ =345.6, I $\gamma$ =3.0; ce(K)=2.3,<br>ce(L)=0.4 (1976Hj01).<br>ce(K), ce(L), $\alpha$ (K)exp and $\alpha$ (L)exp |  |
| 369.4 4                                                     | 1.7 2                   | 1834.0                 | (6) <sup>-</sup>     | 1464.6 5-                                          | (M1+E2)                                 | +0.3 1       | 0.164 7        | for 342.6 $\gamma$ +343.5 $\gamma$ +345.7 $\gamma$ .<br>$\alpha$ (K)=0.135 7; $\alpha$ (L)=0.0225 7;<br>$\alpha$ (M)=0.00521 14<br>$\alpha$ (N)=0.00129 4; $\alpha$ (O)=0.000231 7;<br>$\alpha$ (P)=1.52×10 <sup>-5</sup> 8<br>A <sub>2</sub> =+0.10 9 (1976Hj01)<br>E $\gamma$ =369.3, I $\gamma$ =1.4 (1976Hj01).<br>$\delta$ : from $\gamma$ ( $\theta$ ) (1976Hj01), but note<br>that positive A <sub>2</sub> is inconsistent with<br>A <sub>1</sub> =1 dipple transition                              |  |
| <sup>x</sup> 376.5 <sup>&amp;</sup> 4<br>391.8 4<br>412.6 4 | 2.1 2<br>2.0 2<br>1.6 2 | 1128.3<br>2043.8       | 4+                   | 736.9 4 <sup>+</sup><br>1631.2 7 <sup>-</sup>      |                                         |              |                | A <sub>2</sub> =+0.49 <i>18</i> (1976Cu02)<br>E $\gamma$ =390.9, I $\gamma$ =1.7 (1976Hj01).<br>A <sub>2</sub> =+0.14 <i>17</i> (1976Hj01)<br>E $\gamma$ =412.7, I $\gamma$ =1.8 (1976Hj01).                                                                                                                                                                                                                                                                                                               |  |

