¹⁷⁶Yb(¹⁸O,4nγ) 2014Li21,2008Ma58

	Histor	ry	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020

2014Li21: $E(^{18}O)=88$ MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, $\gamma\gamma(\theta)(ADO)$ using JAEA detector array comprising of 14 HPGe detectors with BGO anti-Compton shields. Deduced levels, J, π , multipolarities, bands, configurations. Calculated total Routhian surfaces.

2014Li21 state that their experiment is different from the one carried out at JAEA and reported in 2008Ma58. The two studies are shared by many of the same authors.

2008Ma58: E=88, 95 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) using JAEA detector array comprising of 12 HPGe detectors with BGO anti-Compton shields.

The level scheme has been adopted from 2014Li21, as these authors have modified the level scheme proposed in their earlier work 2008Ma58. Several γ rays such as 202.0, 451.8 and 605.1 in 2008Ma58 were not confirmed by 2014Li21; the 417.2 γ is seen as a single line by 2104Li21, as compared to a doublet in 2008Ma58. Many other transitions have been reordered in 2014Li21 from a better counting statistics.

190Pt Levels

Following levels reported by 2008Ma58 have been discarded either due to re-ordering of the transitions in γ cascades in the work of 2014Li21 or due to non-observation of γ rays reported by 2008Ma58: 2682, 10⁻ (605.1 γ not seen); 3212 (451.8 γ not seen); 4051, (18⁺) (386.8 γ reordered); 4313, (19⁺) (508.0 γ reordered); 4846, (20⁺) (795.0 γ reordered); 5108, (21⁺) (795.0 γ reordered); 5578, (22⁺) (732.5 γ reordered); 5999, (23⁺) (890.3 γ reordered); 6000, (24⁺) (422.0 γ reordered); 6417, (26⁺) (417.0 γ seen as single line only, not a doublet, its placement is from a level near 4084 keV in both the studies); 6590, (28⁺) (173.0 γ reordered). The ordering of the γ transitions in cascades is adopted here from 2014Li21.

E(level) [†]	J^{π}	Comments
0.0#	0^{+}	
295.70 [#] 10	2+	
737.00 [#] 15	4+	
1287.70 [#] 18	6+	
1464.8 3	5-	
1631.3 ^{&} 4	7-	
1915.50 [#] 20	8+	
2078.7 [°] 6	8-	
2222.7 ^{&} 5	9-	
2297.7 [°] 7	10-	
2535.50 [@] 23	10^{+}	
2571.0 [°] 7	11-	
2603.8 5	10'	$I\pi$, 10 ⁺ := 2009 M ₂ 59
2702.50	10+	J : 10 III 2008/03/8.
$2720.9 ^{\circ} 4$	12	
$2/61.3?^{+\infty}$ 0	11	
3069.6 4	14 ⁺	
3112.1 0	13	
3345.0° 5	13	
3415.20 5	14+	A 202.0 γ with 1γ =1.5 from this level reported by 2008Ma58 was not confirmed by 2014Li21.
3577.0 ^w 5	16+	
3666.4 ^{<i>b</i>} 5	16+	
3808.2 ^b 7	18^{+}	J^{π} : (17 ⁺) in 2008Ma58.
3856.4 ^{&} 5	15-	

176 Yb (18 O ,4n γ)	2014Li21,2008Ma58	(continued)
--	-------------------	-------------

¹⁹⁰Pt Levels (continued)

E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}	E(level) [†]	J^{π}
4055.9? 7		4653.9 ^{<i>a</i>} 7	21^{-}	5720.7 10	25+	7469.4? ^{‡b} 13	30+
4083.6 ^{<i>a</i>} 5	17^{-}	4930.0 ^b 9	22^{+}	6007.1? ^{‡a} 9	(24 ⁻)	7534.6? ^{‡a} 13	(30 ⁻)
4134.1 <mark>b</mark> 8	20^{+}	4958.9 [@] 9	20^{+}	6282.5? ^{‡b} 10	26+	7957.5? ^{‡a} 14	(32 ⁻)
4215.3 [@] 7	18^{+}	5330.4 9	23^{+}	6740.0? ^{‡a} 11	(26 ⁻)	7992.3? ^{‡b} 14	32^{+}
4267.0 ^a 6	19-	5391.7? ^{‡b} 10	24^{+}	6790.8? ^{‡b} 11	28^{+}	8131.3? ^{‡a} 15	(33 ⁻)
4612.6 9	21^{+}	5448.4 ^a 8	23-	7227.7? ^{‡a} 12	(28 ⁻)	8772.7? ^{‡a} 15	(35 ⁻)

[†] From least-squares fit to the $E\gamma$ data.

