144 Sm(49 Ti,3n γ) 2007Wi11

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020						

2007Wi11: E=222 MeV ⁴⁹Ti beam was produced from the K=130–MeV cyclotron at the Accelerator Laboratory of the University of Jyvaskyla. Target was 92.4% enriched ¹⁴⁴Sm with a thickness of 500 μ g/cm². Measured E γ , I γ , $\gamma\gamma$ using JUROGAM Ge detector array containing 43 EUROGAM type escape suppressed Ge detectors in conjunction with gas-filled recoil separator RITU. The recoils were implanted in two double-sided Si strip detectors DSSDs which comprised part of GREAT spectrometer and were used to measure α particles from the decay of the implanted nuclei. Recoil-decay tagging technique used in which α decays were time and position correlated with recoils and subsequent prompt γ rays from the recoils. Deduced levels, J, π , band structure. Systematics of neighboring Po isotopes.

¹⁹⁰Po Levels

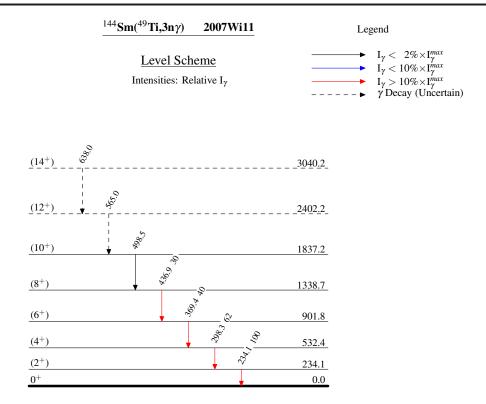
E(level) [†]	J ^{π‡}
0.0#	0^{+}
234.1 [#] 9	(2^{+})
532.4 [#] 9	(4^{+})
901.8 [#] 9	(6+)
1338.7 [#] 9	(8 ⁺)
1837.2 [#] 11	(10^{+})
2402.2? [#] 15	(12^{+})
3040.2? [#] 18	(14^{+})

[†] From $E\gamma$ data.

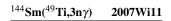
[‡] Proposed by 2007Wi11 based on systematics.

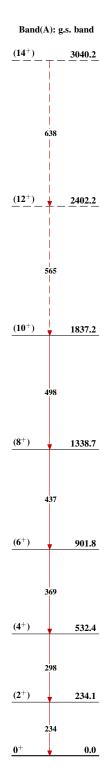
Band(A): g.s. band.

$\gamma(^{190}\text{Po})$


${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
^x 217.2 15						
234.1 9	100 10	234.1	(2^{+})	0.0	0^{+}	
298.3 1	62 8	532.4	(4^{+})	234.1	(2^{+})	
^x 305.4 3						
369.4 2	40 12	901.8	(6^{+})	532.4	(4^{+})	
^x 402.0 10						
436.9 2	30 7	1338.7	(8^{+})	901.8	(6^{+})	
^x 479						E_{ν} : from spectral Fig. 2 of 2007Wi11.
498.5 6		1837.2	(10^{+})	1338.7	(8^{+})	
^x 552.0 10						
565.0 [#] 10		2402.2?	(12^{+})	1837.2	(10^{+})	
			· /			
638.0 [#] 10		3040.2?	(14^{+})	2402.2?	(12^{+})	

[†] The γ rays are from recoil-decay tagging method. Weak 484 γ and 554 γ proposed in earlier studies were not confirmed in this work, instead the gamma rays are: 499 and 565, respectively. Values given here are from e-mail received from one of the authors (R. Page) on January 22, 2008.


[‡] From e-mail reply of January 22, 2008 from R. Page (one of the authors of 2007Will paper).


[#] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁹⁰₈₄Po₁₀₆

¹⁹⁰₈₄Po₁₀₆