|                                                   |                                           |                                               |                                      | <sup>190</sup> Os(α,4nγ) <b>1976Cu02,1976Hj01</b> (continued)       |        |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------|-------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------------------------------------|--------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(190</sup> Pt) (continued)          |                                           |                                               |                                      |                                                                     |        |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| $\frac{{\rm E}_{\gamma}^{\dagger}}{417.1^{\& 3}}$ | $I_{\gamma}^{\ddagger}$<br>3.2 3<br>1.7 2 | $\frac{\mathrm{E}_i(\mathrm{level})}{4083.3}$ | $J_i^{\pi}$                          | $\frac{{\rm E}_f}{3666.2} \ \frac{{\rm J}_f^{\pi}}{(16^+)}$         | Mult.# | $\delta^{@}$ | α <sup>C</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| x422.6 <sup><i>ab</i></sup><br>441.2 <i>1</i>     | 1.2 <sup><i>a</i></sup><br>93.1 56        | 736.9                                         | 4+                                   | 295.7 2+                                                            | E2     |              | 0.0339         | $\alpha$ (K)exp=0.026 8; $\alpha$ (L)exp=0.0075<br>23; $\alpha$ (M)exp=0.0026 8<br>A <sub>2</sub> =+0.30 12; A <sub>4</sub> =-0.08 10<br>(1976Cu02)<br>A <sub>2</sub> =+0.28 1; A <sub>4</sub> =+0.02 2<br>(1976Hj01)<br>$\alpha$ (K)=0.0242 4; $\alpha$ (L)=0.00733 11;<br>$\alpha$ (M)=0.00179 3<br>$\alpha$ (N)=0.000440 7;<br>$\alpha$ (O)=7.37×10 <sup>-5</sup> 11;<br>$\alpha$ (P)=2.53×10 <sup>-6</sup> 4<br>E $\gamma$ =441.2, I $\gamma$ =90.0; ce(K)=2.3,<br>ce(L)=0.67, ce(M)=0.23<br>(1976Hj01) |  |  |
| 447.4 2                                           | 13.8 11                                   | 2078.5                                        | 8-                                   | 1631.2 7-                                                           | M1+E2  | +0.56 16     | 0.087 8        | (1)7(1)(01):<br>$\alpha(K)\exp=0.10 \ 3; \ \alpha(L)\exp=0.023 \ 7$<br>$A_2=+0.58 \ 24; \ A_4=+0.04 \ 24$<br>(1)76Cu02)<br>$A_2=+0.38 \ 6; \ A_4=+0.17 \ 5$<br>(1)976Hj01)<br>$\alpha(K)=0.071 \ 7; \ \alpha(L)=0.0123 \ 8; \ \alpha(M)=0.00286 \ 16$<br>$\alpha(N)=0.00071 \ 4; \ \alpha(O)=0.000126$<br>$8; \ \alpha(P)=8.0\times10^{-6} \ 8$<br>$E_{\gamma}=447.3, \ I_{\gamma}=12.0; \ ce(K)=1.2, \ ce(L)=0.27 \ (1)976Hj01).$<br>$\delta; \ from \ \gamma(\theta) \ (1)976Hj01).$                      |  |  |
| 453.9 <sup>&amp;</sup> 5                          | 1.8 <i>4</i><br>2 6 <sup>a</sup>          | 3024.8                                        | (12 <sup>-</sup> )                   | 2570.9 (11)-                                                        | D+Q    |              |                | $A_2 = -1.32 \ 35 \ (1976Cu02)$<br>$A_3 = +0.25 \ 10 \ (1976Hi01)$                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 507.2 4                                           | 3.8 7                                     | 3576.6                                        | 16+                                  | 3069.4 14+                                                          |        |              |                | $A_2 = +0.125 \ 10 \ (1976 \text{Hj}01)$<br>$A_2 = +0.14 \ 17 \ (1976 \text{Hj}01)$<br>$E_{\gamma} = 507.3, \ I_{\gamma} = 5.5 \ (1976 \text{Hj}01).$                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 524.3 <sup>&amp;</sup> 3<br>530.7 3               | 3.4 <i>4</i><br>6.1 <i>6</i>              | 2821.9<br>1128.3                              | (12 <sup>-</sup> )<br>4 <sup>+</sup> | $\begin{array}{ccc} 2297.6 & (10)^{-} \\ 597.5 & 2^{+} \end{array}$ |        |              |                | $\begin{array}{l} A_2 = +0.34 \ I2 \ (1976 Cu02) \\ A_2 = +0.39 \ I0 \ (1976 Cu02) \\ A_2 = +0.18 \ 6; \ A_4 = +0.09 \ 9 \\ (1976 Hj01) \\ E_{\gamma} = 530.6, \ I_{\gamma} = 4.7 \ (1976 Hj01). \end{array}$                                                                                                                                                                                                                                                                                               |  |  |
| 533.1 <i>3</i><br>538.3 <i>3</i>                  | 2.8 <i>3</i><br>5.6 <i>6</i>              | 1449.6<br>2761.0                              | 5+<br>11 <sup>-</sup>                | 916.5 3 <sup>+</sup><br>2222.7 9 <sup>-</sup>                       | Q      |              |                | $E_{\gamma}=533.1, I_{\gamma}=2.0 (1976Hj01).$ $A_{2}=+0.23 \ 10 (1976Cu02)$ $A_{2}=+0.38 \ 6; A_{4}=-0.15 \ 9 (1976Hj01)$ $E_{\gamma}=538.3, I_{\gamma}=5.7 (1976Hj01).$                                                                                                                                                                                                                                                                                                                                   |  |  |
| 541.0 <sup>&amp;</sup> 3<br>550.7 2               | 4.2 5<br>56.6 40                          | 3111.9<br>1287.6                              | (13 <sup>-</sup> )<br>6 <sup>+</sup> | 2570.9 (11) <sup>-</sup><br>736.9 4 <sup>+</sup>                    | E2     |              | 0.0196         | $\begin{array}{l} A_2 = +0.35 \ I2 \ (1976 \text{Cu02}) \\ \alpha(\text{K}) \exp = 0.014 \ 5; \ \alpha(\text{L}) \exp = 0.0034 \\ I0 \\ A_2 = +0.37 \ II; \ A_4 = -0.10 \ 9 \\ (1976 \text{Cu02}) \\ A_2 = +0.32 \ I; \ A_4 = -0.01 \ 2 \\ (1976 \text{Hj01}) \\ \alpha(\text{K}) = 0.01479 \ 2I; \ \alpha(\text{L}) = 0.00370 \ 6; \\ \alpha(\text{M}) = 0.000893 \ I3 \\ \alpha(\text{N}) = 0.000220 \ 3; \end{array}$                                                                                    |  |  |