[‡] Level energy is uncertain due to ambiguous ordering of the γ transitions in cascades.

Band(A): g.s. band.

[@] Band(B): 2-quiparticle band based on 10⁺.

& Seq.(E): γ cascade based on 7⁻. Possible configuration= $\nu i_{13/2}^{-1} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2014Li12).

^{*a*} Band(C): Band based on 17⁻. Possible configuration= $\nu i_{13/2}^{-3} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2014Li12). ^{*b*} Band(D): Band based on 14⁺. Possible configuration= $\nu i_{13/2}^{-2} \otimes \nu h_{9/2}^{-1} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2008Ma58, 2014Li21).

^c Seq.(F): γ cascade based on 8⁻.

$\gamma(^{190}\text{Pt})$

Expected ADO ratio is 1.2 for $\Delta J=2$, quadrupole transitions and 0.7 for $\Delta J=1$, dipole transitions (2014Li21).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
27.7 [@]		4083.6	17-	4055.9?			
75.0 [@]		2297.7	10-	2222.7	9-		$E\gamma = 75.0$ (2008Ma58).
123.1 5		2726.9	12^{+}	2603.8	10^{+}		$E\gamma = 123.0$ (2008Ma58).
141.8 5	12.5 13	3808.2	18^{+}	3666.4	16+	Q	$DCO=0.5 \ 3 \ (2008Ma58)$
							$E\gamma = 141.3$, $I\gamma = 6.0$ (2008Ma58).
							R _{ADO} =1.17 22.
166.5 5	13.9 10	1631.3	7-	1464.8	5-	Q	$E\gamma = 166.0 \ (2008Ma58).$
							R _{ADO} =1.15 14.
173.8 [‡] 5	≤4.5	8131.3?	(33 ⁻)	7957.5?	(32 ⁻)	D	$E\gamma = 173.0$, $I\gamma = 1.0$, placed from a 6590, (28 ⁺) level
							(2008Ma58).
							R _{ADO} =0.72 9.
183.4 <i>3</i>	24.1 25	4267.0	19-	4083.6	17-	Q	R _{ADO} =1.35 17.
191.4 <i>3</i>	42.0 45	2726.9	12^{+}	2535.50	10^{+}	Q	$E\gamma = 191.1$ (2008Ma58).
							R _{ADO} =1.22 14.
199.5 <i>5</i>	7.0 12	4055.9?		3856.4	15-	D	R _{ADO} =0.79 22.
219.0 5	7.6 15	2297.7	10-	2078.7	8-	Q	$E\gamma = 219.3$ (2008Ma58).
							R _{ADO} =1.06 <i>19</i> .
227.2 5	4.8 4	4083.6	17-	3856.4	15-	Q	R _{ADO} =1.14 27.
251.2 3	35.6 31	3666.4	16+	3415.2	14+	Q	DCO=1.10 15 (2008Ma58)
							$E\gamma = 250.8, I\gamma = 28.2$ (2008Ma58).
070 0 5	0 2 11	0571.0	11-	2207 7	10-	D	$R_{ADO} = 1.28 \ I3.$
213.3 5	8.3 11	2571.0	11	2297.7	10	D	$E\gamma = 2/3.0$ (2008Ma58).
205 7 1	124 12	205 70	2+	0.0	0+	0	$R_{ADO} = 0.5 / 13.$
295.7 1	134 12	295.70	Ζ.	0.0	0.	Q	$R_{ADO} = 1.15 II.$
202 1 5	6211	2415 2	1.4+	2112.1	12-	D	$E\gamma = 295.5$ (2008/Ma58).
303.13	0.3 11	5415.2	14	5112.1	13	D	$E\gamma = 502.5$ (2006) (2
							$R_{ADO} = 0.75 IJ.$

Continued on next page (footnotes at end of table)

¹⁷⁶Yb(¹⁸O,4nγ) 2014Li21,2008Ma58 (continued)

