¹⁹⁴Rn α decay (0.78 ms) 2006An36

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh, ¹ and Jun Chen² NDS 169, 1 (2020) 15-Oct-2020

Parent: 194 Rn: E=0; J^{π} =0+; $T_{1/2}$ =0.78 ms 16; $Q(\alpha)$ =7862 10; $\%\alpha$ decay=100.0

First identification of ¹⁹⁴Rn nuclide by 2006An36.

2006An36: 194 Rn was produced and identified in 144 Sm(52 Cr,2n) reaction at E=236 MeV on a 144 SmF₃ rotating target on a carbon backing at UNILAC heavy-ion facility of GSI, with SHIP velocity filter for separating evaporation residues. Several different types of detectors were used: the decays of the evaporation residues were measured by implanting residues in a thick 16-strip position-sensitive silicon detector (PSSD) with a typical FWHM≈20 keV for α particles in 6-8 MeV range. An array of six silicon detectors of similar shape (BOX detectors), mounted upstream of PSSD detector, was used to measure the energies of α , β and conversion electrons. Three thin time-of-flight detectors in front of the PSSD and BOX detectors permitted identification of reaction products from the scattered beam particles; and distinction between the decay events and implantation events through anti-coincidence technique. An additional thick Si detector was installed as a veto detector behind the PSSD detector in an anti-coincidence mode. This allowed distinction between the decays and the punch-through events (from high-energy protons and α particles produced in the reactions on the carbon backing). For γ rays, a four-fold segmented Clover Ge detector was used behind the PSSD detectors for prompt and delayed γ (residues) coin and/or $\alpha\gamma$ coin measurements. Identification of the isotope by time and position correlation of α decays from α decays from daughter isotope α from daughter α from parent.

¹⁹⁰Po Levels

$$\frac{E(level)}{0} \quad \frac{J^{\pi}}{0^{+}}$$

α radiations

Εα	E(level)	$I\alpha^{\ddagger}$	HF [†]	Comments
7624				Search for fine structure in α decay revealed only one event $E\alpha$ =7624 which is either from
				¹⁹⁴ Rn decay or from an escape event.
7700 10	0	100	1	Reduced α -decay width δ_{α}^2 =267 keV 58 (2006An36).

[†] Deduced $r_0(^{190}\text{Po})=1.590$ fm 11, assuming 100% g.s. to g.s. decay, and HF=1 for this transition.

¹⁹⁴Rn-E: Assumed as the ground state of ¹⁹⁴Rn.

¹⁹⁴Rn-T_{1/2}: Half-life (2006An36) determined from analysis of 26 full-energy correlated (recoil)(7700 α) decays.

 $^{^{194}}$ Rn-Q(α): From 2017Wa10.

 $^{^{194}}$ Rn- $\%\alpha$ decay: $\%\alpha$ assumed 100.

[‡] Absolute intensity per 100 decays.