 $^{190}_{78}$ Pt $_{112}$ -6

# <sup>190</sup>Os(α,4nγ) **1976Cu02,1976Hj01** (continued)

# $\gamma(^{190}\text{Pt})$ (continued)

| $E_{\gamma}^{\dagger}$                                   | $I_{\gamma}^{\ddagger}$                    | $E_i$ (level)   | $\mathbf{J}_i^{\pi}$ | $E_f  J_f^{\pi}$                              | Mult. <sup>#</sup> | α <sup>C</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------|--------------------------------------------|-----------------|----------------------|-----------------------------------------------|--------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 583.7 <i>3</i>                                           | 4.9 5                                      | 3344.7          | (13 <sup>-</sup> )   | 2761.0 11-                                    | (E2)               | 0.01715        | $\begin{array}{c} \alpha(\text{O})=3.74\times10^{-5} \ 6; \ \alpha(\text{P})=1.562\times10^{-6} \ 22\\ \text{E}\gamma=550.6, \ I\gamma=59.0; \ ce(\text{K})=0.8, \ ce(\text{L})=0.2\\ (1976\text{Hj01}).\\ \delta(\text{E}2/\text{M1})>3.\\ \alpha(\text{K})\exp=0.020 \ 7\\ \text{A}_2=+0.37 \ 6; \ \text{A}_4=-0.02 \ 9 \ (1976\text{Hj01})\\ \alpha(\text{K})=0.01305 \ 19; \ \alpha(\text{L})=0.00313 \ 5;\\ \alpha(\text{M})=0.000752 \ 11\\ \alpha(\text{N})=0.000185 \ 3; \ \alpha(\text{O})=3.16\times10^{-5} \ 5; \end{array}$                                                                  |
| 591.5 2                                                  | 19.9 <i>18</i>                             | 2222.7          | 9-                   | 1631.2 7-                                     | E2                 | 0.01663        | $\alpha(P)=1.380\times10^{-6} 20$<br>E $\gamma$ =583.5, I $\gamma$ =4.5; ce(K)=0.12 (1976Hj01).<br>Additional information 1.<br>$\delta(E2/M1)>1.$<br>$\alpha(K)$ exp=0.010 3<br>A <sub>2</sub> =+0.26 12; A <sub>4</sub> =-0.16 10 (1976Cu02)<br>A <sub>2</sub> =+0.25 3; A <sub>4</sub> =+0.03 3 (1976Hj01)<br>$\alpha(K)$ =0.01269 18; $\alpha(L)$ =0.00301 5;<br>$\alpha(M)$ =0.000724 11<br>$\alpha(N)$ =0.0001781 25; $\alpha(O)$ =3.04×10 <sup>-5</sup> 5;                                                                                                                                        |
| 597.6 4                                                  | 3.9 4                                      | 597.5           | 2+                   | 0.0 0+                                        |                    |                | $\alpha(P)=1.342\times10^{-6}$ 19<br>E $\gamma$ =591.4, I $\gamma$ =20.5; ce(K)=0.20 (1976Hj01).<br>A <sub>2</sub> =+0.28 14 (1976Hj01)<br>E $\gamma$ =597.6, I $\gamma$ =4.8 (1976Hj01).<br>I $\gamma$ (598 $\gamma$ )/I $\gamma$ (302 $\gamma$ )=0.53 is high by $\approx$ 25% as<br>compared to the adopted branching ratios (see the<br>Adopted Cammers)                                                                                                                                                                                                                                             |