γ ⁽¹⁹⁰Pt) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
306.9 [‡] 5	12.6 12	7534.6?	(30 ⁻)	7227.7?	(28 ⁻)	Q	R _{ADO} =1.17 32.
325.9 3	24.2 19	4134.1	20+	3808.2	18+	Q	R _{ADO} =1.26 <i>12</i> .
342.7 3	48.9 48	3069.6	14+	2726.9	12^{+}	Q	$E\gamma = 342.5 \ (2008Ma58).$
343.6 5	14.5 28	1631.3	7-	1287.70	6+	D	$R_{ADO} = 1.18 \ 15.$ Ey=343.5 (2008Ma58).
345.6 5	15.6 18	3415.2	14+	3069.6	14^{+}	Q	$R_{ADO} = 0.73$ 19. $E_{\gamma} = 345.8$ (2008Ma58).
386.9 <i>3</i>	31.2 25	4653.9	21-	4267.0	19-	Q	R_{ADO} =1.19 19. Ey=386.8, Iy=21, placed from a 4051, (18 ⁺) level (2008Ma58).
390.3.5	6.8.8	5720.7	25+	5330.4	23+	0	$R_{ADO} = 1.29$ 14. $R_{ADO} = 1.17$ 28.
400.4 5	6.1 7	5330.4	23+	4930.0	22^{+}	Ď	$R_{ADO} = 0.82 \ I8.$
417.2 5	14.3 11	4083.6	17-	3666.4	16+	D	$E\gamma = 417.0 \ (2008Ma58).$ $R_{ADO} = 0.72 \ 11.$
422.9 [‡] 5	11.7 9	7957.5?	(32 ⁻)	7534.6?	(30 ⁻)	Q	$E\gamma$ =422.0, $I\gamma$ =2.3, placed from a 6000, (24 ⁺) level (2008Ma58).
441.2 5		3856.4	15-	3415.2	14^{+}		R_{ADO} =1.19 14. I _{γ} : intensity is not given by 2014Li21, as the γ line is
441.3 <i>1</i>	133 11	737.00	4+	295.70	2+	Q	unresolved from the strong 441.3 γ from the first 4 ⁺ state. DCO=1.12 <i>13</i> (2008Ma58) E γ =441.0, I γ =100 5 (2008Ma58).
447.4 5	13.9 14	2078.7	8-	1631.3	7-	Q	I_{γ} : total intensity for 441.3 γ and 441.2 γ doublet. $R_{ADO}=1.17$ 9 for unresolved 441.3 γ and 441.2 γ . $E\gamma=447.1$ (2008Ma58). $R_{ADO}=1.15$ 8
461 7 5	10.8.11	5391 79	24+	4930.0	22+	0	$R_{ADO} = 1.100$
478.5 5	≤9.0	4612.6	21+	4134.1	20^{+}	D	$R_{ADO} = 0.81 23.$
487.7 [‡] 5 506.6 5	14.8 <i>12</i>	7227.7? 4083.6	(28 ⁻) 17 ⁻	6740.0? 3577.0	(26 ⁻) 16 ⁺	Q	$R_{ADO}=1.28 \ 21.$ $E\gamma=507.1 \ (2008Ma58).$ I_{γ} : intensity is not given by 2014Li21, as the γ line is unresolved from the strong 507.4 γ from the 3577, 16 ⁺
507.4 3	33.7 25	3577.0	16+	3069.6	14+	Q	state. $E\gamma$ =507.0 (2008Ma58). R_{ADO} =1.20 <i>17</i> and I γ for unresolved triplet: 507.4 γ , 506.6 γ and 508.3 γ .
508.3 [‡] 5	≤6.0	6790.8?	28+	6282.5?	26+	Q	$E\gamma=508.0, I\gamma=2.1, placed from a 4313, (19+) level (2008Ma58).$
511/1/5	13 5 13	3856 /	15-	33/15 ()	13-	0	$R_{ADO} = 1.28 \ 32.$
522 0 5	15.5 T5 <6.0	7002.32	15 32+	7460.42	15 30 ⁺	Q	$R_{ADO} = 1.1777$
538.6 [‡] 5	≤0.0 ≤17.0	2761.3?	52 11 ⁻	2222.7	9 ⁻	Q	$E_{\gamma} = 538.8 \ (2008Ma58).$
541.1 5	6.7 10	3112.1	13-	2571.0	11-	Q	$R_{ADO}=1.25$ 16. $E\gamma=541.0$ (2008Ma58). $R_{+DO}=1.23$ 22
550.7 1	100.0 80	1287.70	6+	737.00	4+	Q	$R_{ADO} = 1.25 22.$ $E\gamma = 550.6 (2008Ma58).$ $R_{ADO} = 1.17 10.$
558.7 [‡] 5 561.8 5	17.6 15	6007.1? 6282.5?	(24 ⁻) 26 ⁺	5448.4 5720.7	23 ⁻ 25 ⁺	D	R _{ADO} =0.74 7.
583.7 [‡] 5	16.3 <i>13</i>	3345.0	13-	2761.3?	11-	Q	$E\gamma = 583.8$ (2008Ma58).
591.4 <i>3</i>	21.3 16	2222.7	9-	1631.3	7-	Q	$E_{\gamma} = 591.3 \ (2008Ma58).$ $B_{\gamma} = -1.15 \ 21$
596.8 5		3666.4	16+	3069.6	14^{+}		$E\gamma = 596.0 \ (2008Ma58).$