| 605.1 4                                                  | 4.1 5                                      | 2683.6          | (10 <sup>-</sup> )   | 2078.5 8-                                     |                    |                | Adopted Gammas).<br>$A_2=+0.20\ 6\ (1976Hj01)$<br>$E_{\gamma}=605.0,\ I_{\gamma}=4.0\ (1976Hj01).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <sup>x</sup> 612.8 <sup>&amp;</sup> 5<br>620.0 2         | 1.5 <i>3</i><br>25.5 <i>23</i>             | 2535.4          | 10+                  | 1915.3 8+                                     | E2                 | 0.01494        | $\begin{aligned} &\alpha(\mathbf{K})\exp=0.011 \ 3\\ &A_2=+0.35 \ 9; \ A_4=-0.14 \ 7 \ (1976\mathrm{Cu02})\\ &A_2=+0.36 \ 2; \ A_4=-0.01 \ 3 \ (1976\mathrm{Hj}01)\\ &\alpha(\mathbf{K})=0.01149 \ 17; \ \alpha(\mathbf{L})=0.00264 \ 4;\\ &\alpha(\mathbf{M})=0.000633 \ 9\\ &\alpha(\mathbf{N})=0.0001557 \ 22; \ \alpha(\mathbf{O})=2.67\times10^{-5} \ 4;\\ &\alpha(\mathbf{P})=1.216\times10^{-6} \ 17\\ &\mathrm{E}\gamma=620.0, \ \mathrm{I}\gamma=29.0; \ \mathrm{ce}(\mathbf{K})=0.33 \ (1976\mathrm{Hj}01).\\ &\alpha(\mathbf{K})\exp \ \mathrm{for} \ 620.0\gamma+620.7\gamma. \end{aligned}$ |
| 620.7 <sup><i>a</i></sup> 3<br>627.7 2                   | ≈2.0 <sup><i>a</i></sup><br>37.7 <i>34</i> | 916.5<br>1915.3 | 3+<br>8+             | 295.7 2 <sup>+</sup><br>1287.6 6 <sup>+</sup> | E2                 | 0.01453        | $\begin{aligned} &\alpha(\text{K})\exp=0.011 \ 3; \ \alpha(\text{L})\exp=0.0026 \ 8\\ &A_2=+0.39 \ 8; \ A_4=-0.10 \ 6 \ (1976\text{Cu02})\\ &A_2=+0.35 \ 1; \ A_4=-0.02 \ 2 \ (1976\text{Hj01})\\ &\alpha(\text{K})=0.01119 \ 16; \ \alpha(\text{L})=0.00255 \ 4;\\ &\alpha(\text{M})=0.000611 \ 9\\ &\alpha(\text{N})=0.0001503 \ 21; \ \alpha(\text{O})=2.58\times10^{-5} \ 4;\\ &\alpha(\text{P})=1.185\times10^{-6} \ 17\\ &\text{E}\gamma=627.6, \ I\gamma=42.5; \ ce(\text{K})=0.48, \ ce(\text{L})=0.11\\ &(1976\text{Hj01}).\\ &\delta(\text{E2/M1})>3. \end{aligned}$                           |
| 637.8 5                                                  | 1.2 3                                      | 4214.4          | 18+                  | 3576.6 16+                                    |                    |                | A <sub>2</sub> =+0.62 20 (1976Hj01)<br>Eγ=638.0, Iγ=1.3 (1976Hj01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <sup>~654.4</sup> <sup>∞</sup> 4<br>688.1 <sup>d</sup> 6 | 1.7 <i>3</i><br>≈6.5 <sup>d</sup>          | 2603.5          | 10+                  | 1915.3 8+                                     |                    |                | $\alpha$ (K)exp=0.011 <i>3</i><br>A <sub>2</sub> =+0.16 <i>4</i> ; A <sub>4</sub> =-0.02 <i>6</i> (1976Hj01)<br>E $\gamma$ =687.8; ce(K)=0.12 for doublet (1976Hj01).                                                                                                                                                                                                                                                                                                                                                                                                                                    |