Continued on next page (footnotes at end of table)

¹⁷⁶Yb(¹⁸O,4nγ) 2014Li21,2008Ma58 (continued)

$\gamma(^{190}\text{Pt})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
618.1 5		3345.0	13-	2726.9	12+		I_{γ} : intensity is not given by 2014Li21, as the γ line is unresolved from the strong 620.0 from the first 10 ⁺ state at 2535 keV.
620.0 1	67.8 52	2535.50	10^{+}	1915.50	8+	Q	$E\gamma = 619.8$ (2008Ma58).
627.8 1	82.4 62	1915.50	8+	1287.70	6+	Q	$R_{ADO}=1.18$ 10 for 620.0 γ and 618.1. $E\gamma=627.5$ (2008Ma58). $R_{ADO}=1.16.9$
638.3 5	8.9 11	4215.3	18+	3577.0	16+	Q	$E_{\gamma} = 638.1 \ (2008Ma58).$ $R_{ADO} = 1.22 \ 21.$
641.4 [‡] 5	≤4.5	8772.7?	(35 ⁻)	8131.3?	(33 ⁻)	Q	R _{ADO} =1.49 46.
678.6 [‡] 5	≤6.0	7469.4?	30^{+}	6790.8?	28^{+}	Q	R _{ADO} =1.31 39.
688.3 [#] 5	≤10.0 [#]	2603.8	10^{+}	1915.50	8+	Q	Eγ=688.0 (2008Ma58). R _{ADO} =1.31 <i>31</i> .
688.3 [#] 5	16.8 [#] 14	3415.2	14+	2726.9	12+	Q	$E\gamma = 688.0 \ (2008Ma58).$ $R_{ADO} = 1.02 \ 11.$
717.8 5	≤4.0	5330.4	23+	4612.6	21+		R _{ADO} =1.04 35.
727.8 3	24.6 20	1464.8	5-	737.00	4+	D	$E\gamma = 727.5 \ (2008Ma58).$ $R_{ADO} = 0.71 \ 7.$
732.9 [‡] 5	16.6 28	6740.0?	(26 ⁻)	6007.1?	(24 ⁻)	Q	$E\gamma=732.5$, $I\gamma=4$, placed from a 5578, (22 ⁺) level (2008Ma58).
743.6 5	7.2 8	4958.9	20^{+}	4215.3	18 ⁺	Q	$R_{ADO} = 1.25$ 14. $E\gamma = 743.0, I\gamma = 1.2$ (2008Ma58). $R_{ADO} = 1.27$ 25.
786.8 5		2702.3		1915.50	8+		$E\gamma = 786.8 \ (2008 Ma 58).$
786.8 5	6.8 12	3856.4	15-	3069.6	14+	D	R _{ADO} =0.62 17.
794.5 <i>3</i>	21.6 19	5448.4	23-	4653.9	21-	Q	$E\gamma$ =795.0, $I\gamma$ =1.7, placed from a 5108, (21 ⁺) level (2008Ma58).
795.9 5	19.2 15	4930.0	22+	4134.1	20+	Q	$\begin{array}{l} R_{ADO} = 1.30 \ 18. \\ E\gamma = 795.0, \ I\gamma = 12.5, \ placed \ from \ a \ 4846, \ (20^+) \ level \\ (2008Ma58). \\ R_{ADO} = 1.17 \ 18. \end{array}$
890.8 [‡] 5	9.9 9	6282.5?	26+	5391.7?	24+	Q	Eγ=890.3, Iγ=1.1, placed from a 5999, (23 ⁺) level (2008Ma58). R _{ADO} =1.48 27.

[†] From 2014Li21. The uncertainty in energy is stated by the authors as within 0.5 keV, evaluators assign 0.1 keV for strong γ rays (I $\gamma \ge 50$), 0.3 keV for medium intensity (I $\gamma = 20$ -50), and 0.5 keV for γ rays with I $\gamma < 20$. Overall uncertainty in 2008Ma58 was also stated as 0.1-0.5 keV.

[±] Ordering of this transition in the γ cascade is not established.

[#] Multiply placed with intensity suitably divided.

[@] Placement of transition in the level scheme is uncertain.

 $^{190}_{78}\mathrm{Pt}_{112}$

¹⁷⁶Yb(¹⁸O,4nγ) 2014Li21,2008Ma58

Level Scheme (continued)

Intensities: Relative I_{γ} @ Multiply placed: intensity suitably divided

$I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$

Legend

 $^{190}_{78}\mathrm{Pt}_{112}$