 $E_{\gamma}^{\dagger}$ 

688.1<sup>d</sup> 6

727.6 2

786.5 3

29.1 30

5.16

#### <sup>190</sup>Os( $\alpha$ ,4n $\gamma$ ) 1976Cu02,1976Hj01 (continued) $\gamma$ <sup>(190</sup>Pt) (continued) Mult.# $\alpha^{\it C}$ $I_{\gamma}^{\ddagger}$ E<sub>i</sub>(level) $\mathbf{J}_i^{\pi}$ $\mathbf{E}_{f}$ $J_f^{\pi}$ Comments $I_{\gamma}$ : from 1976Hj01. Total intensity of doublet=10.3 11 (1976Cu02), 11.5 (1976Hj01). $\alpha(K)$ exp, A<sub>2</sub> and A<sub>4</sub> for doublet. ≈5.0<sup>d</sup> Eγ=687.8 (1976Hj01). 3415.0 $(14^{+})$ 2726.8 12+ $I_{\gamma}$ : from 1976Hj01.

0.00385

0.00892

E1

E2

 $\dot{\alpha}(K) \exp = 0.0028 \ 8$ 

α(M)=0.0001104 16

 $\alpha(P)=3.13\times10^{-7}$  5

 $\alpha(M) = 0.0003345$ 

 $\alpha(P) = 7.48 \times 10^{-7}$  11

 $\delta(E2/M1)>2.$ 

 $\alpha$ (K)exp=0.0074 22

 $\begin{array}{l} A_2 = -0.25 \ 12; \ A_4 = -0.06 \ 10 \ (1976 Cu02) \\ A_2 = -0.15 \ 3; \ A_4 = +0.07 \ 2 \ (1976 Hj01) \\ \alpha(K) = 0.00323 \ 5; \ \alpha(L) = 0.000484 \ 7; \end{array}$ 

 $\alpha(N)=2.72\times10^{-5}$  4;  $\alpha(O)=4.84\times10^{-6}$  7;

A<sub>2</sub>=+0.27 20; A<sub>4</sub>=-0.09 19 (1976Hj01) A<sub>2</sub>=+0.26 3; A<sub>4</sub>=0.03 4 (1976Hj01)  $\alpha$ (K)=0.00707 10;  $\alpha$ (L)=0.001413 20;

 $\alpha$ (N)=8.23×10<sup>-5</sup> 12;  $\alpha$ (O)=1.432×10<sup>-5</sup> 20;

 $E\gamma = 786.6$ ,  $I\gamma = 5.8$ ; ce(K)=0.04 (1976Hj01).

 $E\gamma = 727.5$ ,  $I\gamma = 29.0$ ; ce(K)=0.08 (1976Hj01).

|  | 1057.4 <sup>a</sup> | 1.1 <sup>a</sup> | 1353.1 | 3- | 295.7 | 2+ |
|--|---------------------|------------------|--------|----|-------|----|
|--|---------------------|------------------|--------|----|-------|----|

1464.6

2701.8

5-

 $10^{+}$ 

736.9 4+

1915.3 8+

<sup>†</sup> From 1976Cu02, unless otherwise stated. Values from 1976Hj01 are given under comments, where uncertainties are 0.1-0.3 keV.

<sup>‡</sup> From <sup>190</sup>Os( $\alpha$ ,4n $\gamma$ ),E=45.5 MeV (1976Cu02). Values from 1976Hj01 at E=48 MeV and with uncertainty of 5-30% are given under comments.

<sup>#</sup> From ce data (1976Hj01) and/or  $\gamma(\theta)$  data (1976Cu02,1976Hj01).

<sup>@</sup> From  $\gamma(\theta)$  and ce data (1976Hj01).

<sup>&</sup>  $\gamma$  reported by 1976Cu02 only.

<sup>*a*</sup>  $\gamma$  reported by 1976Hj01 only.

<sup>b</sup> Uncertain assignment to <sup>190</sup>Pt (1976Hj01).

<sup>*c*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>d</sup> Multiply placed with intensity suitably divided.

<sup>*x*</sup>  $\gamma$  ray not placed in level scheme.

### <sup>190</sup>Os(α,4nγ) 1976Cu02,1976Hj01



## <sup>190</sup>Os(α,4nγ) 1976Cu02,1976Hj01



 $^{190}_{78}\mathrm{Pt}_{112}$